ebook img

Knight shift vs hole concentration in Hg1201 and Hg1212 PDF

0.1 MB·English
by  Y. Itoh
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Knight shift vs hole concentration in Hg1201 and Hg1212

Knight shift vs hole concentration in Hg1201 and Hg1212 Y. Itoh1 1Department of Physics, Graduate School of Science, Kyoto Sangyo University, Kamigamo-Motoyama, Kita-ku Kyoto 603-8555, Japan (Dated: January 13, 2015) 5 We studied the hole concentration dependences of 63Cu Knight shifts in single-CuO2-layer high- 1 Tc cupratesuperconductorsHgBa2CuO4+δ anddouble-layerHgBa2CaCu2O6+δ. Wefoundthatthe 0 spinKnightshiftatroomtemperatureasafunctionoftheholeconcentrationinthesingle-layersu- 2 perconductorisdifferentfromthatinthedouble-layersuperconductor. Twotyperelationsbetween n thespin Knight shift and theholedopinglevelserveto estimate theindividualhole concentrations a of thenon-equivalent CuO2 planes in a unit cell. J 0 PACSnumbers: 1 ] I. INTRODUCTION HgBa2CuO4+δ HgBa2CaCu2O6+ δ n o BaO BaO c The doped hole carriers have been believed to dis- CuO2 CuO2 - tributenonuniformlyinthemulti-layercupratesupercon- BaO Ca r CuO p ductors. How to estimate the individual carrier doping HgOδ BaO2 u levels of the non-equivalent CuO2 planes in the multi- s layer superconductors has been an issue. The bond HgOδ . t valence sum associated with a local ionic valence has a served to estimate the hole concentration [1–3]. The m bondvalencesumisamicroscopiccharacterizationbased - d on the nanometer-scale structural analysis of the ionic n bonds. Although a bulk observable such as thermoelec- o tricpower(Seebeckcoefficient)atroomtemperaturehas c been proposed to estimate the hole concentration [4], no FIG. 1: Schematic crystal structures of Hg1201 (left) and [ macroscopic observables enable us to estimate the layer- Hg1212 (right). 1 selective hole concentration in the multi-layer systems. v Then, microscopic observables have been desired. 7 The ab-plane spin component of the plane-site 63Cu tal structures of Hg1201 and Hg1212. The oxygen con- 3 Knight shift 63Kab at room temperature was used to centrationintheHgOlayercontrolstheholedopinglevel 3 s estimate the individual hole concentrations of the non- in the CuO2 plane. The crystal symmetry is tetragonal. 2 0 equivalent CuO2 planes in the multi-layer supercon- We believe that Hg1201 and Hg1212 are the canonical . ductors [5, 6]. The hole concentration p is defined high-Tc cuprate superconductors. 1 0 by the fraction of holes per Cu2+p ion in the CuO2 Inthispaper,westudiedtheholeconcentrationdepen- 5 plane. A one-to-one correspondence between 63Ksab dences of the spin Knight shifts at room temperature in 1 and the hole concentration p has been proposed except the single-layersuperconductorsHg1201andthe double- v: for La2−xSrxCuO4 (LSCO), YBa2Cu3O7−δ (Y1237)and layer Hg1212 in [9–11]. The present analysis is based i YBa2Cu4O8 (Y1248)[5,6]. The singleuniversalrelation on the NMR results reported in [9–11]. The prepara- X between63Kab andphasbeeadoptedforthemulti-layer tionmethods ofthe samples for the NMR measurements s r superconductors. However, the uniform spin susceptibil- are described in [9, 10, 12]. We emphasize that the spin a ities per Cu spin in single-layer systems are known to Knight shift as a function of the hole concentration in be larger than those in double-layer systems [7, 8]. It the single-layersuperconductors is different from that in should be noted that the difference in 63Kab of single- the double-layer superconductors s CuO2-layersuperconductorHgBa2CuO4+δ(Hg1201)and double-layer HgBa2CaCu2O6+δ (Hg1212) in [9–11] has been overlooked. Thus, an issue how relevant the appli- II. EXPERIMENTAL KNIGHT SHIFTS OF cationofthe singleuniversalrelationbetween63Kab and HG1201 AND HG1212 s p is for the multi-layer systems should be addressed. The optimal Tcs of Hg1201 and Hg1212 are the high- Figure 2 shows the 63Cu Knight shifts 63Kab’s of est among the single-layerand the double-layer systems. Hg1201 (open symbols) and Hg1212 (closed symbols) in The structural flatness of the CuO2 plane characterizes anexternalmagneticfieldalongthe abplanes,whichare Hg1201andHg1212. Figure 1 showsthe schematic crys- reproduced from [9–11]. The doping levels are catego- 2 1.0 Tc = 50 K Tc = 96 K Tc = 30 K T = 127 K %) c ( T = 103 K b c aK 63 T = 93 K c 0.5 K (a) (b) (c) orb 0 0 200 0 200 0 200 T (K) T (K) T (K) FIG.2: 63CuKnightshifts63KabforHg1201(opensymbols)andHg1212(closedsymbols)intheunderdoped(a),theoptimally doped(b),andtheoverdopedregimes(c),whicharereproducedfrom[9–11]. ThedashedlinesindicatetheindividualTcs. The sold lines in (c) are visual guides. rized into underdoping (a), optimally doping (b), and overdoped doping (c). 0.4 D1 The 63Cu Knight shift 63Kab is given by 63Kab = 63Kab(T) +63Kab , where 63Kab is the spin Knight shift S1 ands63Kab is tohreb orbital shifst. 63Kab is proportional 0.3 orb s to the uniform spin susceptibility multiplied by the hy- perfine coupling constant. 63Kab is proportional to the ph 0.2 orb Van Vleck orbital susceptibility. The temperature de- pendenceof63Kab inthecupratesuperconductorscomes 0.1 Hg1212 from that of the spin shift 63Kab. We have estimated s Hg1201 63Kab ∼0.25%forHg1201and∼0.20%forHg1212[9– orb 0.0 11]. As seen in Fig. 2, 63Kab of Hg1201 is larger than 0.0 0.2 0.4 0.6 0.8 s 63 ab that of Hg1212 at each doping regime. K (RT) (%) s Figure3showstheholeconcentrationp in[12]against h 63Kab (%) at room temperature of Hg1201 and Hg1212 s in [9–11]. From the least squares fits, we obtained two relationsofS1: p =0.6363Kab(RT)-0.13(Hg1201)and FIG.3: HoleconcentrationphagainstspinKnightshift63Ksab h s atroom temperature(RT)in Hg1201 andHg1212. Thesolid D1,ph =0.7463Ksab(RT)-0.04(Hg1212). Thesolidlines lines are the fit functions of S1: ph = 0.6363Ksab(RT) - 0.13 in Fig. 3 indicate the fit functions of S1 and D1. The (Hg1201) and D1, ph = 0.7463Ksab(RT) - 0.04 (Hg1212). extrapolations of S1 and D1 to p = 0 lead to 63Kab h s = 0.21 % (Hg1201) and 63Kab = 0.05 % (Hg1212) at s the phase boundary. The empirical functions of S1 and D1 are different from the previous fit functions F1 and linear extrapolation from the existing data in [13]. The F2 (63Kab < 0.5 %) adopted for the multi-layer systems single-layer system LSCO is located close to S1. The s in [5]. double-layer systems of Y1237 and Y1248 are located close to the line D1. In Fig. 4(b), we estimated the hole concentrations III. DISCUSSIONS ps by the parabolic curve of Tc/Tc,max = 1 - 82.6(p - 0.16)2in[19]after[5]. Figure4(b)showspagainst63Kab s We discuss the hole concentration dependence upon (%)ofHg1201,LSCO[13],Tl2Ba2CuO6+δ (Tl2201)[20]; the spin Knight shift for the other cuprate superconduc- Hg1212,andBa2CaCu2O4(F,O)2 (0212F)[6]. Inspiteof torsandthealternativeestimationoftheholeconcentra- the alternative estimation of the hole concentration, the tion. pvs63KabdependenceofHg1201isdifferentfromthatof s Figure 4(a) shows p against 63Kab (%) of Hg1201, Hg1212. The reason why 63Kab’s of Hg1212 are smaller h s s LSCO [13]; Hg1212, Y1237 [14, 15] and Y1248 [16–18]. than those of Hg1201 at the respective doping levels in We estimated 63Kab at room temperature for LSCO by Figs. 2and3maybeduetotheeffectofthemagneticbi- s 3 (a) (b) 0.4 D1 0.4 0212F F1 Hg1212 S1 Hg1201 F2 0.3 0.3 Y1237 Y1237 ph 0.2 Y1248 p 0.2 LSCO Tl2201 Hg1212 0.1 0.1 Hg1201 LSCO 0.0 0.0 0.0 0.2 0.4 0.6 0.8 0.0 0.2 0.4 0.6 0.8 63 ab 63 ab K (RT) (%) K (RT) (%) s s FIG.4: (a)HoleconcentrationphagainstspinKnightshift63KsabofHg1201,LSCO[13];Hg1212,Y1237[14,15]andY1248[16– 18]. (b) Hole concentration p against spin Knight shift 63Ksab of Hg1201, LSCO [13], Tl2201 [20]; Hg1212, 0212F [6]. One should note ph (a) and p (b) estimated from the different ways. In (b), F1 (dashed line) and F2 (sold line) are the previous functions for 63Ksab < 0.5 % in [5]. layercoupling. Theeffectofthebilayercouplinghasalso conductors Hg1201 is different from that in the double- been studied for the triple-layer superconductors. Thus, layer superconductors Hg1212. Since we believe that one should take into considerationwhich type relationis Hg1201 and Hg1212 are the canonical systems, the p h relevantS1orD1toestimatetheindividualholeconcen- dependencesupon63KabatroomtemperatureinHg1201 s trations of the non-equivalentCuO2 planes in the multi- and Hg1212 should be standard to estimate the indi- layer superconductors. vidual hole concentrations of the non-equivalent CuO2 planes in a unit cell. IV. CONCLUSION We found that the spin Knight shift 63Kab as a func- V. REFERENCES s tionoftheholeconcentrationp inthesingle-layersuper- h [1] R. J. Cava, A. W. Hewat, E. A. Hewat, B. Batlogg, M. [11] Y.Itoh,T.Machi,in”SuperconductingCuprates: Prop- Marezio, K. M. Rabe, J. J. Krajewski, W. F. Peck Jr., erties, Preparation and Applications,” ed. Koenraad N. L. W.Rupp Jr., Physica C 165 (1990) 419-433. Courtlandt (NovaSciencePublisher, NY,2009) p.p.235 [2] I.D. Brown, J. Solid State Chem. 90 (1991) 155-167. - 268. [3] Y. Tokura, J. B. Torrance, T. C. Huang, A. I. Nazzal, [12] A. Fukuoka, A. Tokiwa-Yamamoto, M. Itoh, R. Usami, Phys.Rev.B 38 (1988) 7156-7159. S.Adachi,K.Tanabe,Phys.Rev.B55(1997)6612-6620. [4] J. L. Tallon, C. Bernhard, H. Shaked, R. L. Hitterman, [13] S. Ohsugi, Y. Kitaoka, K. Ishida, G.-q. Zheng, K. J. D. Jorgensen, Phys.Rev.B 51 (1995) 12911-12914. Asayama, J. Phys. Soc. Jpn. 63 (1994) 700-715. [5] H.Mukuda,S.Shimizu,A.Iyo,Y.Kitaoka,J.Phys.Soc. [14] M.Takigawa,P.C.Hammel,R.H.Heffner,Z.Fisk,J.L. Jpn.81 (2012) 011008. Smith, R.B. Schwarz, Phys.Rev.B 39 (1989) 300-303. [6] S. Shimizu, S. Iwai, S. Tabata, H. Mukuda, Y. Kitaoka, [15] T. Shimizu, H. Aoki, H. Yasuoka, T. Tsuda, Y. Ueda, P. M. Shirage, H. Kito, A. Iyo, Phys. Rev. B 83 (2011) K. Yoshimura, K. Kosuge, J. Phys. Soc. Jpn. 62 (1993) 144523. 3710-3720. [7] A.J.Millis,L.B.Ioffe,H.Monien,J.Phys.Chem.Solids, [16] T. Machi, I. Tomeno, T. Miyatake, N. Koshizuka, S. 56 (1995) 1641-1643. Tanaka, T. Imai, H. Yasuoka, Physica C 173 (1991) 32- [8] A.J.Millis,H.Monien,Phys.Rev.Lett.70(1993)2810- 36. 2813. [17] H. Zimmermann, M. Mali, I. Mangelschots, J. Roos, [9] Y. Itoh, T. Machi, S. Adachi, A. Fukuoka, K. Tanabe, L. Psuli, D. Brinkmann, J. Karpinski, S. Rusiecki, E. H.Yasuoka, J. Phys. Soc. Jpn. 67 (1998) 312-317. Kaldis,J.Less-CommomMetals,164-165(1990)138-145. [10] Y. Itoh,A. Tokiwa-Yamamoto, T. Machi, K. Tanabe, J. [18] H. Zimmermann, M. Mali, M. Bankay, D. Brinkmann, Phys.Soc. Jpn. 67 (1998) 2212-2214. Physica C 185-189 (1991) 1145-1146. 4 [19] M. R. Presland, J. L. Tallon, R. G. Buckley, R. S. Liu, B 47 (1993) 2825-2834. N.E. Flower, Physica C 176 (1991) 95-105. [20] S.Kambe,H.Yasuoka,A.Hayashi,Y.Ueda,Phys.Rev.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.