ebook img

Kinetic and radiative power from optically thin accretion flows PDF

0.63 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kinetic and radiative power from optically thin accretion flows

MNRAS000,000–000(0000) Preprint1March2017 CompiledusingMNRASLATEXstylefilev3.0 Kinetic and radiative power from optically thin accretion flows Aleksander Sa˛dowski1,(cid:63) & Massimo Gaspari2,† 1MITKavliInstituteforAstrophysicsandSpaceResearch,77MassachusettsAve,Cambridge,MA02139,USA 2DepartmentofAstrophysicalSciences,PrincetonUniversity,4IvyLane,Princeton,NJ08544,USA 1March2017 ABSTRACT 7 Weperformasetofgeneralrelativistic,radiative,magneto-hydrodynamicalsimulations(GR- 1 RMHD)tostudythetransitionfromradiativelyinefficienttoefficientstateofaccretionona 0 non-rotatingblackhole.WestudyiontoelectrontemperatureratiosrangingfromT/T =10 i e 2 to100,andsimulateflowscorrespondingtoaccretionratesaslowas10−6M˙ ,andashighas Edd b 10−2M˙Edd.Wehavefoundthattheradiativeoutputofaccretionflowsincreaseswithaccretion e rate,andthatthetransitionoccursearlierforhotterelectrons(lowerTi/Teratio).Atthesame F time,themechanicalefficiencyhardlychangesandaccountsto≈3%oftheaccretedrestmass energy flux, even at the highest simulated accretion rates. This is particularly important for 8 themechanicalAGNfeedbackregulatingmassivegalaxies,groups,andclusters.Comparison 2 withrecentobservationsofradiativeandmechanicalAGNluminositiessuggeststhattheion ] toelectrontemperatureratiointheinner,collisionlessaccretionflowshouldfallwithin10 < E T/T <30,i.e.,theelectrontemperatureshouldbeseveralpercentoftheiontemperature. i e H Keywords: accretion,accretiondiscs–blackholephysics–relativisticprocesses–methods: . h numerical p - o r t s 1 INTRODUCTION scope (mainly brightest cluster galaxies; BCGs) is Russell et al. a (2013). The radiative output is constrained via the nuclear X-ray [ Accreting black holes (BH) are behind some of most energetic luminosity,whilethekineticpowerisestimatedbymeasuringthe 2 and fundamental phenomena in the Universe. In the supermas- X-raybubbleenthalpydividedbythebuoyancytime.Thedatacor- siveregime(SMBH),theyareoftenknownasactivegalacticnu- v roboratesthatthemechanicaloutputalwaysdominateatlowand clei(AGN)andquasars.Whentherateatwhichgasislostbelow 3 intermediateaccretionrates(moreinSection1.1).Intermsofevo- theBHhorizonislow(normalizedtotheEddingtonunit),accre- 3 lution,inthenearbyUniverse,onlyafewpercentofsystemshosta 0 tionflowsareopticallythinandradiativelyinefficient(anextreme radiativelyefficientsource(orquasar).Inotherwords,belowred- 7 caseistheaccretionflowinthecenteroftheGalaxy).Radiatively shiftz∼2,AGNfeedbackisexpectedtoproceedatasub-Eddington 0 inefficient BHs do however inject significant amount of mechan- rate,i.e.,theAGNfeedback‘maintenance’phaseisdominatedby . ical energy into the environment, preventing catastrophic cooling 1 kineticinputofenergy–typicallyviamassiveoutflows(e.g.,see flowsandstarformationratesvialarge-scaleoutflows,cavitiesand 0 Gaspari2016forabriefreview). shocks(McNamara&Nulsen2012forareview),atthesametime 7 1 establishingthecelebratedBHmass-velocitydispersionrelation Inthiswork,weperformstate-of-the-art,3-dimensional(3D) : (Kormendy&Ho2013forareview).Theoutputmodeisexpected GR-RMHDsimulationsofaccretionflowsbelowandnearthetran- v tochangewhengasisaccretedatratesexceedingapercentofthe sitional regime, and calculate the corresponding mechanical and Xi Eddington rate. Under such conditions the previously radiatively radiativeefficiencies.Moreover,comparingtheobservedandsim- inefficientsourcesbecomequasarsdominatedbytheradiativeout- ulatedvaluesoftheluminosityatwhichtheradiativeefficiencybe- r a put. comes comparable with the mechanical one, we aim to constrain The transition from the radiatively inefficient to the efficient therangeofpossiblevaluesoftheelectrontoiontemperatureratio regimeisnotwellunderstood.Neitherthephysicsoftheelectron inaccretingsystems. heatinginopticallythincollisionlessplasmas.Ontheotherhand, In a parallel work, Gaspari & Sa¸dowski (2017), we apply thereisampleamountofobservationaldatawhichprobesaccreting the mechanical efficiency constrained here, to a model of self- systemsatverydifferentluminositiesandaccretionrates.Onekey regulatedAGNfeedbackwhichcouplesthesmall(horizon)scale observational study attempting to constrain the kinetic versus ra- to the large (kpc-Mpc) scale properties of cool-core systems (as diativeefficienciesinmassivegalaxiesdetectedwithChandratele- massive galaxies, groups, and clusters). The macro feeding prop- erties are mediated by the recently probed chaotic cold accretion (CCA),i.e.,thecondensationofmultiphasecloudsoutofthetur- (cid:63) E-mail:[email protected](AS);EinsteinFellow bulentplasmahalo,whichraintowardthenuclearregionandare † E-mail:[email protected](MG);Einstein&SpitzerFellow efficientlyfunnelledviachaoticinelasticcollisionscancellingan- (cid:13)c 0000TheAuthors 2 A.Sa˛dowski&M.Gaspari gularmomentum(seeGasparietal.2013,2015,2017).Thepro- 2014)whichiscapableofevolvinggasandradiationinparallelfor posedunificationmodelprovidestheBHgrowthandAGNoutflow arbitrary optical depths. The most recent version of KORAL is ca- propertiesasafunctionofthemacroproperties(e.g.,hothalotem- pableofevolvingtwo-temperatureplasma(Sadowskietal.2016). perature),andcanbeusedasaneffectivesub-gridschemeinstruc- Thisapproach,however,isnotfreefromarbitrarychoicesandnu- tureformationsimulationsandanalyticstudies,withoutresorting mericalissues(seeDiscussionsectionbelow).Forthisreasonwe tothefine-tuningofafreeefficiency. decided to solve a simplified problem where we evolve only the Thepresentedworkisstructuredasfollows.Belowwereview mean temperature of the gas (mixture of electrons and ions), but theobservationalworkwebaseourcomparisonon.InSection2, forthepurposeofcalculatingradiativeemission,wesplitthegas weintroducethenumericalmethodandmainassumptions.InSec- temperatureintoelectronandiontemperatures,T andT,respec- e i tion 3, we discuss the performed 3D GR-RMHD simulations. In tively,followingtheprescribedratioT andT.Forpurehydrogen e i Section4,wediscussthekeyimplications.InSections5and6,we gasthespeciestemperaturesatisfy, discussthecaveatsandsummarizethemainresults,respectively. 1.1 Observationalconstraints Tgas=1/2(Te+Ti). (2) Accretingblackholesareknowntobothemitradiationandinject significantamountsofmechanicalenergyinthesurroundings.The latter effect often leads to the inflation of cavities in the medium Weaccountforfree-freeandsynchrotronemissionandabsorption, as well as Compton heating and cooling. The exact formulae for surroundingtheBH,andcouldhappenbothonparsecscales(for theopacitiesaregiveninSadowskietal.(2016).Inthisworkwe stellarmassBHs),aswellasonkpcscale(forAGN).Fromthevol- umeandpressureofagivencavity(E =4PV)anditsexpansion use only grey opacities and we do not calculate electromagnetic cav spectrumofgeneratedradiation. (sound-crossing)timeonemayinferthemechanicalluminosityof thecentralsource. Severalstudiesaimingatcomparingtheradiativeandkinetic properties have been recently performed (e.g., King et al. 2012; Mezcua&Prieto2014;Hlavacek-Larrondoetal.2015;Hoganet al. 2015; Shin et al. 2016) In this work, we mainly use results by Russell et al. (2013), one of the most comprehensive investi- gations based on observations of nuclear X-ray sources and the corresponding cavities in a large sample of 57 BCGs. These au- thorshavefoundthatthenuclearradiationexceedsthemechanical energy output of the outflow when the mean accretion rate rises aboveafewpercentoftheEddingtonluminosity,correspondingto 2.1 Problemsetup theonsetofthequasarmode.Thetwocomponentsbecomecom- parablealreadyat10−3−10−2L andtheradiativecomponentis Weperformedasetof9three-dimensionalsimulationsofaccretion Edd very weak, sometimes undetectable, for the lowest accretion and flowsonanon-rotatingBH.Thesimulationscoveraccretionrates emissionrates(cf.Fig.12inRusselletal.2013).Forallsuchrea- from10−6 to10−2M˙Edd -enoughtocoverboththelow-luminosity sons,belowweusetherange10−3−10−2L asreferencethreshold limitandtheobservedtransitiontoradiatively-efficientmode1.We belowwhichthemechanicalluminosityoEfdadnaccretingblackhole testedthreevaluesofiontoelectrontemperatureratios,Ti/Te=10, systemequalsorexceedsthecorrespondingradiativeoutput. 30and100.Thischoicereflectsthefactthattheexpectedelectron temperature is lower than the ion’s (only electrons cool emitting photons),and,asdiscussedbelow,iswideenoughtoputlimitson 1.2 Units thetemperatureratioconsistentwithobservations. Initially,weperformedasingle,non-radiative,simulationwith In this work we adopt the following definition for the Eddington anequilibriumtorus(sameasinNarayanetal.2012)threadedby massaccretionrate, a magnetic field forming set of poloidal loops (again, same as in L M˙ = Edd, (1) Narayanetal.2012,butflippingthepolarityalsoacrosstheequa- Edd ηc2 torialplane)onagridof336cellsinradiusandpolarangle,and32 whereL = 4πGMm c/σ = 1.25×1038M/M erg/sistheEd- cellsinazimuthspanningπ/2wedge.Suchasetupwasevolvedfor Edd p T (cid:12) 15000t , long enough for establishing a now-standard, scale-free dington luminosity for a BH of mass M, and η is the radiative g efficiency of a thin disk around a black hole with a given spin solution of a thick and hot accretion flow with converged region a∗ ≡ a/M. For a zero-spin BH, η ≈ 0.057 (Novikov & Thorne extendingupto∼25Rg. 1973) and M˙ = 2.48×1018M/M g/s. We denote the gravita- Wethenusedthefinalstateofthisnon-radiativesimulationas Edd (cid:12) tional radius and time as R ≡ GM/c2 and t ≡ GM/c3, respec- astartingpointfortheradiativerunsbeingthesubjectofthispaper. g g tively. Whenstartingaradiativerunwerescaledthedensitytoadesired value(whichultimatelydeterminedthefinalaccretionrate)keep- ingthemagnetictogaspressureratioandthegastemperaturefixed. Atthesametimeweturnedontheradiativeevolutionallowingfor 2 NUMERICALMETHOD emissionandabsorptionofradiationwithefficiencydeterminedby For the purpose of simulating optically thin and marginally opti- the choice of species temperature ratio. In such a way we simu- cally thin accretion flows we adopt the general relativistic, radia- lated the 9 models described in this work until the final time t end tivemagneto-hydrodynamicalsolverKORAL(Sa¸dowskietal.2013, (Table1),typically25000t . g MNRAS000,000–000(0000) Kineticandradiativeefficienciesinaccretionflows 3 Table1.Simulatedmodels Name Ti/Te M˙/M˙Edd Lrad/M˙c2 Ltot/M˙c2 Lkin/M˙c2 H/R tend/tg f2t10 10 9.7×10−7 0.0005 0.035 0.034 0.38 25000 f3t10 10 1.0×10−5 0.0026 0.025 0.022 0.36 29000 f4t10 10 2.7×10−4 0.033 0.065 0.032 0.35 26000 f5t10 10 2.9×10−3 0.033 0.067 0.034 0.20 27500 f4t30 30 1.9×10−4 0.0026 0.033 0.030 0.35 25000 f5t30 30 4.1×10−3 0.017 0.056 0.039 0.20 28000 f6t30 30 1.6×10−2 0.020 0.062 0.042 0.17 28000 f5t100 100 1.7×10−3 0.0016 0.032 0.030 0.38 20500 f6t100 100 1.0×10−2 0.014 0.055 0.041 0.16 27000 H/R-averagedensityscale-heightmeasuredatR=15Rg. Otherparameters:a∗=0.0,resolution:336x336x32,π/2wedgeinazimuth Figure1.Distributionsofgasdensity(leftpanels)andgastemperature(rightpanels)insimulatedaccretionflowscorrespondingroughlytotheaccretion rateof10−3M˙Edd andthreevaluesofiontoelectrontemperatureratio:(toptobottom)Ti/Te = 100(least-efficient,modelf5t100),30(f5t30),and10 (most-efficientradiativecooling,f5t10). 3 RESULTS opticallythinaccretionflows.Theinflowofmattertakesplacein thebulkofthediskwhereturbulentstressestakeangularmomen- 3.1 Generalproperties tumoutofthegas.Thebulkoftheflowisrelativelystronglymag- The simulations initialized as described in the previous section netized due to the non-zero radial component of the initial mag- evolve into turbulent, magnetorotational instability (MRI) driven, netic field at the equatorial plane, with magnetic pressure con- tributing ultimately to ∼30% of the total pressure in the region 10<R/R <20.Themagnetocentrifugalforcesdriveoutflowfrom g 1 Althoughtempting,simulatingaccretionflowswithaccretionrateshigher thesurfacelayersofthedisk.Duetoitslowdensity,theoutflowing than10−2M˙Edd isextremelychallengingbecausesuchflowscollapsetoa gasdoesnotcontributesignificantlytothetotalradiativeemission. geometricallythindiskwhichaccretesveryslowly,and,therefore,obtain- ingconvergedsolutioninareasonablevolumerequiresbothextremenu- Differentdensitiesattheonsetofthesimulationsdetermined mericalresolutionandlongsimulationtime. theefficiencyofradiativecooling–thelargerthedensity,thehigher MNRAS000,000–000(0000) 4 A.Sa˛dowski&M.Gaspari the relative bremsstrahlung cooling rate. Similarly, the larger the However,becauseradiativeenergyisnotconserved(radiationcan electrontemperatureforagivengastemperature,themoreefficient begeneratedandabsorbedbythegas),weneedtocarefullychoose is the cooling. The latter effect is clearly visible in Fig. 1 which the radius at which to perform the integration. Ideally, we would showsthepoloidalsliceofthegasdensity(leftpanels)andtemper- liketomeasuretheluminosityatinfinity.However,wearelimited ature(rightpanels)forthreemodelswithroughlythesameaccre- bytheregionwheretheaccretionflowhassettledtotheconverged tionrateofafew10−3M˙ :f5t100,f5t30,andf5t10.Whilethe solution.WedecidedtoperformtheintegralsatR=20R ,whichis Edd g densitiesareofthesameorder,thetemperaturesarenot.Thesimu- notinfinity,butencompassedtheregionwheremostoftheradiation lationwiththecoldestelectrons(f5t100,T/T =100,toppanel) inopticallythindisksisformed. i e isashotasitgetswithgastemperatureclosetothevirialtempera- Assumingthattheenergyliberatedinanaccretingsystemcan ture,asexpectedforanon-radiativeaccretionflow.Assoonaselec- ultimatelyescapeonlyeitherbyradiationormechanicalenergy,we tronsgethotterrelativetoions(modelf5t30,middlepanel),the cancalculatethekineticcomponentas, radiativelossesaresignificantenoughtoaffectthegasproperties– thegastemperature(themeanofelectronandiontemperatures)no- Lkin=Ltot−Lrad. (6) ticeablydecreases.Gasattheequatorialplane,atR=15R isnow g at∼ 1010K,comparedto∼ 1011Kformodelf5t100.Increasing the electron relative temperature increases further the cooling ef- 3.3 Radiativeandkineticluminosities fect.Forthelowestion-to-electrontemperatureratio(T/T = 10, i e bottompanel,modelf5t10),thegastemperatureatthislocation Theefficiencyassociatedwithgivenluminosityisdefinedas, fallsdownto∼ 109K.Inadditiontothegastemperature,thera- L diativecoolinghaveaneffectonthediskthickness-thetworuns η= , (7) affectedbycoolinghavenoticeablysmallerthickness(seeTable1), M˙c2 buttheyarefarfromcollapsingtoathindisk.2 Atthelowestac- whereM˙ istheaccretionratethroughtheBHhorizonandcisthe cretionrates,theradiativeemissionisdominatedbysynchrotron, speedoflight. while at the largest, for which the radiative cooling has signifi- Table1liststheninesimulationsweperformedandgivesthe cantimpactongasproperties,itispredominantlyComptoncool- accretionratesandefficienciesobtainedbyapplyingformulaefrom ing(contributing,e.g.,to∼95%ofcoolingattheequatorialplane theprevioussectiontotime-andazimuth-averageddataspanning for model f5t30) and, to lesser extent, bremsstrahlung (see, e.g. thelast8000t ofeachsimulation.Theseefficienciesarepresented g Narayan&Yi1995;Esinetal.1997). graphicallyinFigs.2and3. The top panel in Fig. 2 shows the radiative efficiencies as a function of the accretion rate normalized to the Eddington value 3.2 Massandenergytransferrates (Section1.2).Thesquares,circlesandtrianglescorrespondtoion totemperatureratiosofT/T =10(hottestelectrons),30,and100 Quasi-stationary,i.e.,accretingatonaverageconstantrate,accre- i e (coldestelectrons),respectively.Withineachsubgroup,theradia- tionflowsshowmassandtotalenergytransportratesindependent tiveefficiencyincreaseswithaccretionrate–growinggasdensity ofradius.Undersuchcondition,neithergasorenergyaccumulates resultsinincreasedefficiencyofbremsstrahlungemission.Theac- atanyradius,butpreservestheiraverageradialprofiles.Wemea- cretionrateatwhichanaccretionflowdepartsfromtheradiatively suretheaccretionrateandluminosityintotalenergyinsimulated inefficientstate(η (cid:28)1)isdifferentfordifferentelectrontemper- accretionflowsbyintegratingthemassandenergyfluxesoverthe rad atures.Forthehottestelectronscase(T/T = 10,squarepoints), BHhorizon. i e alreadyat∼10−4M˙ (modelf4t10)theamountoftheproduced Themeanaccretionrateisthereforedefinedthrough, Edd radiationaccountsto3%oftheaccretedrest-massenergy-roughly (cid:90) π(cid:90) 2π √ theamountthatthestandard,radiativelyefficientthindisk(Shakura M˙ = −g(cid:104)ρur(cid:105)dφdθ, (3) & Sunyaev 1973; Novikov & Thorne 1973) would generate in- 0 0 sideradius20R .Forcolderellectrons,thistransitiontakesplace whereρstandsforgasdensity,ur denotestheradialvelocity,and g √ atsignificantlyhigheraccretionrates:∼10−3M˙ forT/T =30, −gisthemetricdeterminant. Edd i e ∼ 10−3−10−2M˙ forT/T = 100.Inthosecases,theradiative The luminosity in total energy (binding, kinetic, radiative, Edd i e efficiency does not exceed 2% even for the highest simulated ac- magnetic,andthermal,seeSa¸dowskietal.2016fortherelateddis- cretionrates.Suchadiscrepancyinthecriticalaccretionratecor- cussion)isgivenas, responding to the transition to the luminous regime is not unex- (cid:90) π(cid:90) 2π √ pected–thehottertheelectrons(withrespecttogasorions),the Ltot=− −g(cid:104)Ttr+Rrt +ρur(cid:105)dφdθ, (4) more efficient is radiative emission, and lower gas densities (and 0 0 corresponding accretion rates) are required for the same amount whereTr andRr arecomponentsofthematterandradiationstress t t of emission. Comparable results were obtained by Xie & Yuan energytensors,respectively. (2012)whocalculatedradiativeefficienciesusingsemi-analytical, The radiative-only luminosity is given by the integral of the one-dimensionalsolutionsparametrized,however,bytheelectron latter, heatingparameter,δ,notthetemperatureratio.Similarcalculations (cid:90) π(cid:90) 2π √ werealsoperformedinthecontextofM87byRyanetal.(2015) Lrad=− −g(cid:104)Rrt(cid:105)dφdθ. (5) whosimulatedGRMHDaccretionflowsaffectedbyradiativecool- 0 0 ing effects tracked with a Monte Carlo radiative transport solver. Forequalionandelectrontemperatures(T/T =1)andaccretion i e 2 Theirpropertiesresembletolargeextenttheluminoushotaccretionflow rate∼10−5M˙Edd theyobtainedradiativeefficiencyLrad = 0.51M˙c2 (LHAF)solutionsproposedbyYuan(2001).Detailedstudyofthecollapse – as authors note, surprisingly high even for their choice of BH wouldrequireprecisetreatmentofCoulombcoupling(seeDiscussion). spinvalue,a∗=0.9375,andpresumablyduetotheflowhavingnot MNRAS000,000–000(0000) Kineticandradiativeefficienciesinaccretionflows 5 Figure3.Ratiooftheradiativetokineticluminositiesasafunctionofthe totalluminosity(sumofthetwo).Thehorizontallinecorrespondstothetwo equalinvalueandseparatestheradiativelyinefficientregime(below)from theluminousstate(abovetheline).Theshadedregionreflectstherange ofluminositiesatwhichtheobservedAGNstartproducingradiativeand kineticoutputsofcomparablemagnitude(Russelletal.2013). Table2.Transitiontotheluminousstate Ti/Te Ltrans/LEdd 100 (cid:38)10−2 30 (cid:38)10−2 10 ∼10−4 Luminousstatedefinedas Figure2.Radiative(top)andkinetic(bottompanel)efficienciesofthesim- satisfyingLrad>Lkin. ulatedaccretionflowsasafunctionofthenormalizedaccretionrate.Differ- entsymbolscorresponddodifferentiontoelectrontemperatureratios. intact dynamical properties (the total efficiency is determined by howboundsuchhorizoncrossinggasis).Forthelowestaccretion yetreachedsteadystate3.Numericalsimulationsofthetransitional ratesineachsubset,thiskineticenergyextractionratedominates regimewereperformed,althoughwithmuchsimplertreatmentof the total luminosity. In the case of the largest accretion rates, for radiation,alsobyDibietal.(2012)andWuetal.(2016). which the radiative output is significant, the kinetic and radiative ThebottompanelinFig.2showsthekineticefficiencycalcu- luminositieshavecomparablemagnitudes. latedfromthedifferencebetweenthetotalandradiativeluminosi- Thekineticandradiativeenergyextractionratesarecompared ties(Eq.6).Inallcasesthekineticefficiencyiscloseto3%.This inFig.3.Asalreadydiscussed,thekineticenergydominateswhen valueisconsistentwiththatobservedinthenon-radiativesimula- radiativeemissionisnegligible,i.e.,forthelowestaccretionrates. tiondescribedin-depthinSa¸dowskietal.(2016)4.Itisinteresting Oncemasstransferrateincreases,sodoestheradiativeefficiency, tonote,thatthekineticefficiencydoesnotgodownwithincreas- whichforthehottestelectroncasecanevenbecomecomparableor ingaccretionrateandradiativeluminosity.Thisisinpartdifferent exceedthekineticcomponent. frompreviousidealizedAGNmodels(Churazovetal.2005).Itre- Table2putstogethertheestimatesfortheluminosities,L trans flectsthefactthatradiationcomesfromtheinnermostpartofthe (eitherkineticorradiative),atwhichthetransitiontotheluminous accretionflowandtheunderlyinggascannotefficientlyrespondto regime(L ≈L )takesplace.Forthecoldestelectrons,wehave rad kin cooling in the last phase of accretion, crossing the horizon with shownthattheaccretionflowsremainradiativelyinefficientupto 10−2L andtheradiativeoutputneverreachestheleveloftheki- Edd netic one. The intermediate case behaves in similar way. For the 3 Ourownexperimentshaveshownthataxisymmetricaccretionflowsare hottest electron case (T/T = 10), however, the accretion flow i e characterized by significantly higher radiative efficiency than the three- starts generating radiative luminosity comparable to the mechan- dimensionalcounterparts–enforcingaxisymmetrychangesthenatureof icalonealreadyat10−4L .Wediscusstheimplicationsofthese Edd turbulenceleadingtotheformationofrapidlyradiating,highdensityfil- findingsinthenextSection. aments in the inner region which are not present in non-axisymmetrical solutions. 4 Weremindthis3%characterizesthickaccretionflowsonnon-rotating BHs.Fornon-zeroBHspinthisdisk-relatedefficiencymaygoup;ontop 4 IMPLICATIONS ofit,ageneratedrelativisticjetmayovercomethetotalenergybudget,albeit havingdifficultytoefficientlycouplewiththehosthaloduetotheveryhigh ObservationalstudiesofAGNradiativeluminositiesandmechan- collimation. ical output (Section 1.1) have shown that the radiative compo- MNRAS000,000–000(0000) 6 A.Sa˛dowski&M.Gaspari nent becomes comparable with the kinetic one at the luminosity transitiontothequasar-likeregime,andthusevenathighredshifts ∼ 10−3 −10−2L (e.g., Fig. 12 in Russell et al. 2013). In this (assuggestedbytheobservationalsampleinHlavacek-Larrondoet Edd workwehaveshownthatthiscriticalluminosityissensitivetothe al.2015). temperatureoftheelectrons,whichdeterminestheefficiencyofra- Finally,asanticipatedinSection1,therobustconstraintand diative cooling. Therefore, we can use the observational result to stabilityofthemechanicalefficiencyallowsustolinksuchmicro constrainthepropertiesoftheelectronpopulationinopticallythin valuetothemacropropertiesoftheself-regulatedAGNfeedback blackholeaccretionflows. loop(mediatedviaCCA),whichre-heatsandpreservesthecooling In Table 2 we listed the rough estimates of the critical lu- coresof galaxies,groups,and clustersin astateof quasi-thermal minositiesatwhichthekineticandradiativeluminositiesbecome equilibrium throughout the cosmic time (e.g., Gaspari 2015 and comparable. For the hottest electrons case we considered (ion to refs.within).Suchunificationmodelispresentedanddiscussedin- electrontemperatureratio,T/T =10),thistransitionoccurredfor depthinthecompanionwork,Gaspari&Sa¸dowski(2017). i e luminosityaslowas10−4L (seeFig.3),significantlybelowthe Edd observational constraint. For both the intermediate (T/T = 30) i e and the coldest (Ti/Te = 100) cases, the radiative output is sig- 5 CAVEATS nificantlybelowthemechanicaloneevenforkineticluminosities ∼10−2L ,wellabovetheconstraint. We base our work on simulations performed with a numerical Edd methodusingsomesimplifyingassumptions.Mostimportantly,we This argument implies that to satisfy the observational con- decidednottotracktheenergycontainedintheelectronfluidinde- straintsoneshouldexpectthetemperatureratiotofallbetweenthe pendentlyofions,buttofixtheiontoelectrontemperatureratio. hottestandintermediatecase,i.e.,10 < T/T < 30.Wetherefore i e Thisapproacheffectivelyarbitrarilyprescribesthebalancebetween suggestthatastrophysicalplasmasinopticallythinaccretionflows theelectronheatingandColoumbcouplingwhichdeterminesthe (atleastinthenuclearregion)produceelectronswithtemperature temperature ratio. We adopted this simplification to get a direct between3%and10%oftheiontemperature. handleontheelectrontemperaturesandtoavoidnumericalissues Thephysicsofelectronheatinginaccretionflowsdependson thatarisewhenidentifyingdissipationforthepurposeofelectron the phenomena taking place on the smallest lengthscales of col- evolution(seediscussioninSadowskietal.2016).Thetrade-offis lisionsless plasmas (see, e.g., Quataert & Gruzinov 1999) and is thatweforcethetemperatureratiotobespatiallyuniform–which stilldebated.Howes(2010)proposedaprescriptionforthefraction isnotthecaseinthewholevolume,butisclosetoconstantinside ofheatinggoingintotheelectronpopulationbasedontheoretical thebulkoftheaccretionflow(Ressleretal. 2015;Sadowskietal. modelsofthedissipationofMHDturbulenceinalmostcollision- 2016).Furthermore,wedonottracktheefficiencyofCoulombcou- lessplasmasandwhichhavebeenrecentlyappliedtosimulations pling,whichatthelargestaccretionrates(anddensities)cancouple oftwo-temperatureaccretionflows(Ressleretal. 2015;Sadowski etal.2016).Thismodelpredictsthattheefficiencyofelectronheat- electronsandionsstronglyenoughtopreventlargediscrepancybe- tweentheirtemperatures.Ontheotherhand,ifagiventemperature ing increases in highly magnetized regions, and the equilibrium ratioisfeasible,thentheaboveresultsapply,astheradiativeprop- species temperature ratio is determined by the magnetization of ertiesdependultimatelyontheelectrontemperature,andnotonthe local plasma. Putting the range of temperature ratios favored by processeswhichdetermineitsvalue. thiswork,10 < T/T < 30,intotheformulafortheequilibrium i e We limited our set of simulations to accretion flows on temperature ratio (Sadowski et al. 2016), one recovers the corre- spondingrangeofgas-to-magneticpressureratio,6(cid:46)β(cid:46)10.This non-rotating BHs. If the BH spin is non-zero, one may expect higher efficiency of extracting both radiative and mechanical en- levelofmagnetizationisinagreementwiththelevelexpectedfrom ergy(Tchekhovskoyetal.2011;McKinneyetal.2015;Sa¸dowski thesaturatedstateofmagnetorotationalinstability(e.g.,Davisetal. et al. 2016), and it is likely the transition luminosities identified 2010;Shietal.2010),whatfurthersupportstheargumentsmade, in this work will change6. However, if BH growth occurs mainly andsuggeststhattheaccretionflowsofinterestarenotthreadedby throughchaoticaccretion,asexpectedformostmassivegalaxies, significantnetpoloidalmagneticfluxeswhichwouldimplymuch groups,andclusters(Gasparietal.2013,2015,2017),oneshould strongermagnetization(Bai&Stone2013;Salvesenetal.2016). expecttheaveragevalueoftheBHspininAGNtobeclosetozero Akeyresultworthtoremarkistherobustnessofthekinetic efficiency,whichremainsstablearound3percentvalueregardless (King&Pringle2006).Inparticular,asampleasinRusselletal. (2013) should be biased toward the properties of a zero-spin BH oftheEddingtonratio,atmostvaryingby1percent.Whilebroadly population. accepted that the maintenance mode of AGN feedback resides in It has been understood recently that the level of magnetiza- thekineticregime,giventheubiquitousimprintsofAGNoutflows tion and the topology of magnetic field in an accretion flow are via X-ray cavities, shocks, and gas uplift (Section 1), the kinetic outputinthequasarregimeisstilldebated5.Previousmodelsas- not unique, and depend on the large scale properties of the field. Magneticfieldmaybeconsideredanotherdegreeoffreedominde- sumedastrongdecreaseofthekineticpoweratincreasingEdding- terminingtheflowproperties,whichweleavetofuturework.By tonratios(e.g.,Churazovetal.2005),howeverrecentobservational choosingaparticularconfigurationoftheinitialseedmagneticfield datahasstartedtodetectthepresenceofcavitieseveninsystems intheequilibriumtorus,wechosetostudyaccretionflowswhich withaquasarsource.E.g.,McDonaldetal.(2015)showthepres- arerelativelyweaklymagnetized,andwhichdonotleadtothesat- enceofX-raycavitiesinPhoenixclusterwhichalsohostsanX-ray urationofthefieldattheBHhorizon.Theoppositelimitwouldbe brightquasaremittingatafewpercentoftheEddingtonrate.Albeit themagneticallyarresteddisk(MAD,Narayanetal.2003),which theveryhighEddingtonratiosremaintobetested,ourworkcor- shows properties dramatically different from the weakly magne- roboratestheimportanceofmechanicalAGNfeedbackalsointhe tizedstate(SANE–usingthenomenclatureinNarayanetal.2012). 5 Wenotethateveninthequasar-likeregimetheradiativepowerhassevere 6 Anothercomplicationisthatitisuncertainhowefficientlythechaotic difficultyincouplingwiththegas,especiallyat>kpcscales. inflowwouldalignwiththeBHspinaxis. MNRAS000,000–000(0000) Kineticandradiativeefficienciesinaccretionflows 7 WhetherlowluminosityAGNaccretionflowsareSANEorMAD Gaspari,M.,&Sadowski,A.2017,ApJ,inpress,arXiv:1701.07030 isstilldebated.InthisworkwefocusedonlyontheSANEscenario. Hlavacek-Larrondo,J.,McDonald,M.,Benson,B.A.,etal.2015,ApJ,805, 35 Hogan,M.T.,Edge,A.C.,Geach,J.E.,etal.2015,MNRAS,453,1223 Howes,G.G.2010,MNRAS,409,L104 6 SUMMARY KingA.R.,PringleJ.E.2006,MNRAS,373,L90 We performed a set of general relativistic, radiative, magneto- King,A.L.,Miller,J.M.,&Raymond,J.2012,ApJ,746,2 KormendyJ.,&HoL.C.2013,ARAA,51,511 hydrodynamicalsimulationstostudythetransitionfromradiatively inefficienttoefficientstateofaccretiononanon-rotatingBH.We McKinney,J.C.,Dai,L.,&Avara,M.J.2015,MNRAS,454,L6 Mezcua,M.,&Prieto,M.A.2014,ApJ,787,62 studiedarangeofiontoelectrontemperatureratios,andsimulated McNamara,B.R.,&Nulsen,P.E.J.2012,NewJournalofPhysics,14,5 flowscorrespondingtoaccretionratesaslowas10−6M˙ ,andas Edd (id.055023) highas10−2M˙Edd.Wehavefoundthefollowing: McDonald,M.,McNamara,B.R.,vanWeeren,R.J.,Applegate,D.E.,et (i)Theradiativeefficiencyincreaseswithaccretionrate,and al.2015,ApJ,811,111 the increase occurs earlier for lower ion to electron temperature Narayan,R.,Igumenshchev,I.V.,&Abramowicz,M.A.2003,PASJ,55, ratios(i.e.,hotterelectrons).ForT/T = 10,theradiativeoutput L69 i e becomes significant (exceeding 1% of the rest mass energy flux) Narayan,R.,&Yi,I.1995,ApJ,452,710 alreadyat10−5-10−4M˙ .Forcolderelectrons,thistransitiontakes Narayan,R.,Sa¸dowski,A.,Penna,R.F.,&Kulkarni,A.K.2012,MNRAS, Edd place only at ∼10−3 and ∼10−2M˙ for T/T = 30 and T/T = 426,3241 Edd i e i e Novikov,I.D.,&Thorne,K.S.1973,BlackHoles(LesAstresOcclus),343 100,respectively(Fig.2). Quataert,E.,&Gruzinov,A.1999,ApJ,520,248 (ii)Themechanicaloutputoftheaccretionflowsisinsensitive Ressler,S.M.,Tchekhovskoy,A.,Quataert,E.,Chandra,M.,&Gammie, totheaccretionrate,withanefficiencyremainingstablenear3% C.F.2015,MNRAS,454,1848 of M˙c2.Suchmicroefficiencycanbeexploitedtocloseaunified Russell,H.R.,McNamara,B.R.,Edge,A.C.,etal.2013,MNRAS,432, self-regulatedAGNfeedbackmodelwhichshapesmassivegalax- 530 ies,groups,andclusters(seethecompanionGaspari&Sa¸dowski Ryan,B.R.,Dolence,J.C.,&Gammie,C.F.2015,ApJ,807,31 2017).Weremarkthisisalsovalidasenteringthequasarregime, Salvesen,G.,Armitage,P.J.,Simon,J.B.,&Begelman,M.C.2016,MN- corroboratingtheimportanceofmechanicalAGNfeedbackovera RAS,460,3488 largerangeofEddingtonratios(andthusredshifts). Sa¸dowski,A.,Narayan,R.,Tchekhovskoy,A.,&Zhu,Y.2013,MNRAS, (iii)Bycomparingthesimulatedradiativeandmechanicaleffi- 429,3533 Sa¸dowski,A.,Narayan,R.,McKinney,J.C.,&Tchekhovskoy,A.2014, ciencieswiththeobservationalresultsconstrainingtheluminosity MNRAS,439,503 at which the radiative output becomes comparable with the me- Sa¸dowski,A.,Lasota,J.-P.,Abramowicz,M.A.,&Narayan,R.2016,MN- chanicalpower(Russelletal.2013),weshowthatourmodelsare RAS,456,3915 consistentwithobservationswhentheiontoelectrontemperature Sadowski, A., Wielgus, M., Narayan, R., et al. 2016, arXiv:1605.03184, ratioiswithinarange10<Ti/Te<30. MNRAS,inpress Shakura,N.I.,&Sunyaev,R.A.1973,A&A,24,337 Shi,J.,Krolik,J.H.,&Hirose,S.2010,ApJ,708,1716 Shin,J.,Woo,J.-H.,&Mulchaey,J.S.2016,ApJS,227,31 7 ACKNOWLEDGMENTS Tchekhovskoy,A.,Narayan,R.,&McKinney,J.C.2011,MNRAS,418, TheauthorsthankSeanResslerforcommentsonthemanuscript. L79 ASandMGacknowledgesupportforthisworkbyNASAthrough Xie,F.-G.,&Yuan,F.2012,MNRAS,427,1580 Yuan,F.2001,MNRAS,324,119 EinsteinPostdoctotralFellowshipsnumberPF4-150126andPF5- Wu,M.-C.,Xie,F.-G.,Yuan,Y.-F.,&Gan,Z.2016,MNRAS, 160137,respectively,awardedbytheChandraX-rayCenter,which is operated by the Smithsonian Astrophysical Observatory for NASAundercontractNAS8-03060.Supportforthisworkwasalso providedbyNASAChandraawardnumberG07-18121X.Theau- thors acknowledge computational support from NSF via XSEDE resources(grantTG-AST080026N),fromthePL-GridInfrastruc- ture,andtheNASA/AmesHECProgram(SMD-16-7251). REFERENCES Bai,X.-N.,&Stone,J.M.2013,ApJ,767,30 Churazov,E.,Sazonov,S.,Sunyaev,R.,etal.2005,MNRAS,363,L91 Davis,S.W.,Stone,J.M.,&Pessah,M.E.2010,ApJ,713,52 Dibi,S.,Drappeau,S.,Fragile,P.C.,Markoff,S.,&Dexter,J.2012,MN- RAS,426,1928 Esin,A.A.,McClintock,J.E.,&Narayan,R.1997,ApJ,489,865 GaspariM.,RuszkowskiM.,OhS.P.2013,MNRAS,432,340 GaspariM.,BrighentiF.,TemiP.,2015,A&A,579,72 GaspariM. 2015,MNRAS,451,60 Gaspari M. 2016, in Proc. IAU Symp. 319, Galaxies at High Redshift andTheirEvolutionOverCosmicTime.CambridgeUniv.Press,Cam- bridge,p.17 GaspariM.,TemiP.,BrighentiF.,2017,MNRAS,466,677 MNRAS000,000–000(0000)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.