ebook img

Knowledge based student academic advising in institutions of higher learning in Kenya PDF

67 Pages·2013·0.79 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Knowledge based student academic advising in institutions of higher learning in Kenya

UNIVERSITY OF NAIROBI SCHOOL OF COMPUTING AND INFORMATICS KNOWLEDGE BASED STUDENT ACADEMIC ADVISING IN INSTITUTIONS OF HIGHER LEARNING IN KENYA BY MOSES KARANI P58/63367/2011 SUPERVISOR CHRISTOPHER MOTURI SEPTEMBER 2013 Submitted in partial fulfillment of the requirements of the Master of Science in Computer Science i DECLARATION I hereby declare that the research project presented in this report is my original work and has not been presented in any other institution. Due and clear reference is made to the works of other researches that have informed this project. Signature_____________________________________ Date________________________________________ Karani Moses Orupia P58/63367/2011 The Research Project has been submitted in partial fulfillment of the Requirements of the Degree of Master of Science in Computer Science at the University of Nairobi with my approval as the University Supervisor. Signature_____________________________________ Date________________________________________ Mr. Christopher Moturi School of Computing and Informatics University of Nairobi ii DEDICATION To All my teachers who have taught and counseled me over the years, My father and late mother, Daisy and Valerie Above all to God iii ACKNOWLEDGEMENT The counsel and advice of my supervisor Mr. Christopher Moturi is highly appreciated. I also appreciate the useful advice I got from my evaluation panel members and fellow classmates as a whole. Above all to God be the glory. iv ABSTRACT Technological advances in the last two decades have led to reduced costs of computer hardware and software. This has in turn led to widespread acquisition and use Student Management Information Systems by institutions of higher learning resulting in huge databases of student data. Despite these advancements, reporting applications have remained largely rudimentary employing simple reports such as a student transcript, a consolidated mark sheet and so on. Data mining techniques can be used to obtain knowledge from large collections of data by employing techniques from both computer science and statistics thereby enriching the reporting applications. These techniques can be used to provide patterns and analyses that cannot be obtained using rudimentary querying and reporting techniques. Furthermore these patterns can be used to build models that can be used to perform predictions among many other applications. This research proposes to employ data mining techniques to build predictive models that can be used to predict the degree honors class that a student is likely to get. Using this knowledge plus that obtained using clustering and classification data mining techniques, prudent advice can be furnished to students early enough about their likely final degree honors class. With this knowledge, students can then be advised on how to improve their performance using the knowledge provided by classification and clustering algorithms. v TABLE OF CONTENTS DECLARATION ...................................................................................................................... ii DEDICATION ........................................................................................................................ iii ACKNOWLEDGEMENT ...................................................................................................... iv ABSTRACT ..............................................................................................................................v LIST OF TABLES .................................................................................................................. ix LIST OF FIGURES ..................................................................................................................x ACRONYMS ........................................................................................................................... xi CHAPTER 1: INTRODUCTION ............................................................................................1 1.0 Background............................................................................................................. 1 1.2 Problem Statement .................................................................................................. 2 1.3 Objectives ............................................................................................................... 2 1.4 Research Questions ................................................................................................. 3 1.5 Scope ...................................................................................................................... 3 1.6 Assumptions and Limitations .................................................................................. 4 CHAPTER 2: LITERATURE REVIEW ................................................................................5 2.0 Introduction ............................................................................................................ 5 2.1 EDM Problems ....................................................................................................... 6 2.2 EDM techniques ..................................................................................................... 9 2.3 Data Mining tools ................................................................................................. 10 2.4 EDM Society and Research ................................................................................... 10 CHAPTER 3: METHODOLOGY ......................................................................................... 11 3.0 Introduction .......................................................................................................... 11 3.1 Data ...................................................................................................................... 16 3.2 Data Mining Tasks ................................................................................................ 17 3.3 Hardware and Software Requirements .................................................................. 17 3.4 Requirement Specification and Analysis ............................................................... 18 vi 3.5 Data Analysis and Data Mining ............................................................................. 21 3.6 Client Side Interface ............................................................................................. 21 3.7 Non-Functional Requirements ............................................................................... 22 3.8 Design .................................................................................................................. 22 3.9 Evaluation and Testing .......................................................................................... 24 CHAPTER 4: IMPLEMENTATION AND FINDINGS ....................................................... 26 4.0 Introduction .......................................................................................................... 26 4.1 Data Mining Process ............................................................................................. 26 4.2 Business understanding ......................................................................................... 26 4.3 Data Understanding .............................................................................................. 28 4.4 Data Preparation ................................................................................................... 30 4.5 Modeling .............................................................................................................. 33 4.6 Evaluation and Testing .......................................................................................... 34 4.7 User interfaces and Reports ................................................................................... 45 4.8 Results .................................................................................................................. 46 4.9 Review of the Process ........................................................................................... 48 4.10 Resulting Model for EDM ..................................................................................... 49 CHAPTER 5: CONCLUSION AND RECOMMENDATIONS ........................................... 50 5.0 Introduction .......................................................................................................... 50 5.1 Contribution of the Project .................................................................................... 50 5.2 Challenges and Limitations ................................................................................... 51 5.3 Suggestions for Improvement ................................................................................ 51 5.4 Recommendations and further research ................................................................. 52 APPENDICES ......................................................................................................................... 53 I Project Plan .............................................................................................................. 53 II Project Budget .......................................................................................................... 54 vii REFERENCES ........................................................................................................................ 55 viii LIST OF TABLES Table 1: The CRISP-DM Phases, tasks and outputs ............................................................. 14 Table 2: Application of CRISP-DM to the Project ............................................................... 16 Table 3: Fact and Dimension tables ..................................................................................... 20 Table 4: Overall Data Summary .......................................................................................... 29 Table 5: Student Population by Gender ............................................................................... 29 Table 6: Student Population by Degree Programme ............................................................. 29 Table 7: Student Degree by Class ........................................................................................ 30 Table 8: Rational for Inclusion/ Exclusion of Attributes ...................................................... 31 Table 9: Dimension Tables .................................................................................................. 31 Table 10: Data Mining Tasks and Selected Algorithms ....................................................... 33 Table 11: Implemented Data Mining Models ....................................................................... 34 Table 12: Classification Matrices for all the Models ............................................................ 38 Table 13: Cross Validation Results for all the Models ......................................................... 44 Table 14: Knowledge Acquired using Data Mining on the Developed Data Warehouse ...... 47 Table 15: Expert Review of the Prototype ........................................................................... 48 Table 16: Project Plan ......................................................................................................... 53 Table 17: Project Budget ..................................................................................................... 54 ix LIST OF FIGURES Figure 1: The CRISP-DM Process Model ............................................................................ 12 Figure 2: Data Warehouse Conceptual Schema ................................................................... 21 Figure 3: Nguyen, Huang et. al. Conceptual Framework ...................................................... 22 Figure 4: Proposed Conceptual Framework ......................................................................... 23 Figure 5: Lift Charts for Predicting Second Upper ............................................................... 35 Figure 6: Lift Charts for Predicting First Class .................................................................... 36 Figure 7: Mining Legend for Ranking Models in Predicting Pass ........................................ 36 Figure 8: Sample User Interface for Integrating the Proposed Solution in a Web Based Application ......................................................................................................................... 45 Figure 9: Sample Analytics and Visualization that can be Generated from the Data Warehouse .......................................................................................................................... 46 Figure 10: Final EDM Model .............................................................................................. 49 x

Description:
largely rudimentary employing simple reports such as a student transcript, a consolidated mark sheet In modern academic institutions of higher learning, tutors are faced with the problem of large numbers of .. Implementation of the data warehouse will require Microsoft SQL Server 2008 database,.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.