ebook img

Knowledge-Driven Board-Level Functional Fault Diagnosis PDF

154 Pages·2017·8.809 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Knowledge-Driven Board-Level Functional Fault Diagnosis

Fangming Ye · Zhaobo Zhang Krishnendu Chakrabarty · Xinli Gu Knowledge- Driven Board-Level Functional Fault Diagnosis Knowledge-Driven Board-Level Functional Fault Diagnosis Fangming Ye Zhaobo Zhang (cid:129) Krishnendu Chakrabarty Xinli Gu (cid:129) Knowledge-Driven Board-Level Functional Fault Diagnosis 123 FangmingYe Krishnendu Chakrabarty HuaweiTechnologies Department ofElectrical andComputer SantaClara, CA Engineering USA Duke University Durham, NC Zhaobo Zhang USA HuaweiTechnologies SantaClara, CA Xinli Gu USA HuaweiTechnologies SantaClara, CA USA ISBN978-3-319-40209-3 ISBN978-3-319-40210-9 (eBook) DOI 10.1007/978-3-319-40210-9 LibraryofCongressControlNumber:2016942023 ©SpringerInternationalPublishingSwitzerland2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor foranyerrorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAGSwitzerland To my beloved family for their boundless support. Fangming Ye To those days and nights at graduate school. Zhaobo Zhang Preface The semiconductor industry continues to relentlessly advance silicon technology scaling into the deep-submicron (DSM) era. High integration levels and structured designmethodsenablecomplexsystemsthatcanbemanufacturedinhighvolume. However, due to increasing integration densities and high operating speeds, subtle manifestation of defects leads to functional failures at the board level. Functional fault diagnosis is, therefore, necessary for board-level product qualification. However, ambiguous diagnosis results can lead to long debug times and wrong repair actions, which significantly increase repair cost and adversely impact yield. Astate-of-the-artdiagnosissysteminvolvesseveralkeycomponents:(1)design of functional test programs, (2) collection of functional-failure syndromes, (3)buildingofthediagnosisengine,(4)isolationofrootcauses,and(5)evaluation of the diagnosis engine. Advances in each of these components can pave the way for a more effective diagnosis system, thus improving diagnosis accuracy and reducing diagnosis time. Machine-learning techniques offer an unprecedented opportunity to develop an automated and adaptive diagnosis system to increase diagnosis accuracy and speed. This book provides a comprehensive set of characterization, prediction, opti- mization,evaluation,andevolutiontechniquesforadiagnosissystem.Readerswith a background in electronics design or system engineering can use this book as a referencetoderiveinsightfulknowledgefromdataanalysisandusethisknowledge as guidance for designing reasoning-based diagnosis systems. Meanwhile, readers withabackgroundinstatisticsordataanalyticscanusethisbookasacasestudyfor adapting data mining and machine-learning techniques to electronic system design and diagnosis. Thisbookidentifiesthekeychallengesinreasoning-basedboard-leveldiagnosis system design, and presents machine-learning-based solutions and corresponding results that have emerged from cutting edge research in this domain. It broadly exploresaseriesoftopicsrangingfromhigh-accuracyfaultisolation,adaptivefault isolation, diagnosis system robustness design, system performance analysis and evaluation, knowledge discovery, and knowledge transfer. vii viii Preface This book first describes a diagnosis system based on support-vector machine (SVM), multi-kernel SVM (MK-SVM), and incremental learning. The MK-SVM method leverages a linear combination of single kernels to achieve accurate root-cause isolation. The MK-SVMs thus generated also can be updated based on incremental learning. Furthermore, a data-fusion technique, namely majority- weighted voting, is used to leverage multiple learning techniques for diagnosis. The diagnosis time is considerable for complex boards due to the large number ofsyndromesthatmustbeusedtoensurediagnosticaccuracy.Syndromecollection and analysis are major bottlenecks in state-of-the-art diagnosis procedures. Therefore, this book describes an adaptive diagnosis method based on decision trees (DT). The number of syndromes required for diagnosis can be significantly reduced compared to the number of syndromes used for system training. Furthermore,anincrementalversionofDTsisusedtofacilitateonlinelearning,so astobridgetheknowledgeobtainedattest-designstagewiththeknowledgegained during volume production. This book also includes an evaluation and enhancement framework based on information theory for guiding diagnosis systems using syndrome and root-cause analysis.Syndromeanalysisbasedonsubsetselectionprovidesarepresentativeset of syndromes. Root-cause analysis measures the discriminative ability of differ- entiating a given root cause from others. The metrics obtained from the proposed framework can provide guidelines for test redesign to enhance diagnosis. In addi- tion, traditional diagnosis systems fail to provide appropriate repair suggestions when the diagnostic logs are fragmented and some syndromes are not available. The feature of handling missing syndromes based on imputation methods has therefore been added to the diagnosis system. Finally, to tackle the bottleneck of data acquisition during the initial product ramp-up phase, a knowledge-discovery method and a knowledge-transfer method are proposed for enriching the training data set, thus facilitating board-level func- tional fault diagnosis. In summary, this book targets the realization of an automated diagnosis system that offers the benefits of high accuracy, low diagnosis time, self-evaluation, self-learning, and ability of selective learning from other diagnosis systems. Although the goal of this work was to advance board-level diagnosis, the core techniques developed in this book can also be leveraged for electronic systems beyond the board level. Santa Clara Fangming Ye Santa Clara Zhaobo Zhang Durham Krishnendu Chakrabarty Santa Clara Xinli Gu Acknowledgments The authors acknowledge the support received from Huawei Technologies. The authorsalsoappreciatethecontributionofShiJintotheworkonhandlingmissing syndromes, described in Chap. 6. ix Contents 1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1 Introduction to Manufacturing Test . . . . . . . . . . . . . . . . . . . . . 1 1.1.1 System and Tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 1.1.2 Testing in the Manufacturing Line . . . . . . . . . . . . . . . . 3 1.2 Introduction to Board-Level Diagnosis . . . . . . . . . . . . . . . . . . 6 1.2.1 Review of State-of-the-Art . . . . . . . . . . . . . . . . . . . . . . 7 1.2.2 Automation in Diagnosis System . . . . . . . . . . . . . . . . . 10 1.2.3 New Directions Enabled by Machine Learning . . . . . . . . 13 1.2.4 Challenges and Opportunities . . . . . . . . . . . . . . . . . . . . 15 1.3 Outline of Book . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2 Diagnosis Using Support Vector Machines (SVM) . . . . . . . . . . . . 23 2.1 Background and Chapter Highlights . . . . . . . . . . . . . . . . . . . . 24 2.2 Diagnosis Using Support Vector Machines . . . . . . . . . . . . . . . 25 2.2.1 Support Vector Machines . . . . . . . . . . . . . . . . . . . . . . 25 2.2.2 SVM Diagnosis Flow . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Multi-kernel Support Vector Machines and Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 2.3.1 Multi-kernel Support Vector Machines . . . . . . . . . . . . . 29 2.3.2 Incremental Learning . . . . . . . . . . . . . . . . . . . . . . . . . 31 2.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4.1 Evaluation of MK-SVM-Based Diagnosis System . . . . . 36 2.4.2 Evaluation of Incremental SVM-Based Diagnosis System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 2.4.3 Evaluation of Incremental MK-SVM-Based Diagnosis System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 2.5 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 xi xii Contents 3 Diagnosis Using Multiple Classifiers and Majority-Weighted Voting (WMV) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43 3.1 Background and Chapter Highlights . . . . . . . . . . . . . . . . . . . . 44 3.2 Artificial Neural Networks (ANN) . . . . . . . . . . . . . . . . . . . . . 45 3.2.1 Architecture of ANNs . . . . . . . . . . . . . . . . . . . . . . . . . 46 3.2.2 Demonstration of ANN-Based Diagnosis System . . . . . . 48 3.3 Comparison Between ANNs and SVMs . . . . . . . . . . . . . . . . . 49 3.4 Diagnosis Using Weighted-Majority Voting . . . . . . . . . . . . . . . 49 3.4.1 Weighted-Majority Voting . . . . . . . . . . . . . . . . . . . . . . 49 3.4.2 Demonstration of WMV-Based Diagnosis System . . . . . 51 3.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.5.1 Evaluation of ANNs-Based Diagnosis System . . . . . . . . 52 3.5.2 Evaluation of SVMs-Based Diagnosis System . . . . . . . . 55 3.5.3 Evaluation of WMV-Based Diagnosis System . . . . . . . . 56 3.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 4 Adaptive Diagnosis Using Decision Trees (DT) . . . . . . . . . . . . . . . 61 4.1 Background and Chapter Highlights . . . . . . . . . . . . . . . . . . . . 62 4.2 Decision Trees . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63 4.2.1 Training of Decision Trees . . . . . . . . . . . . . . . . . . . . . 63 4.2.2 Example of DT-Based Training and Diagnosis . . . . . . . . 65 4.3 Diagnosis Using Incremental Decision Trees . . . . . . . . . . . . . . 67 4.3.1 Incremental Tree Node . . . . . . . . . . . . . . . . . . . . . . . . 67 4.3.2 Addition of a Case . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 4.3.3 Ensuring the Best Splitting . . . . . . . . . . . . . . . . . . . . . 70 4.3.4 Tree Transposition . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 4.4 Diagnosis Flow Based on Incremental Decision Trees . . . . . . . . 72 4.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 4.5.1 Evaluation of DT-Based Diagnosis System . . . . . . . . . . 75 4.5.2 Evaluation of Incremental DT-Based Diagnosis System . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 4.6 Chapter Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 5 Information-Theoretic Syndrome and Root-Cause Evaluation . . . . 79 5.1 Background and Chapter Highlights . . . . . . . . . . . . . . . . . . . . 80 5.2 Evaluation Methods for Diagnosis Systems . . . . . . . . . . . . . . . 82 5.2.1 Subset Selection for Syndromes Analysis . . . . . . . . . . . 82 5.2.2 Class-Relevance Statistics . . . . . . . . . . . . . . . . . . . . . . 84 5.3 Evaluation and Enhancement Framework . . . . . . . . . . . . . . . . . 85 5.3.1 Evaluation and Enhancement Procedure . . . . . . . . . . . . 85 5.3.2 An Example of the Proposed Framework . . . . . . . . . . . 86

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.