Astronomy&Astrophysicsmanuscriptno.0388 February2,2008 (DOI:willbeinsertedbyhandlater) Kinematic study of the blazar S5 0716+714 U.Bach1⋆,T.P.Krichbaum1,E.Ros1,S.Britzen1,2,W.W.Tian1,3,A.Kraus1,A.Witzel1,andJ.A.Zensus1 1 Max-Planck-Institutfu¨rRadioastronomie,AufdemHu¨gel69,53121Bonn,Germany 2 Landessternwarte,Ko¨nigstuhl17,69117Heidelberg,Germany 3 NationalAstronomicalObservatories,CAS,20ADatun,RoadChaoyang,Beijing100012,PRChina 5 0 Received5March2004;accepted3December2004 0 2 Abstract.Wepresenttheresultsofamulti-frequencystudyofthestructuralevolutionoftheVLBIjetintheBLLacobject n 0716+714overthelast10years.WeshowVLBIimagesobtainedat5GHz,8.4GHz,15GHzand22GHz.Themilliarcsecond a J sourcestructureisbestdescribedbyaone-sidedcore-dominatedjetof 10maslength.Embeddedjetcomponentsmovesu- ∼ perluminallywithspeedsrangingfrom5cto16c(assumingz=0.3).SuchfastsuperluminalmotionisnottypicalofBLLac 1 1 objects,howeveritisstillintherangeofjetspeedstypicallyobservedinquasars(10cto20c).In0716+714, youngercom- ponentsthatwereejectedmorerecentlyseemtomovesystematicallyslowerthantheoldercomponents.Thisandasystematic 2 positionanglevariationoftheinner(1mas)portionoftheVLBIjetsuggestsanatleastpartlygeometricoriginoftheobserved v velocityvariations.TheobservedrapidmotionandthederivedLorentzfactorsarediscussedwithregardtotherapidIntra-Day 6 Variability(IDV)andtheγ-rayobservations,fromwhichveryhighDopplerfactorsareinferred. 0 4 Keywords.Galaxies:jets–BLLacertaeobjects:individual:S50716+714–Radiocontinuum:galaxies 2 1 4 0 1. Introduction dominated evolving jet extending several 10milliarcseconds / tothenorth(Eckartetal.1986,1987;Witzeletal.1988).The h The S5 blazar 0716+714 is one of the most active BLLac VLBI jet is misalignedwith respectto the VLA jetby 90 p ◦ objects. It is extremely variable on time-scales from hours ∼ - (e.g., Saikiaetal. 1987). In the literature the jet kinematics o to months at all observed wavelengths from radio to X-rays. in0716+714arediscussedcontroversially.Thereexistseveral r The redshift of 0716+714 is not yet known. However, opti- t kinematic scenarios with motions ranging from 0.05masyr−1 s cal imaging of the underlying galaxy provides a redshift es- a to1.1masyr−1.However,someoftheseearlierkinematicmod- timateofz 0.3(Wagneretal.1996).ArecentX-raystudyby v: Kadleretal≥.(2004)suggestsamuchlowerredshiftof0.1,but els are based on only two or three epochs separated by sev- eral years, which sometimes could have led to ambiguities i X since this needs further confirmation a redshift of 0.3 is used in the identification of fast components (Eckartetal. 1987; throughoutthispaper.Intheradiobands0716+714isanintra- r Witzeletal.1988;Schalinskietal.1992;Gabuzdaetal.1998; a day variable(IDV)source (Witzeletal. 1986; Heeschenetal. Perez-Torresetal. 2004). More recent studies based on more 1987). It exhibitsa flat radiospectrumat frequenciesupto at datameasuredhigherjetspeeds(Tianetal.2001;Jorstadetal. least 350GHz. Quirrenbachetal. (1991) found strongly cor- 2001b;Kellermannetal.2004),buttheresultswerestillincon- related IDV between radio and optical bands. This and the sistentbetweenthetwostudies.Thus,itisatpresentnotclear correlated variations between X-ray and optical and the si- if0716+714isasuperluminalsourceandandhowfastthemo- multaneousvariationsbetweenopticalandradiostronglysug- tionoftheVLBIjetcomponentsis. gestanintrinsicoriginoftheintradayvariability(Wagneretal. Inthispaper,wepresentanddiscussourresultsfromare- 1996;Wagner&Witzel1995).FromtheobservedIDVatcm- analysis of the last 10 years of VLBI data on 0716+714,ob- wavelengthsatypicalbrightnesstemperatureofT = 1015.5K b tainedatfrequenciesbetween5GHzand22GHz.Ouranalysis to1017Kisderived(Krausetal.2003;Wagneretal.1993).A includes26observingepochslistedinTable1.Throughoutthis Doppler factor of 15 to 50 would be needed to bring these paper we will use a flat universe, with the following parame- brightnesstemperaturesdowntotheinverse-Comptonlimitof ters:AHubbleconstantof H = 71kms 1Mpc 1,apressure- 1012K. 0 − − lessmattercontentofΩ =0.3andacosmologicalconstantof m Very Long Baseline Interferometry (VLBI) studies span- Ω = 0.7.Withtheseconstantsanangularmotionof1mas/yr λ ning more than 20years at cm-wavelengths show a core- correspondstoaspeedof18.8catz=0.3(6.6catz=0.1). Sendoffprintrequeststo:U.Bach,e-mail:[email protected] InSect.2,webrieflydescribetheobservationsandthedata ⋆ Currentaddress:INAF-OsservatorioAstronomicodiTorino,Via reduction, the model fitting process and present the final im- Osservatorio20,10025PinoTorinese,Italy ages.InSect.3wepresentthecross-identificationoftheindi- 2 U.Bachetal.:KinematicstudyoftheblazarS50716+714 vidualjetcomponentsandanewkinematicmodelforthejetin intervalsaslongasthewholeobservationaltimedowntomin- 0716+714.From this we derive the jet speed and orientation. utes.TheresultingmapsarepresentedinFigs.1&2.Here,the WesummariseourresultsinSect.4. jetisclearlyvisibleto thenorthatP.A. 15 ,andisslightly ◦ ∼ bent.Atthelowerfrequencieswecanfollowthejetuptoadis- tanceof10masto15masfromthecore,whereasatthehigher Table1.Observationlog.Listedaretheobservingepoch,fre- frequenciesthejetisvisibleupto3mas. quency ν, total flux density S (ν), beam size, beam position tot angle,peakfluxdensityS andthelowestcontourat3σof peak themapinFigs.1&2. 2.1.Modelfits Epoch ν Stot Beam Speak 3σ After imaging in D we fitted circular Gaussian compo- [GHz] [Jy] [mas×mas],[◦] [beJaym] [bmeaJmy] nents to the self-calibrated data to parameterise the source 1992.73a,(1) 5.0 0.67 0.8 1.0, 0 0.61 1.5 structureseen in theVLBI maps.We used onlycircularcom- × 1992.85a 22.2 0.75 0.9 2.7, 55 0.64 3.0 ponents to reduce the number of free parameters and to sim- × − 1993.71a 22.2 0.40 0.2 0.2, 35 0.31 2.0 × plifytheanalysis.AsummaryoftheGaussiancomponentpa- 1994.21 8.4 0.32 0.8 1.4, 80 0.26 0.7 × rameters from this model fitting is given in Table 2. For all 1994.21 22.2 0.34 0.3 0.5, 79 0.30 1.8 × modelfitsweusedthebrightestcomponentasareferenceand 1994.67(2) 15.3 0.46 0.5 0.7, 29 0.40 1.8 × − fixed its position to (0,0). The positions of the other compo- 1994.70a,(1) 5.0 0.36 0.8 1.2, 15 0.29 2.7 1995.15(3) 22.2 0.75 0.3×0.5,− 3 0.71 4.0 nentsweremeasuredrelativetothiscomponent,whichweas- 1995.31(3) 22.2 0.43 0.3×0.4, −39 0.40 4.2 sumedtobestationary(seeSect.3.1fordetails).Amaximum × 1995.47(3) 22.2 0.20 0.3 0.6, 7 0.18 3.0 uncertaintyof15%inthefluxdensitywasestimatedfromthe × 1995.65 8.4 0.31 0.9 1.0, 54 0.26 0.4 uncertaintiesoftheamplitudecalibrationandfromtheformal × 1995.65 22.2 0.34 0.3 0.4, 40 0.28 1.8 errorsofthemodelfits.Thepositionerrorisgivenby∆r= σΘ 1996.34(3) 22.2 0.27 0.3×0.9,−48 0.22 3.2 (Fomalont1989),whereσistheresidualnoiseofthemapaf2tS·ePr × 1996.53(2) 15.3 0.26 0.5 0.7, 15 0.22 0.7 thesubtractionofthemodel,θthefullwidthathalfmaximum × − 1996.60(3) 22.2 0.25 0.4 0.4, 9 0.21 3.0 1996.63a,(1) 5.0 0.22 1.4×2.2, 41 0.18 1.3 (FWHM) of the component and Speak the peak flux density. × Thisformulatendstounderestimatetheerror,if thepeakflux 1996.82(2) 15.3 0.26 0.4 0.7, 21 0.25 2.0 × density is very high or the width of the component is small. 1996.90(3) 22.2 0.29 0.4 0.5, 35 0.27 2.0 × − Thereforeweincludedanadditionalerrorarisingfromtheposi- 1997.03(4) 8.4 0.21 1.1 1.4, 7 0.18 0.0 1997.58(3) 22.2 0.98 0.4×0.5, 33 0.90 4.0 tionvariationsduringthemodelfittingprocedure.InFig.3,the 1997.93(5) 8.4 0.43 0.6×1.6,−33 0.38 0.5 core distances of individual VLBI components derived from × 1999.41(5) 8.4 1.02 0.5 1.5, 7 0.92 0.5 ourmodelfitsatvariousfrequenciesareplottedagainsttime. × − 1999.55(2) 15.3 1.25 0.5 0.8, 4 1.14 1.2 × 1999.89a,(1) 5.0 0.63 1.8 2.4, 60 0.54 0.7 2000.82b 5.0 0.55 0.8×0.9,−28 0.48 0.1 6 × − 2001.17(2) 15.3 0.65 0.4 0.8, 31 0.54 0.9 C11 × 5 C10 C9 Note:ThearrayusedwastheVLBA,unlessindicatedbyafootnote. C8 Epochsinboldfacedenoteowndata.a:Globalarray,b:VLBA+Eb C7 4 C6 References:(1):Britzenetal.(1999)&inprep.(2005),(2): C5 C4 K(2e0l0le1rbm),a(n4n):eFtaeyl.&(19C9h8a)r&lotZ(e2n0s0u0s),e(t5a)l:.R(2o0s0e2t)a,l(.3()2:0J0o1rs)tadetal. mas]3 CC32 r [ C1 lin. fit 2 2. Observationsanddataanalyses 1 All data were correlated in the standard manner using the 0 1993 1994 1995 1996 1997 1998 1999 2000 2001 MKIIIcorrelatorinBonnandtheVLBAcorrelatorinSocorro. epoch Part of the post-correlation analysis was done using NRAO’s AstronomicalImageProcessingSystem(A)andtheCaltech Fig.3. Core separation as a function of time for the individ- VLBI Analysis Programs (Pearson&Readhead 1984). Data ual modelfit components. Data from all frequenciesare com- from other observers were provided as amplitude-calibrated bined. Possible frequency-dependent position shifts are less and fringe fitted (u,v) FITS-files. The imaging of the source than0.1masandarenotcorrected.Thesolidlinesshowthelin- includingphaseandamplitudeself-calibrationwasdoneusing earfits tothepathforeachcomponent.To showmoreclearly the CLEAN algorithm (Ho¨gbom 1974) and SELFCAL pro- the well-defined components we do not show two of the far- cedures in D (Shepherd 1994). The self-calibration was thestdata pointsof C1 at r = 11.2masandr = 11.9masand doneinstepsofseveralphase-calibrationsfollowedbycareful onedatapointofC2atr=6.9mas. amplitudecalibration.Duringtheiterationprocessthesolution interval of the amplitude self-calibration was shortened from U.Bachetal.:KinematicstudyoftheblazarS50716+714 3 Fig.1.Allcontourmapsof0716+714at5GHz(toprow),8GHz(middle)and15GHz(bottom).Themapsareconvolvedwith circularbeamsof1.2masat5GHz,0.8masat8GHzand0.5masat15GHz.Totalfluxdensity,originalbeamsizeandthelevel ofthelowestcontouratthreeσaregivenintheobservinglog(Table1).Contoursareincreasingbystepsoftwo. 3. Resultsanddiscussion The cross identification of moving VLBI componentsbe- tweendifferenttimesandfrequenciesisnotunambiguousand 3.1.Identificationofthecomponents dependson the dynamic range of the individualmaps and on the time sampling.When we started ouranalysis we used the Toinvestigatethekinematicsinthejetof0716+714,wecross- followingscenariosasworkinghypotheses: identified individual model components along the jet using theirdistancefromtheVLBIcore,fluxdensityandsize.Since 1. Stationarycorewithstationaryorslow-movingjet, the observations were not phase-referenced, the absolute po- 2. Stationarycorewithfastmovingjet, sition information was lost, and it is impossible to tell which 3. Non-stationarycorewithfastorslow-movingjet, components,if any,are stationary.To register the images and 4. Non-monotonicmotionofthejet. totestthestabilityoftheVLBI-coreposition,wecomparedthe coreseparationsofthejetcomponentsofeachepochwith re- Asmoredatabecameavailable,wecouldruleoutmostof spect to the adjacent observations, but we could not find any these identification schemes, and we were left with a scheme systematicpositionoffsets.Wealsocheckedforpositionshifts that assumes a stationary core and relatively fast component between the jet components at higher and lower frequencies motion. The different schemes were tested, first separately at duetoopacityeffects(e.g.,Lobanov1998).Inspectionofclose eachfrequencyandlaterwithallmodelfitscombined. or simultaneously observed frequency pairs does not show a Supported by a graphical analysis, which is presented in systematicfrequencyshiftbetweenhigherandlowerfrequen- Fig.3,wecouldobtainasatisfactoryscenarioforthekinemat- cies larger than 0.1mas (position accuracy between 15GHz icsinthejetof0716+714.Thisscenarioconsistsof11identi- and22GHzis<0.1mas).Therefore,weconcludethatthecore fiedsuperluminalcomponentsmovingawayfromthecore.As position is stationary and that all componentpositions can be anexampleoftheprocedureusedforallcomponentsweshow measuredwithrespecttothisbrightestcomponent. theidentificationschemefortheseparatefrequenciesforcom- 4 U.Bachetal.:KinematicstudyoftheblazarS50716+714 Fig.2.Allcontourmapsof0716+714at22GHz.The mapsareconvolvedwith a circularbeamof 0.3mas. Totalflux density, originalbeamsizeandthelevelofthelowestcontouratthreeσaregivenintheobservinglog(Table1).Contoursareincreasing bystepsoftwo. ponentC5,C7,C8andC9inFig.4.Againthefrequencyshifts mogeneous time sampling, it is sometimes difficult to iden- between the trajectories are typically smaller than 0.1mas to tifycomponentsoveralongtimeinterval.However,especially 0.2masandaresmallerthanthemeasurementuncertainty∆r. between 1993 and 1996, when we made many measurements Table 3 summarises the angular separation rate µ of the spacedbyonlyafewmonths,ourproposedcomponentidenti- VLBI componentsderived from the linear fits of r(t) and the ficationgivesthesimplestandmostreasonablefitto thedata. corresponding apparent speed β = v /c for an assumed Since most of our data were obtained at high frequencies, app app redshiftof0.3. wheretheouterregionofthejetisfaintandalreadypartlyre- solvedbytheinterferometerbeam,theparameterofthecorre- sponding jet components(at r 4mas) are not as well con- 3.2.Thekinematicmodel ≥ strained as the inner jet components and therefore they have larger positional errors. Despite this, there is still a very dis- The components in this scenario move with 0.2masyr 1 to − tincttendencythattheoldercomponents(C1–C3),whichnow 0.6masyr 1 in theinnerpartof theVLBIjet(r 3mas)and − ≤ arelocatedatlargecoreseparations,movefasterthanthecom- with up to 0.9masyr 1 in the outer regions. Due to the inho- − U.Bachetal.:KinematicstudyoftheblazarS50716+714 5 1 s3 −8 5 GHz +0.19097 +0.066941s4 , with 4 8 GHz a # 15 GHz 22 GHz 1 Ω 1 fit 5 GHz s3 = − m and a= , 3 ffiitt 81 5G GHHzz Ωm 1+z C5 fit 22 GHz as] whichisananalyticalfit(Pen1999)totheluminositydis- m tance for flat cosmologies with a cosmological constant. For r [2 C7 therangeof0.2 Ω 1.0,therelativeerrorofthedistance m ≤ ≤ C8 islessthan0.4%foranygivenredshift.Using 1 C9 µd β = L (2) app c(1+z) 0 1993 1994 1995 1996 1997 1998 1999 2000 2001 epoch forthetransformationofapparentangularseparationrates (µ)intospatialapparentspeeds(β )(Pearson&Zensus1987) app Fig.4.Coreseparationasafunctionoftimeforthecomponents and assuming a redshift of 0.3 for 0716+714, one milliarc- C5,C7,C8andC9separatedforthedifferentfrequencies.The second corresponds to 4.4pc. The measured angular separa- solidlinesshowthelinearfitstothepathforeachcomponent. tionratesthencorrespondtospeedsof4.5c to 16.1c.Forthe Shiftsbetweenthepathsatdifferentfrequenciesarevisible,but components C3 to C9, for which the proper motion determi- aretypicallysmallerthanthemeasureduncertainties. nationisthemostconfident(oversevendatapoints),theaver- agemotionisµ=(0.41 0.11)masyr 1whichcorrespondsto − ± ponentslocatedin theinnerjet(C4– C10).Thisbehaviouris βapp = 7.7 2.1.ApreliminaryanalysisbyTianetal.(2001), ± alsovisibleinTable3,whichshowsacleartrendwithsystem- whousedonlypartofthedatapresentedhere,gaveverysimi- atically decreasing speeds between component C1 (16c) and larspeeds.Arecentlypublishedkinematicanalysisofthedata componentC10 (4.5c). The coarse time sampling for the in- from the VLBA 2cm Survey also measured motion of 10c dividualjet componentsunfortunatelydoesnotallow usto fit to 12c in the jet of 0716+714 (Kellermannetal. 2004). The acceleration to r(t). Future and more densely sampled VLBI speedsfoundinourpaperarelowerthanthe16cto21cfound observationsarerequiredtoshowwhethertheinnerjetcompo- by Jorstadetal. (2001b)1, who observedthe source overonly nentsindeedmovelinearly. a short time interval (3yr). The difference between their and our results may be explainedby slightly different (and unfor- tunatelynotunambiguous)mapparameterisationsusingdiffer- Table3.Propermotionsinthejetof0716+714.Thenumberof entGaussianmodelsorbynon-linearcomponentmotion,with data pointswhich wereused forthe fit foreach componentis possibleaccelerationforshorterperiodsoftime. givenincolumn2.Thelastcolumngivestheback-extrapolated With an average apparent jet speed of about 8c and ejectiondatesofthecomponents,whichresultfromthelinear likely higher speeds of up to 15c to 20c, 0716+714 dis- fits. plays considerably faster motion than other BLLac objects, for which speeds of 5c are regarded as normal (e.g., Id. # µ[mas/yr] βapp(z=0.3) Ejectiondate Vermeulen&Cohen 1≤994; Gabuzdaetal. 2000; Rosetal. C1 4 0.86 0.13 16.13 2.36 1986.7 1.3 ± ± ± 2002). In this contextit appearsthat 0716+714is an extreme C2 5 0.63 0.10 11.87 1.82 1988.5 1.0 ± ± ± BLLac object with a jet speed (and Lorentz factor) much C3 8 0.62 0.04 11.59 0.76 1989.7 0.3 C4 7 0.44±0.01 8.27±0.24 1989.8±0.1 higher than regarded typical for BLLac objects and close to ± ± ± C5 7 0.43 0.02 8.16 0.29 1990.8 0.2 thespeedsof10cto20cseeninquasars. ± ± ± C6 9 0.41 0.02 7.80 0.33 1992.3 0.1 ± ± ± C7 17 0.37 0.01 6.89 0.19 1993.2 0.1 ± ± ± 3.3.Kinematicsandgeometryofthejet C8 11 0.32 0.01 6.04 0.20 1994.4 0.1 ± ± ± C9 10 0.26 0.01 4.98 0.27 1995.1 0.1 ± ± ± Using the measuredmotion,(11.6 0.8)c, of C3, the fastest, C10 3 0.24 0.01 4.52 0.45 1996.5 0.2 ± ± ± ± best-constrainedjetcomponentinourmodel,wecanplacelim- C11 2 0.29 0.02 5.48 0.55 1998.2 0.3 ± ± ± itsonthejetspeedandorientationof0716+174.Adopting βsinθ Theluminositydistanced wascalculatedadoptingthefollow- L β = (3) ingrelation app 1 βcosθ − c 1 wefindthatthejetinclinationthatmaximisestheapparent d = (1+z) η(1,Ω ) η( ,Ω ) , (1) L H0 " m − 1+z m # speed,θmaxis4.9◦.Fromthat,onederivesaminimumLorentz factor, γ = (1 + β2 )1/2 of 11.6, which corresponds to a min app where 1 Jorstad et al. originally published 11c to 15c using H = 0 1 s s2 100kms 1Mpc 1 andq = 0.1.Wecorrectedthesenumbersforthe η(a,Ω ) = 2√s3+1 0.1540 +0.4304 − − 0 m "a4 − a3 a2 cosmologicalparametersusedinthispaper. 6 U.Bachetal.:KinematicstudyoftheblazarS50716+714 Dopplerfactorofδ =γ 1 (1 β cosθ ) 1 =11.7,where If we now try to explain the observed range of apparent min m−in − min max − componentspeedsthroughvariationsoftheviewingangle(un- β = 1 γ 2 . For smaller viewing angles (θ 0) the min q − m−in → dertheassumptionofaconstantLorentzfactoralongthejet), Doppler factor approachesδ = 2γ, which yields δ = 11.7 to we cannot reach slow apparent speeds of 4.5c without vi- 23.4 at viewing angles between 4.9 and 0 for component ∼ ◦ ◦ olating the lower limit of the Dopplerfactor of 2.1 from syn- C3.IncludingthehighervaluesfoundbyJorstadetal.(2001b) chrotron self-Compton (SSC) models (Ghisellinietal. 1993). andthehighestspeedderivedfromourdata(16.1c),aDoppler Therefore, we can exclude θ > 5 and the only solution re- boostingfactorofuptoδ 40appearspossible. ◦ ≥ mainingis todecreasetheviewinganglewhichautomatically leadstohigherDopplerfactors.ThegreyshadedareainFig.5 marks the allowed region of Lorentz factors and viewing an- gles.ItbecomesobviousthatweneedatleastaLorentzfactor ofγ 15andaviewingangleoftheVLBIjetofθ 2 toex- ◦ ≈ ≈ plain the largerangeof observedapparentspeedsasan effect of spatial jet bending. These values are consistent with those derivedfromIDV. 3.4.Fluxdensityevolution In Fig. 6 we show the evolution of the flux density of VLBI components at 22GHz with their increasing separation from thecore.Weshowthisfrequencybecausealargefractionofthe datawereobtainedat22GHz(11epochs).Withtheexception ofafewdatapoints,thecomponentsfadeastheytraveldown thejet.Thisagreesqualitativelywiththetheoryofaconically Fig.5. The Doppler factor versusthe apparentspeed for con- expanding jet (e.g., Blandford&Ko¨nigl 1979). As the VLBI stantintrinsicLorentzfactor,γ,(solidlines)andconstantview- componentsexpandtheybecomeopticallythinandtheirspec- inganglesθ(dottedlines).Therangeofmeasuredspeedsisin- trasteepen.ThisisillustratedforcomponentC7inFig.7.The dicatedbythedashedlinesandthegreyshadedareamarksthe spectral index α is defined as S να. Knowing the turnover ∝ possiblevaluesforγandθ(seetextfordetails). frequencyandthe size of a jet componentallowsus to calcu- latethestrengthofthemagneticfieldinthejet(e.g.,Marscher 1983)as At cm-wavelengths, 0716+714 is a prominent intraday θ4ν5δ variable source, which shows amplitude variations of 5% B=10 5b(α) m gauss, (4) − to 20% on time-scales of 0.25d to 2d (Wagneretal. 1996; Sm2 (1+z) Krausetal. 2003). Correlated radio-optical IDV observed whereb(α)isa tabulatedparameterdependentonthespectral in this source (Quirrenbachetal. 1991; Wagneretal. 1996; index (Tab. 1 in Marscher 1983) with a value ranging from Qianetal.1996)suggeststhatatleastsomefractionoftheob- 1.8 to 3.8 for optically thin emission (α = 0.25 to 1.0), − − servedrapidvariabilityhasanintrinsicsourceoriginandcan- S (in Jy) is the flux density at the turnover frequency ν m m not be attributed to refractive interstellar scintillation (RISS) (in GHz) and θ (in mas) is the size of the component. If we alone, as is done for some other IDV sources (e.g., Rickett calculateBforeachofourmodelfitcomponents,withoutcor- 2001; Qianetal. 2001; Kedziora-Chudczeretal. 2001). The rectingfortheDopplerfactorδ,wegettheapparentmagnetic presence of the observed broad-bandcorrelations of the vari- field along the jet. Since we do not have adequate spectra for ability and recently detected IDV at 9mm wavelength,where all positions along the jet we will consider a decrease of the RISSshouldnotplayadominantroleduetoitsλ−2dependence turnoverfrequencyalong the jet proportionalto rp, to correct (cf.Krichbaumetal. 2002;Krausetal. 2003), furthersupport for the expansion of the component. The best results are ob- anonnegligibleintrinsiccontributiontotheIDVin0716+714. tainedwhenwestartwithaturnoverfrequencyof4GHzforthe Inthefollowingwe useanaveragetypicalbrightnesstemper- innerjet(r 0.2mas),thatisplausiblefromtheearlyspectrum ature derived from the IDV observed at 6cm of 1015.5K to (1994)ofco≈mponentC7(Fig.7)thoughtheturnoverisnotac- 1017K.Slightlyhighervaluesofuptoafewtimes1018Kwere tually observed, and use p = 1.3, which is in good agree- − measured only occasionally. To bring this brightness temper- ment with the relativistic jet model (Marscher&Gear 1985). atures down to the inverse Compton limit of 1012K, Doppler For all componentsalong the jet we derive magneticfields in factors in the range of δ = (Tb/1012K)31 ≈ 15 to 50 are re- the range of 10−4δG to 10−7δG. Since the minimum mag- quired.AdoptingtheseDopplerfactors,weobtainjetLorentz neticfieldstrengththatshouldbepresentduetheenergyden- factorsofγ 8to25andviewinganglesofθ 1◦. sityofthecosmicmicrowavebackgroundisafewmicroGauss ≈ ≤ The relation betweenthe Dopplerfactor, intrinsicLorentz (e.g.,vanderLaan&Perola1969)the10 7δGalreadyimplies − factor,viewingangleandapparentspeedisillustratedinFig.5. alowerlimitoftheDopplerfactorofabout10.Atthisstagethe The Doppler factors derived from IDV lie within the grey corecomponentisexcludedfromtheanalysisbecauseboththe shadedarea. sourcesizeandtheturnoverfrequencyarepoorlyknown. U.Bachetal.:KinematicstudyoftheblazarS50716+714 7 0.1 emission is relativistically beamed. In the latter case, the dif- C10 ferentdependenceofthemagneticfieldontheDopplerfactor CC0098 in Equation4(B δ)andin Equation8 (Bmin δ2/7α+1) can CC0076 be used to calcula∝te the Doppler factor from Bm∝in/B = δ2/7α. C05 C04 ComparingtheresultsfromalljetcomponentsyieldsDoppler factors of 4 to 15 with a mean value of 9. These values are y] S [J 0.01 slightlylowerthanthosederivedfromthekinematics,butgiven thatthecalculationsarebasedonmanyassumptionsthevalues agreereasonably. 0.1 1994 1996 0.001 0.5 1 2 0.05 1997 r [mas] Fig.6. Flux density of the VLBI componentsat 22GHz plot- α =-0.23±0.06 5/15 tdeodwvnerthsuesjecto.reseparation.Thecomponentsfadeastheytravel S [Jy]0.02 α5/15=-0.61±0.13 α15/22=-0.77±0.18 0.01 α15/22=-1.03±0.25 α =-0.78±0.16 8/22 Assumingequipartitionbetweentheenergyoftheparticles, Ee,andtheenergyofthemagneticfield,EB,onecanalsoderive 0.005 theminimummagneticfieldfromthesynchrotronluminosity, L. 5 10 20 ν [GHz] ν2 L = 4πdL2 (1+z)Z S dν (5) Fig.7.SpectralevolutionofcomponentC7. ν1 E = f(α,ν ,ν )LB 1.5, (6) e 1 2 − In Fig. 8 we show the long-term radio variability and the where f(α,ν1,ν2) is a tabulated function (e.g. Pacholczyk spectral index of 0716+714over the time range in which the 1970)andν1andν2aretheupperandlowercutofffrequencies VLBI components were born. We show a combined data set ofthesynchrotronspectrumwithtypicallyvaluesof107Hzto with flux density measurements at 5GHz and 15GHz from 1011Hz.Takingtheenergydensityofthemagneticfieldtobe the UMRAO flux density monitoring program (Alleretal. 1/8πB2 and assumingsphericalsymmetrythe totalenergyof 2003) and from our flux-density monitoring performed with thesourceis the 100m radio telescope at Effelsberg (Pengetal. 2000). A detailed discussion of the flux density variability using these E = (1+k)E +E (7) tot e B andotherdatawasrecentlydonebyRaiterietal.(2003).Here, 1 = (1+k) f(α,ν ,ν )LB 1.5+ R3B2, werestrictthediscussiontoapossiblecorrelationoftheradio 1 2 − 6 variabilitywiththe ejectionofnew jetcomponents.The ejec- wherekistheenergyratiobetweentheheavyparticlesandthe tiondatesofnewVLBIcomponentsareindicatedbythegrey electrons and R is the size of the component. The ratio k de- shadowedareas.Theirwidthscorrespondtotheuncertaintyin pendsonthemechanismofgenerationoftherelativisticelec- the back-extrapolated ejection dates (see Table 3). Although trons,whichisunknownatthepresent.Itcanrangefromk 1 these uncertainties are rather large and the time sampling of foranelectron-positronplasmauptok 2000,ifmostof≈the thelightcurvesisnotalwaysdenseenough,aweakcorrelation energyiscarriedintheprotons.Weused≈k 100inourcalcu- between the ejection of new componentsand the flares in the lations,whichseemstobeareasonablevalu≈e(e.g.,Pacholczyk radiobandsis obvious.Eachofthe shadedareaseitherliesat 1970).GiventhatE B 1.5andE B2,E hasaminimum orshortlybeforethetimeofafluxdensityincreaseofatleast e − B tot andwefind ∝ ∝ oneofthetwoobservingbands. The two outburstsin mid 1992and early 1995,which are B = 9(1+k) f(α,ν ,ν )LR 3 2/7 (8) best seen in the 2cm band, are both surrounded by two new min 1 2 − 2 ! components, but the time sampling is too sparse to draw any = 5.37 1012(S ν d2 R 3)2/7. furtherconclusions.InthelowerpanelofFig.8wecalculated · m m L − the spectral index between 5GHz and 15GHz from the two with k = 100, f( 0.5,107,1011) = 1.6 107 andS in Jy, light curves. Since the light curveswere not measured simul- m − · ν in GHz and R in cm. Using z = 0.3 and the same values taneouslywesearchedfortheclosestpairsinthedatasetand m for S , ν and θ as in Equation 4 we obtain magnetic fields calculatedthespectralindexfromthesepairs.Themeansepa- m m between10 4Gand10 2Gforthejet.Thesevaluesarelarger rationbetweentwopointsisabouteightdays.Thegraphitself − − thanthosederivedbefore,whichmeansthateithertheparticle representsaneight-pointrunningaveragetoreducethenoisein energydominatesandwedonothaveequipartitionorthatthe thedata.Thisfigureshowsanobviouscorrelationbetweenthe 8 U.Bachetal.:KinematicstudyoftheblazarS50716+714 spectrum. For the light curves this test yielded a 50% prob- ability of our results occurring at random. The probability of measuring a flattening of the spectrum in seven out of eight components selected at random from our spectrum is 5.7%. Generallyaresultisexceptedtobestaticallysignificantifthe probabilityisbelow5%,whichmeansthatthecorrelationsof the light curve with the ejection dates are likely to be a coin- cidence,butgiventhatwemighthavemissedacomponentthe correlationofthespectralindexismoresignificant.Acoordi- nated and much denser sampled multi-frequencyflux density andVLBImonitoringisnecessarytostudyinmoredetailsuch outburst-ejectionrelations. 3.5.Connectionwithγ-rayflares 0716+714 was detected at γ-rays by the EGRET de- tector on board the Compton Gamma Ray Observatory (Hartmanetal.1999;Mattoxetal.1997).Sinceitisproposed that the γ-ray emission, like the radio emission, is Doppler boosted (Dermer&Schlickeiser 1994), the γ-ray detection of 0716+714yieldsfurtherevidenceforahighLorentzfactorin thejet. Recentstudiesabouttheconnectionbetweenγ-raysources andsuperluminalVLBI-componentssuggestthatthesesources havehigheraveragejetspeedsthansourceswhicharenotde- tected atγ-rays(Jorstadetal. 2001a; Kellermannetal. 2004). Moreover, Jorstadetal. (2001a) found a correlation between the ejection of new VLBI componentsand the appearance of γ-ray flares, suggesting that the radio and the γ-ray emission Fig.8. The long term flux density variability of 0716+714 as originate within the same shocked area in the relativistic jet. measuredatEffelsbergandwith theMichiganradiotelescope Theauthorsreportaγ-rayflareof0716+714in1992.2which at5GHz(top)and15GHz(middle)andthespectralindex(bot- appearstobecoincidentwithapeakinthelinearpolarization tom),α .Theshadedareasmarktheejectiondatesofthe 5/15GHz light-curve at 15GHz. Unfortunately, their 0716+714 VLBI VLBIcomponentsandtheiruncertainties. data does not cover this period, but with our larger sample we found a new VLBI component (C6) with an extrapolated ejectiondateof1992.3 0.1whichisingoodagreementwith spectralindexvariationsandtheejectionofanewVLBIcom- ± thereportedγ-rayflare.Althoughwe registerthreeadditional ponent.Sevenoutofeightejections(exceptC9)ofnewVLBI ejectionsupto1996and0716+714wasobservedseveraltimes componentsareaccompaniedbyaflatteningofthesourcespec- by EGRET in this period, no more flares were detected. But trum. The flattening is in good agreement with an expanding giventhattheγ-raymeasurementshavelargeuncertaintiesand componentthat becomes optically thin first at the higher fre- only 18 data points were recorded during these four years, quencyandlateratthelowerfrequency(e.g.,Marscher&Gear this seems not exceptional. Similar outburst ejection events 1985). werealsofoundine.g,0528+134(Krichbaumetal.1995)and We note that at the times of particularly dense time sam- 0836+710 (Otterbeinetal. 1998). Assuming that the correla- pling (after 1994) a number of minor radio flares are visible, tion between the new component,C6, and the 1992.2flare is whicharenotrelatedtotheejectionofanyoftheknownVLBI real, this supports the idea that the γ-ray emission originates components. According to the light-house model and other from the same regionfrom which we observethe radioemis- related helical jet models (e.g., Camenzind&Krockenberger sion(e.g.,Sikoraetal.(1994)). 1992; Rolandetal. 1994) it is possible that initial outbursts, which are related to the ejection of new jet components are followedbysecondaryfluxdensityvariations,whicharenotor 3.6.Variationoftheejectionpositionangleandcore onlyareindirectlyrelatedtothecomponentejection.Ofcourse, fluxdensity it is also possible thatwe missed some jetcomponentsin our infrequentlysampledVLBImonitoring. Thevisualinspectionofpositionangleoftheinnermostportion Totestthesignificanceofthecorrelationsfoundbyeye,we oftheVLBIjetinthemapsofFigs.1&2indicatesavariation placedeightfieldswithasimilarwidthrandomlyoverthelight oftheP.A.ofthejetnearthecorewithtime.Inordertoquantify curvesbetween1989and1999anddeterminedhowmanyare this, we used theGaussian modelsandfitted a straightlineto coincidentwith a flare in the lightcurveor a flatteningof the the first milliarcsecond of the jet. For each observing epoch, U.Bachetal.:KinematicstudyoftheblazarS50716+714 9 the positionangle ofthis line providesa goodestimate of the 3.7.Redshiftdependenceoftheresults direction of the inner portion of the VLBI jet. In Fig. 9 (top Sinceallthederivedparametersofthekinematicsandgeome- panel)weplottheP.A.groupedinoneyeartimebins. try scale with thedistance to0716+714,knowingtheredshift is of great importance. The distance to 0716+714 and there- with the speeds of the jet components scale nearly linearly 20 withzattheselowredshifts.Thusaredshiftdecreasebyafac- 18 tor of three would also decrease the Doppler factor by three. 16 P.A. [°] 111024 rTisehdTeubcde∝epT(cid:16)e1n+zbdzye(cid:17)n26c(.e4e.)og.f.S,bianricdgeeh,ctrTneeasssetfδer3motmpheizsraw=tuor0ue.l3ddetiornicvzree=das0fer.o1tmhweoIdDuilsVd- 8 b b ∝ crepancy between the Doppler factor, which is needed to re- 1.5 duceT andtheDopplerfactorderivedfromthekinematics.An b y] increaseinredshiftwouldbringthe derivedparameterscloser [JHz 1 together. G S22 0.5 Our assumption of the redshiftof z 0.3 is based on the ≥ non-detection of an underlying host galaxy by Wagneretal. 0 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 (1996). BLLac host galaxies have typical absolute magni- epoch tudes of M 24 and an effective radius of r 10kpc R c ≈ − ≈ Fig.9.Top:Positionangleofthecentral1masoftheVLBIjet (Jannuzietal. 1997 and ref. therein). The lower limit of groupedinoneyeartimebins.Thedashedlineisasinusoidalfit Wagner et al. correspondsto an absolute magnitudeof M = R tothedata.Thepositionangleoftheinnerjet(ejectionangle) 20.4,whichwouldbeanunusuallyfaintBLLachostandso − varies with a period of 7.4 years. Bottom: One year bins is a veryconservativelower limit. An upperlimit forthe red- ∼ of the 22GHz core flux density. The dashed line represents a shift can be given from the lack of absorption by foreground sinusoidalfitwithafixedperiodof7.4years. galaxies, which results in a redshift of z 0.5 (Wagner priv. ≤ comm.).AtpresentitisunclearifthetentativeX-raydetection ofaspectrallinenear5.8keV(Kadleretal.2004)canbeiden- tified with the FeK line. If so, the redshiftof the line would Asinusoidalfittothedatarevealsaperiodof(7.4 1.5)yr. α ± indicate a distance of z = 0.10 0.04, much closer than ex- Thefityieldsareducedχ2 of1.55,whichismuchbetterthan ± r pected from the optical measurements. Possible ways out of theχ2 of4.28,obtainedforalinearfit.Unfortunatelyourdata r thisdifficultycouldinvokeablueshiftofthelineorsomeex- coveronlyoneperiodofthevariabilityanditwillbeinterest- ternalemissionprocessnotrelatedtothenucleusof0716+71. ingtoseeifthetrendholdsinthefuture.Apossibleexplanation AsolidconfirmationoftheX-raylineinfutureobservationsis forsuchperiodicvariationwouldbeaprecessingfootpointof urgentlyneeded. the jet. This should also result in a flux density variation of the VLBI core, and indeed, there is a tendency that the core fluxdensityat22GHzisconsistentwithaperiodicvariationof 4. Conclusions 7yr(seeFig.9,bottompanel).RecentlyRaiterietal.(2003) ∼ We analysed 26 epochs of VLBI data at 4.9GHz, 8.4GHz, publishedananalysisoftheopticalandradiofluxdensityvari- 15.3GHz, and 22.2GHz observed over 10yr, between 1992 abilityof0716+714andfoundaperiodicityof5.5yrto6.0yr and 2001,and deriveda new kinematicscenario forthe jetin fortheflux-densityvariationsintheradioregime.Thisiscom- 0716+714.In this scenariothe componentsmovewith appar- patiblewithintheerrorbarswiththeperiodicityoftheP.A.in entspeedsof 4.5c to16.1c (z = 0.3).Thesespeedsareatyp- theinnerregionofthejet.Basedonthegeometricalconsider- ically fast for BLLac objects, which typically exhibit speeds ationsinSect.3.3,theapparentpeaktopeakvariationof 7 ≈ ◦ of 5c(e.g.,Vermeulen&Cohen1994;Gabuzdaetal.2000; of the ejection angle corresponds to a small change of only ≤ Rosetal. 2002). Since this analysis is based on much denser 7 sinθ 0.6 ofthejetdirection. ◦ ≈ ◦ sampled VLBI data than previous studies, we are convinced Such small variations of a few degrees in the rest frame thatwecanruleoutthesomewhatslowerscenarioswhichwere of the source in several years have recently been detected presentedpreviously(e.g.,Witzeletal. 1988; Schalinskietal. also in other AGN, e.g. 3C345 (Birettaetal. 1986), 3C279 1992;Gabuzdaetal.1998).Wefindaperiodicvariationofthe (Carraraetal. 1993), 3C273 (Krichbaumetal. 2001) and P.A. of the innermostjet which could be a sign of jet preces- BLLac (Stirlingetal. 2003). The most common explanation sionona time-scaleof(7.4 1.5)yr.Ifthiscanbeconfirmed ± is a precessing jet, which could be caused by a binary super- infutureobservationsthehigherspeedsfoundbyJorstadetal. massive black hole system (Birettaetal. 1986; Hummeletal. (2001b) might be explained by non-linear motion of the jet 1992) or a warped accretion disc (Lai 2003 and ref. therein). components. However, hydrodynamiceffects also can lead to a precession No correlation was found between the component ejec- ofthejet(e.g.,Hughesetal.2002).Inthiscasetheprecession tionandradiofluxdensityflaresatthecm-wavelengths.There isintroducedbyapotentiallystrongobliqueinternalshockthat seems to be a weak correlation between the ejection of new arisesfromasymmetricperturbationoftheflow. componentsand the flattening of the radio spectrum. For one 10 U.Bachetal.:KinematicstudyoftheblazarS50716+714 of the new components (C6) we could find a reported γ-ray Hartman,R.C.,Bertsch,D.L.,Bloom,S.D.,etal.1999,ApJS, flare andif the ejectionandthe flare are really connectedthis 123,79 wouldsupporttheideathattheγ-rayemissionoriginatesfrom Heeschen,D.S.,Krichbaum,T.,Schalinski,C.J.,&Witzel,A. thesameregionfromwhichweobservetheradioemission. 1987,AJ,94,1493 From the componentmotion in the jet, we obtain a lower Ho¨gbom,J.A.1974,A&AS,15,417 limit for the Lorentz factor of 11.6 and a maximum angle to Hughes,P.A.,Miller,M.A.,&Duncan,G.C.2002,ApJ,572, thelineofsightof4.9 .Toexplainthelargerangeofobserved 713 ◦ apparent speeds as an effect of spatial jet bending, a Lorentz Hummel,C.A.,Schalinski,C.J.,Krichbaum,T.P.,etal.1992, factorofγ>15andaviewingangleoftheVLBIjetofθ<2 A&A,257,489 ◦ are more likely. Under these circumstances, the Doppler fac- Jannuzi,B.T.,Yanny,B.,&Impey,C.1997,ApJ,491,146 tor would be δ 20 to 30. Such high Doppler factors are Jorstad,S.G.,Marscher,A.P.,Mattox,J.R.,etal.2001a,ApJ, ≈ indeed required to explain the high apparent brightness tem- 556,738 peratures of up to 1017K derived from intraday variability at —.2001b,ApJS,134,181 cm-wavelengths. Kadler,M.,Kerp,J.,&Krichbaum,T.P.2004,A&A,submit- ted Acknowledgements. We thank S. Jorstad and A. Marscher for pro- Kedziora-Chudczer, L., Jauncey, D. L., Wieringa, M. A., viding their VLBA data for reanalysis. We also thank the group of Tzioumis,A.K.,&Bignall,H.E.2001,Ap&SS,278,113 theVLBA2cmSurveyandthegroupoftheCJFSurveyforprovid- Kellermann, K. I., Lister, M. L., Homan, D. C., et al. 2004, ing their data. We appreciate the use of the flux density monitoring ApJ,609,539 datafromtheUMRAOdatabase.Wethanktheanonymousrefereefor Kellermann,K. I.,Vermeulen,R. C., Zensus, J. A., &Cohen, helpfulcommentsandsuggestions.ThisworkmadeuseoftheVLBA, M.H.1998,AJ,115,1295 whichisaninstrumentoftheNationalRadioAstronomyObservatory, Kraus, A., Krichbaum, T. P., Wegner, R., et al. 2003, A&A, afacilityoftheNationalScienceFoundation,operatedundercooper- 401,161 ativeagreementbyAssociatedUniversities,Inc.,theEuropeanVLBI Krichbaum, T. P., Britzen, S., Standke, K. J., et al. 1995, in: Network,whichisajointfacilityofEuropean,Chinese,SouthAfrican ‘QuasarsandActiveGalacticNuclei:HighResolutionRadio andotherradioastronomyinstitutesfundedbytheirnationalresearch councils.Thisworkisalsobasedonobservationswiththe100mradio Imaging’, ed. M.H. Cohen and K.I. Kellerman, Proc. Nat. telescopeoftheMPIfR(Max-Planck-Institutfu¨rRadioastronomie)at Acad.Sci.,92,No.5,11377 Effelsberg. We gratefully acknowledge the VSOP Project, which is Krichbaum, T. P., Graham, D. A., Witzel, A., et al. 2001, led by the Japanese Institute of Space and Astronautical Science in in ASP Conf. Ser. 250: Particles and Fields in Radio cooperationwithmanyorganisationsandradiotelescopesaroundthe GalaxiesConference,ed.R.A.Laing&K.M.Blundell(San world. Francisco,CA:ASP),184 Krichbaum, T. P., Kraus, A., Fuhrmann, L., Cimo`, G., & Witzel, A. 2002, Publications of the Astronomical Society References ofAustralia,19,14 Aller,H.D.,Aller,M.F.,Latimer,G.E.,&Hughes,P.A.2003, Lai,D.2003,ApJ,591,L119 AmericanAstronomicalSocietyMeeting,202,18.01 Lobanov,A.P.1998,A&A,330,79 Biretta, J. A., Moore,R. L.,& Cohen,M. H. 1986,ApJ,308, Marscher,A.P.1983,ApJ,264,296 93 Marscher,A.P.&Gear,W.K.1985,ApJ,298,114 Blandford,R.D.&Ko¨nigl,A.1979,ApJ,232,34 Mattox, J. R., Schachter, J., Molnar, L., Hartman, R. C., & Britzen, S., Vermeulen, R. C., Taylor, G. B., et al. 1999, in Patnaik,A.R.1997,ApJ,481,95 ASPConf.Ser.159:BLLacPhenomenon,ed.L.Takalo& Otterbein,K.,Krichbaum,T.P., Kraus,A., etal. 1998,A&A, A.Sillanpa¨a¨(SanFrancisco,CA:ASP),431 334,489 Camenzind,M.&Krockenberger,M.1992,A&A,255,59 Pacholczyk, A. G. 1970, Radio astrophysics (San Francisco: Carrara, E. A., Abraham, Z., Unwin, S. C., & Zensus, J. A. Freeman),97 1993,A&A,279,83 Pearson,T.J.&Readhead,A.C.S.1984,ARA&A,22,97 Dermer,C.D.&Schlickeiser,R.1994,ApJS,90,945 Pearson, T. J. & Zensus, J. A. 1987, in Superluminal Radio Eckart,A.,Witzel,A.,Biermann,P.,etal.1986,A&A,168,17 Sources, ed. J. A. Zensus & T. J. Pearson (San Francisco, —.1987,A&AS,67,121 CA:ASP),1 Fey,A.L.&Charlot,P.2000,ApJS,128,17 Pen,U.-L.1999,ApJS,120,49 Fomalont,E.B.1989,inASPConf.Ser.6:SynthesisImaging Peng, B., Kraus, A., Krichbaum, T. P., & Witzel, A. 2000, inRadioAstronomy,ed.R.A.Perley,F.R.Schwab,&A.H. A&AS,145,1 Bridle(SanFrancisco,CA:ASP),213 Perez-Torres, M., Marcaide, J., Guirado, J., & Ros, E. 2004, Gabuzda,D.C., Kovalev,Y.Y.,Krichbaum,T.P.,etal.1998, A&A,inpress A&A,333,445 Qian, S., Li, X., Wegner, R., Witzel, A., & Krichbaum, T. P. Gabuzda, D. C., Pushkarev, A. B., & Cawthorne, T. V. 2000, 1996,ChineseAstronomyandAstrophysics,20,15 MNRAS,319,1109 Qian,S.J.,Witzel,A.,Kraus,A.,Krichbaum,T.P.,&Zensus, Ghisellini,G., Padovani,P.,Celotti, A.,& Maraschi,L. 1993, J.A.2001,A&A,367,770 ApJ,407,65