ebook img

Knots PDF

572 Pages·2003·2.725 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Knots

de Gruyter Studies in Mathematics 5 Editors: Carlos Kenig · Andrew Ranicki · Michael Röckner de Gruyter Studies in Mathematics 1 Riemannian Geometry, 2nd rev. ed., Wilhelm P.A.Klingenberg 2 Semimartingales, Michel Me´tivier 3 Holomorphic Functions of Several Variables, Ludger Kaup and Burchard Kaup 4 Spaces of Measures, Corneliu Constantinescu 5 Knots, Gerhard Burde and Heiner Zieschang 6 Ergodic Theorems, Ulrich Krengel 7 Mathematical Theory of Statistics, Helmut Strasser 8 Transformation Groups, Tammo tom Dieck 9 Gibbs Measures and Phase Transitions, Hans-Otto Georgii 10 Analyticity in Infinite Dimensional Spaces, Michel Herve´ 11 Elementary Geometry in Hyperbolic Space, Werner Fenchel 12 Transcendental Numbers, Andrei B. Shidlovskii 13 Ordinary Differential Equations, Herbert Amann 14 Dirichlet Forms and Analysis on Wiener Space, Nicolas Bouleau and Francis Hirsch 15 Nevanlinna Theory and Complex Differential Equations, Ilpo Laine 16 Rational Iteration, Norbert Steinmetz 17 Korovkin-typeApproximationTheoryanditsApplications,FrancescoAltomare and Michele Campiti 18 Quantum Invariants of Knots and 3-Manifolds, Vladimir G. Turaev 19 Dirichlet Forms and Symmetric Markov Processes, Masatoshi Fukushima, Yoichi Oshima and Masayoshi Takeda 20 Harmonic Analysis of Probability Measures on Hypergroups, Walter R.Bloom and Herbert Heyer 21 Potential Theory on Infinite-Dimensional Abelian Groups, Alexander Bendikov 22 Methods of Noncommutative Analysis, Vladimir E. Nazaikinskii, Victor E. Shatalov and Boris Yu. Sternin 23 Probability Theory, Heinz Bauer 24 Variational Methods for Potential Operator Equations, Jan Chabrowski 25 The Structure of Compact Groups, Karl H. Hofmann and Sidney A. Morris 26 Measure and Integration Theory, Heinz Bauer 27 Stochastic Finance, Hans Föllmer and Alexander Schied 28 Painleve´ Differential Equations in the Complex Plane, Valerii I. Gromak, Ilpo Laine and Shun Shimomura 29 Discontinuous Groups of Isometries in the Hyperbolic Plane, Werner Fenchel and Jakob Nielsen Gerhard Burde · Heiner Zieschang Knots Second Revised and Extended Edition ≥ Walter de Gruyter Berlin · New York 2003 Authors GerhardBurde HeinerZieschang FachbereichMathematik(Fach187) FakultätfürMathematik UniversitätFrankfurtamMain Ruhr-UniversitätBochum Robert-Mayer-Str.6(cid:1)10 Universitätsstr.150 60325Frankfurt/Main 44801Bochum Germany Germany SeriesEditors CarlosE.Kenig AndrewRanicki MichaelRöckner DepartmentofMathematics DepartmentofMathematics FakultätfürMathematik UniversityofChicago UniversityofEdinburgh UniversitätBielefeld 5734UniversityAve MayfieldRoad Universitätsstraße25 Chicago,IL60637,USA EdinburghEH93JZ,Scotland 33615Bielefeld,Germany MathematicsSubjectClassification2000:57-02;57M25,20F34,20F36 Keywords:knots;links;fibredknots;torusknots;factorization;braids;branchedcoverings;Montesinos links; knot groups; Seifert surfaces; Alexander polynomials; Seifert matrices; cyclic periods of knots; homflypolynomial With184figures (cid:1)(cid:1) Printedonacid-freepaperwhichfallswithintheguidelinesoftheANSI toensurepermanenceanddurability. LibraryofCongressCataloging-in-PublicationData Burde,Gerhard,1931(cid:1) Knots/GerhardBurde,HeinerZieschang.(cid:1)2ndrev.andextended ed. p. cm.(cid:1)(DeGruyterstudiesinmathematics;5) Includesbibliographicalreferencesandindex. ISBN3110170051(cloth:alk.paper) I.Zieschang,Heiner. II.Title. III.Series. QA612.2.B87 2002 514(cid:2).224(cid:1)dc21 2002034764 ISBN3110170051 BibliographicinformationpublishedbyDieDeutscheBibliothek DieDeutscheBibliothekliststhispublicationintheDeutscheNationalbibliografie; detailedbibliographicdataisavailableintheInternetat(cid:3)http://dnb.ddb.de(cid:4). (cid:1)Copyright2003byWalterdeGruyterGmbH&Co.KG,10785Berlin,Germany. Allrightsreserved,includingthoseoftranslationintoforeignlanguages.Nopartofthisbookmaybe reproducedinanyformorbyanymeans,electronicormechanical,includingphotocopy,recording,or anyinformationstorageandretrievalsystem,withoutpermissioninwritingfromthepublisher. PrintedinGermany. Coverdesign:RudolfHübler,Berlin. Typesetusingtheauthors’TEXfiles:I.Zimmermann,Freiburg. Printingandbinding:Hubert&Co.GmbH&Co.KG,Göttingen. Preface to the First Edition The phenomenon of a knot is a fundamental experience in our perception of three dimensionalspace. Whatisspecialaboutknotsisthattheyrepresentatrulyintrinsic andessentialqualityof3-spaceaccessibletointuitiveunderstanding. Noarbitrariness likethechoiceofametricmarsthenatureofaknot–atrefoilknotwillbeuniversally recognizable wherever the basic geometric conditions of our world exist. (One is temptedtoproposeitasanemblemofouruniverse.) There is no doubt that knots hold an important – if not crucial – position in the theory of 3-dimensional manifolds. As a subject for a mathematical textbook they serve a double purpose. They are excellent introductory material to geometric and algebraictopology,helpingtounderstandproblemsandtorecognizeobstructionsin thisfield. Ontheotherhandtheypresentthemselvesasreadyandcopioustestmaterial fortheapplicationofvariousconceptsandtheoremsintopology. Thefirstninechapters(exceptingthesixth)treatstandardmaterialofclassicalknot theory. Theremainingchaptersaredevotedtomoreorlessspecialtopicsdepending ontheinterestandtasteoftheauthorsandwhattheybelievedtobeessentialandalive. Thesubjectsmight,ofcourse,havebeenselectedquitedifferentlyfromtheabundant wealthofpublicationsinknottheoryduringthelastdecades. Wehavestuckthroughoutthisbookmainlytotraditionaltopicsofclassicalknot theory. Linkshavebeenincludedwheretheycomeinnaturally. Higher-dimensional knottheoryhasbeencompletelyleftout–evenwhereithasabearingon3-dimensional knotssuchassliceknots. Thethemeofsurgeryhasbeenratherneglected–excepting Chapter15. WildknotsandAlgebraicknotsaremerelymentioned. Thisbookmaybereadbystudentswithabasicknowledgeinalgebraictopology – at least the first four chapters will present no serious difficulties to them. As the book proceeds certain fundamental results on 3-manifolds are used – such as the Papakyriakopoulostheorems. ThetheoremsarestatedinAppendixBandreferences aregivenwhereproofsmaybefound. Thereseemedtobenopointinaddinganother presentation of these things. The reader who is not familiar with these theorems is, however, well advised to interrupt the reading to study them. At some places the theoryofsurfacesisneeded–severalresultsofNielsenareapplied. Proofsofthese may be read in [ZVC 1980], but taking them for granted will not seriously impair theunderstandingofthisbook. Wheneverpossiblewehavegivencompleteandself- contained proofs at the most elementary level possible. To do this we occasionally refrained from applying a general theorem but gave a simpler proof for the special caseinhand. Thereare,ofcourse,manypertinentandinterestingfactsinknottheory–especially initsrecentdevelopment–thatweredefinitelybeyondthescopeofsuchatextbook. Tobecomplete–eveninaspecialfieldsuchasknots–isimpossibletodayandwas notaimedat. Wetriedtokeepupwithimportantcontributionsinourbibliography. vi PrefacetotheFirstEdition Therearenotmanytextbooksonknots. Reidemeister’s“Knotentheorie”wascon- ceivedforadifferentpurposeandlevel;Neuwirth’sbook“KnotGroups”andHillman’s monograph“AlexanderIdealsofLinks”haveamorespecialisedandalgebraicinterest in mind. In writing this book we had, however, to take into consideration Rolfsen’s remarkablebook“KnotsandLinks”. Wetriedtoavoidoverlappingsinthecontents andthemannerofpresentation. Inparticular,wethoughtitfutiletoproduceanother setofdrawingsofknotsandlinksuptotencrossings–orevenmore. Theycan–in perfectbeauty–beviewedinRolfsen’sbook. Knotswithlessthantencrossingshave beenaddedinAppendixDasaminimumofreadyillustrativematerial. Thetablesof knotinvariantshavealsobeendevisedinawaywhichoffersatleastsomethingnew. Figuresareplentifulbecausewethinkthemnecessaryandhopethemtobehelpful. FinallywewishtoexpressourgratitudetoColinMaclachlanwhoreadthemanu- scriptandexpurgateditfromthegrosserlapsuslinguae(thissentencewascomposed without his supervision). We are indebted to U. Lüdicke and G.Wenzel who wrote thecomputerprogramsandcarriedoutthecomputationsofamajorpartoftheknot invariants listed in the tables. We are grateful to U. Dederek-Breuer who wrote the programforfilingandsortingthebibliography. WealsowanttothankMrs.A.Huck and Mrs. M. Schwarz for patiently typing, re-typing, correcting and re-correcting abominablemanuscripts. Frankfurt(Main)/Bochum,Summer1985 GerhardBurde HeinerZieschang Preface to the Second Edition The text has been revised, some mistakes have been eliminated and Chapter 15 has beenbroughtuptodate,especiallytakingintoaccounttheGordon–LueckeTheorem onknotcomplements,althoughwehavenotincludedaproof. Chapter16wasadded, presentinganintroductiontotheHOMFLYpolynomial,andincludingaself-contained accountofthefundamentalfactsaboutHeckealgebras. AproofofMarkov’stheorem wasaddedinChapter10onbraids. Wealsotriedtobringthebibliographyuptodate. In view of the vast amount of recent and pertinent contributions even approximate completenesswasoutofthequestion. We have decided not to deal withVassiliev invariants, quantum group invariants andhyperbolicstructuresonknotcomplements, sinceathoroughtreatmentofthese topicswouldgofarbeyondthespaceatourdisposal. Adequateintroductorysurveys onthesetopicsareavailableelsewhere. Sincethefirsteditionofthisbookin1985,aseriesofbooksonknotsandrelated topics have appeared. We mention especially: [Kauffman 1987, 1991], [Kawauchi 1996],[Murasugi1996],[Turaev1994],[Vassiliev1999]. Our heartfelt thanks go to Marlene Schwarz and Jörg Stümke for producing the LATEX-fileandtoRichardWeidmannforproof-reading. Wealsothanktheeditorsfor theirpatienceandpleasantcooperation,andIreneZimmermannforhercarefulwork onthefinallayout. Frankfurt(Main)/Bochum,2002 GerhardBurde HeinerZieschang Contents 1 KnotsandIsotopies 1 A Knots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1 B EquivalenceofKnots . . . . . . . . . . . . . . . . . . . . . . . . . . 4 C KnotProjections . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8 D GlobalGeometricProperties . . . . . . . . . . . . . . . . . . . . . . 11 E HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 F Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13 2 GeometricConcepts 15 A GeometricPropertiesofProjections . . . . . . . . . . . . . . . . . . 15 B SeifertSurfacesandGenus . . . . . . . . . . . . . . . . . . . . . . . 17 C CompanionKnotsandProductKnots . . . . . . . . . . . . . . . . . 19 D Braids,Bridges,Plats . . . . . . . . . . . . . . . . . . . . . . . . . . 22 E SliceKnotsandAlgebraicKnots . . . . . . . . . . . . . . . . . . . . 25 F HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 27 G Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 3 KnotGroups 30 A Homology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30 B WirtingerPresentation . . . . . . . . . . . . . . . . . . . . . . . . . 32 C PeripheralSystem . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40 D KnotsonHandlebodies . . . . . . . . . . . . . . . . . . . . . . . . . 42 E TorusKnots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 F AsphericityoftheKnotComplement . . . . . . . . . . . . . . . . . . 48 G HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 H Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 4 CommutatorSubgroupofaKnotGroup 52 A ConstructionofCyclicCoverings. . . . . . . . . . . . . . . . . . . . 52 B StructureoftheCommutatorSubgroup. . . . . . . . . . . . . . . . . 55 C ALemmaofBrownandCrowell . . . . . . . . . . . . . . . . . . . . 57 D ExamplesandApplications . . . . . . . . . . . . . . . . . . . . . . . 59 E CommutatorSubgroupsofSatellites . . . . . . . . . . . . . . . . . . 62 F HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 G Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 x Contents 5 FibredKnots 68 A FibrationTheorem . . . . . . . . . . . . . . . . . . . . . . . . . . . 68 B FibredKnots . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 C ApplicationsandExamples . . . . . . . . . . . . . . . . . . . . . . . 73 D HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6 ACharacterizationofTorusKnots 79 A ResultsandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 B ProofoftheMainTheorem . . . . . . . . . . . . . . . . . . . . . . . 81 C RemarksontheProof . . . . . . . . . . . . . . . . . . . . . . . . . . 87 D HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 89 E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 7 FactorizationofKnots 91 A CompositionofKnots . . . . . . . . . . . . . . . . . . . . . . . . . . 91 B UniquenessoftheDecompositionintoPrimeKnots: Proof . . . . . . 96 C FibredKnotsandDecompositions . . . . . . . . . . . . . . . . . . . 99 D HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 E Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 8 CyclicCoveringsandAlexanderInvariants 103 A TheAlexanderModule . . . . . . . . . . . . . . . . . . . . . . . . . 103 B InfiniteCyclicCoveringsandAlexanderModules . . . . . . . . . . . 104 C HomologicalPropertiesofC∞ . . . . . . . . . . . . . . . . . . . . . 109 D AlexanderPolynomials . . . . . . . . . . . . . . . . . . . . . . . . . 111 E FiniteCyclicCoverings . . . . . . . . . . . . . . . . . . . . . . . . . 117 F HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 G Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 9 FreeDifferentialCalculusandAlexanderMatrices 125 A RegularCoveringsandHomotopyChains . . . . . . . . . . . . . . . 125 B FoxDifferentialCalculus . . . . . . . . . . . . . . . . . . . . . . . . 127 C CalculationofAlexanderPolynomials . . . . . . . . . . . . . . . . . 129 D AlexanderPolynomialsofLinks . . . . . . . . . . . . . . . . . . . . 134 E FiniteCyclicCoveringsAgain . . . . . . . . . . . . . . . . . . . . . 137 F HistoryandSources . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 G Exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139 10 Braids 142 A TheClassificationofBraids. . . . . . . . . . . . . . . . . . . . . . . 142 B NormalFormandGroupStructure . . . . . . . . . . . . . . . . . . . 150 C ConfigurationSpacesandBraidGroups . . . . . . . . . . . . . . . . 155 D BraidsandLinks . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.