Astronomy&Astrophysicsmanuscriptno.30046_ap (cid:13)cESO2017 January27,2017 Kinematic and stellar population properties of the ⋆ counter-rotating components in the S0 galaxy NGC 1366 L.Morelli1,2,A.Pizzella1,2,L.Coccato3,E.M.Corsini1,2,E.DallaBontà1,2,L.M.Buson2,V.D.Ivanov3,4, I.Pagotto1,E.Pompei4,andM.Rocco1 1 DipartimentodiFisicaeAstronomia“G.Galilei”,UniversitàdiPadova,vicolodell’Osservatorio3,I-35122Padova,Italy e-mail:[email protected] 7 2 INAF-OsservatorioAstronomicodiPadova,vicolodell’Osservatorio2,I-35122Padova,Italy 1 3 EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,D-85748GarchingbeiMünchen,Germany 0 4 EuropeanSouthernObservatory,AvenidaAlonsodeCórdova3107,Vitacura,Casilla19001,SantiagodeChile,Chile 2 January27,2017 n a J ABSTRACT 6 Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar 2 populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. ] A Aims. The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the mainbodyofthegalaxy.Herewesuccessfullyseparatedthetwocounter-rotatingstellarcomponentstoindependentlymeasurethe G kinematicsandpropertiesoftheirstellarpopulations. . Methods. We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the h relativecontributionofthetwocounter-rotatingstellarcomponentsandoftheionized-gascomponent.Wemeasuredtheline-strength p indicesofthetwocounter-rotatingstellarcomponentsandmodeledeachofthemwithsinglestellarpopulationmodelsthataccount - o fortheα/Feoverabundance. r Results.Wefoundthatthecounter-rotatingstellarcomponentisyounger,hasnearlythesamemetallicity,andislessα/Feenhanced t thanthecorotatingcomponent.Unlikemostofthecounter-rotatinggalaxies,theionizedgasdetectedinNGC1366isneitherassoci- s a atedwiththecounter-rotatingstellarcomponentnorwiththemaingalaxybody.Onthecontrary,ithasadisordereddistributionand [ adisturbedkinematicswithmultiplevelocitycomponentsobservedalongtheminoraxisofthegalaxy. Conclusions.Thedifferentpropertiesofthecounter-rotatingstellarcomponentsandthekinematicpeculiaritiesoftheionizedgas 1 suggestthatNGC1366isatanintermediatestageoftheacquisitionprocess,buildingthecounter-rotatingcomponentswithsomegas v cloudsstillfallingontothegalaxy. 1 3 Key words. galaxies: abundances — galaxies: kinematics and dynamics — galaxies: formation — galaxies: stellar content — 6 galaxies:individual:NGC1366 7 0 1.1. Introduction components. A counter-rotating stellar disk can be built from 0 gasaccretedwithanoppositeangularmomentumwithrespectto The photometric and kinematic analysis of nearby objects re- 7 thepre-existinggalaxyfromtheenvironmentorfromacompan- 1veals that disk galaxies may host decoupled structures on var- ion galaxy. The counter-rotating gas settles on the galaxy disk :ious scales, from a few tens of pc (e.g., Pizzellaetal. 2002; andformsthecounter-rotatingstars.Inthiscase,thegasiskine- v Corsinietal. 2003; Erwin 2004) to several kpc (e.g., Rubin i maticallyassociatedwiththecounter-rotatingstellarcomponent, X1994; Kuijken&Garcia-Ruiz 2001; Combes 2006). In partic- which is younger and less massive than the main body of the ular, observational evidence for two stellar disks, two gaseous r galaxy(Thakar&Ryden 1996, 1998; Algorryetal. 2014). An- adisks, or for a gaseous disk and a stellar disk rotating in op- other viable, but less probable, formation process is related to posite directions have been found on large scales in galaxies themajormergerbetweentwodiskgalaxieswithoppositerota- ofdifferentmorphologicaltypes(Galletta1996;Corsini2014). tion. The difference in age of the two counter-rotatingcompo- Counter-rotating stellar and/or gaseous disks occur in ∼ 30% nents depends on the stellar population of the progenitors and of S0 galaxies (Pizzellaetal. 2004; Davisetal. 2011) and in on the timescale of the star formation triggered by the binary ∼ 10% of spirals (Kannappan&Fabricant 2001; Pizzellaetal. merger. Moreover, the two stellar disks are expected to have 2004;Corsinietal.2012). a different thickness (Puerari&Pfenniger 2001; Crockeretal. Different processes have been proposed to explain the for- 2009; Bettonietal. 2014). Finally, the dissolution of a bar or mation of a galaxy with two counter-rotatingstellar disks, and triaxial stellar halo can build two counter-rotating stellar com- eachformationscenarioisexpectedtoleaveanoticeablesigna- ponents with similar age and mass without involving gas. One ture in the stellar population properties of the counter-rotating of them is rotating in the same direction as the bulge and disk of the pre-existing galaxy (Evans&Collett 1994, but see also ⋆ BasedonobservationsmadewithESOTelescopesattheLaSilla- Sellwood&Merritt1994;Khoperskov&Bertin2016). ParanalObservatoryunderprogrammes075.B-0794and077.B-0767. Articlenumber,page1of8 A&Aproofs:manuscriptno.30046_ap Thesepredictionsaredifficulttobetested,sinceoutsideour Galaxy it is a hard task to separate the single componentsof a compositestellarpopulation.However,thisispossibleinafew galaxiesbecause of the differencein velocity of their extended counter-rotating stellar components. Counter-rotating galaxies are thereforeideallaboratoriesfor studyinghow galaxiesgrow byepisodicorcontinuousaccretionofgasandstarsthroughac- quisition and merging events. Coccatoetal. (2011) presented a spectroscopic decomposition technique that allows separat- ingtherelativecontributionoftwostellarcomponentsfromthe observed galaxy spectrum. This allows us to study the kine- matics and spectroscopic properties of individual components independently, minimizing their cross-contamination along the line of sight. We applied this technique to many of the galax- ies known to host counter-rotating stellar disks with the aim of constraining their formation process (Coccatoetal. 2011, 2013, 2015; Pizzellaetal. 2014). In most of these cases, the available evidence supports the hypothesis that stellar counter- rotation is the end productof a retrogradeacquisition of exter- nal gas and subsequent star formation. Other teams developed their own algorithms for separating the kinematics and stellar populationsofcounter-rotatinggalaxiesandfoundresultssimi- lartoours(Johnstonetal.2013;Katkovetal.2011,2013,2016; Mitzkusetal.2017). NGC 1366 is a bright and spindle galaxy (Fig. 1) in the Fig. 1. Contour plots in arbitrary scale of the R-band image of Fornax cluster at a distance of 17 Mpc (Ferguson 1989). It is NGC1366takenfromMorellietal.(2008).Thesolidlinesmarkthepo- classified asS00 by deVaucouleursetal. (1991) andS01(7)/E7 sitionoftheslitalongthemajorandminoraxisofthegalaxy.Thebrown by Sandage&Bedke (1994) because it has a highly inclined andorangesegmentscorrespondtotheradialbinswherewewereable thin disk. Although NGC 1366 belongs to the LGG 96 group, toseparatethetwocounter-rotatingstellarcomponents.Orientationof Garciaetal.(1993),itdoesnothaveanynearbybrightcompan- thefieldofviewisgiveninthefigure,andthescaleis82pcperarcsec. ionandshowsanundisturbedmorphology.Ithasanabsoluteto- talBmagnitudeM0 =−18.30mag,asderivedfromB =11.97 BT T CCD has 2048 × 4096 pixels of 15 × 15 µm2. We adopted a mag (deVaucouleursetal. 1991) by correcting for the inclina- 2×2pixelbinning.Thewavelengthrangebetweenabout4800 tion and extinction givenby HyperLeda(Makarovetal. 2014). Åand5400Åwascoveredwithareciprocaldispersionof0.40Å The apparentisophotaldiametersmeasuredata surfacebright- nesslevelofµ = 25magarcsec−2 are2.1×0.9arcmincorre- pixel−1 after2×2pixelbinning.Allthespectrawerebiassub- B tracted, flat-field corrected, cleaned of cosmic rays, and wave- spondingto10.4×4.5kpc.Itssurface-brightnessdistributionis lengthcalibratedusingstandardIRAF1routines.Thespectraob- wellfitbyaSérsicbulgeandanexponentialdiskwithabulge- to-total luminosity ratio B/T = 0.2, as found by Morellietal. tainedalongthesameaxiswerecoaddedusingthecenterofthe stellar continuumas reference.Furtherdetails aboutthe instru- (2008).Theseauthorsdetectedakinematicallydecoupledstellar mental setup and spectra acquisition are given in Morellietal. component that is younger than the host bulge and has proba- (2008). We followed the prescriptions of Morellietal. (2016) blyformedbyenrichedmaterialacquiredthroughinteractionor forthedatareduction. minormerging. In this paper we revisit the case of NGC 1366 by success- fullyseparatingthetwocounter-rotatingcomponentsandprop- 2.2. Stellarandionized-gaskinematics erly measuring the propertiesof their stellar populations(Sect. 2). The analysis of the kinematics of the stars and ionized gas We derivedthestellarkinematicsalongboththemajorandmi- and of the stellar populations is consistent with the formation noraxisofNGC1366withasingle-componentandwithatwo- ofthecounter-rotatingcomponentfromexternalgasthatisstill componentsanalysisasdoneinPizzellaetal.(2014). accretingontothegalaxy(Sect.3). We first measured the spectra without separating the two counter-rotatingcomponents(Morellietal. 2015). We used the penalizedpixelfitting(pPXF,Cappellari&Emsellem2004)and 2. Long-slitspectroscopy gas and absorption line fitting (GANDALF, Sarzietal. 2006) IDL2 codes with the ELODIE library of stellar spectra from 2.1. Observationsanddatareduction Prugniel&Soubiran (2001) and adopting a Gaussian line-of- sightvelocitydistribution(LOSVD)toobtainthevelocitycurve We carried out the spectroscopic observations of NGC 1366 and velocity dispersion radial profile along the observed axes. on 2005 January 25 with the 3.5 m New Technology Tele- scope (NTT) at the European Southern Observatory (ESO) in 1 ImageReductionandAnalysisFacility(IRAF)isdistributedbythe La Silla (Chile).We obtained2×45-minutesspectra alongthe National Optical Astronomy Observatory (NOAO), which isoperated major(P.A.= 2◦)andminor(P.A.= 92◦)axisofthegalaxywith bytheAssociationofUniversitiesforResearchinAstronomy(AURA), the ESO Multi-Mode Instrument (EMMI). It mounted a 1200 Inc. under cooperative agreement with the National Science Founda- groovesmm−1 grating with a 1.0 arcsec × 5.5 arcmin slit, giv- tion. ing an instrumentalresolutionσinst = 25 km s−1. The detector 2 InteractiveDataLanguage(IDL)isdistributedbyITTVisualInfor- was a mosaic of the No. 62 and No. 63 MIT/LL CCDs. Each mationSolutions. Articlenumber,page2of8 L.Morellietal.:Counter-rotatingstellarcomponentsinNGC1366 Fig.2.Line-of-sightvelocitydispersion(toppanel)andvelocity(bottompanel)radialprofilesmeasuredalongthemajoraxisofNGC1366for thetotal(blackfilledcircles),counter-rotating(bluefilledsquare),andco-rotating(redfilleddiamonds) stellarcomponentsandfortheionized gascomponent(greenopentriangles).Errorbarssmallerthansymbolsarenotshown.Theblueandredhorizontallinesinthetoppanelmarkthe radialbinsweadoptedformeasuringthecounter-rotatingandcorotatingcomponents,respectively.Theblueandreddashedlinesinthebottom panel areatentativeindicationofthevelocityrotationcurvesforthecounter-rotatingandcorotatingcomponent,respectively. Fig.3.Line-of-sightvelocitydispersion(toppanel)andvelocity(bottompanel)radialprofilesmeasuredalongtheminoraxisofNGC1366forthe totalstellar(blackfilledcircles)andtwoionized-gascomponents(cyanopentrianglesandvioletfilledtriangles).Errorbarssmallerthansymbols arenotshown. Wesubtractedthemeasuredvelocitiesfromthesystemicveloc- andgalaxyinclination,whilewecorrectedthemeasuredveloc- ity, but we did not apply any correction for the slit orientation itydispersionfortheinstrumentalvelocitydispersion. Articlenumber,page3of8 A&Aproofs:manuscriptno.30046_ap We foundapeculiarstellar kinematicsalongthemajoraxis ofNGC 1366(Fig.2).The velocitycurveis symmetricaround the center for the innermost |r| ≤ 11′′. It is characterized by a steep rise reaching a maximum of |v| ≃ 50 km s−1 at |r| ≃ 2′′ anddecreasingfartheroutto|v|≃0kms−1 at6<∼|r|<∼11′′.For |r| ≥ 11′′ the spectral absorption lines clearly display a double peakthatisduetothedifferenceinvelocityofthetwocounter- rotatingcomponents.Theabsorptionlinesofthetwostellarpop- ulationsaresowellseparatedthatthepPXF-GANDALFproce- durefit onlyone of the two components.Thisis the reasonfor theshiftinvelocitiesandthedropinvelocitydispersiontolower valuesthatwemeasuredonbothsidesofthegalaxyat|r|≥11′′ (Fig. 2). The velocitiesmeasuredatlarge negativeandpositive radii are related to the counter-rotating and corotating compo- nent,respectively.Thevelocitydispersionshowsacentralmax- imum σ ≃ 150 km s−1 and decreases outwards. It rises again topeakatσ ≃ 140km s−1 at|r| ≃ 9′′ anddecreasestoavalue of σ ≃ 100 km s−1 at |r| ≃ 25′′. The combinationof zero ve- locitywithtwooff-centeredandsymmetricpeaksinthevelocity dispersion of the stellar componentmeasured along the galaxy major axis is indicative of two counter-rotating components. This feature shows up in the kinematics obtained from long- slit (Bertolaetal. 1996; Verganietal. 2007) and integral-field spectroscopy (Krajnovic´etal. 2011; Katkovetal. 2013) when the two counter-rotating componentshave almost the same lu- minosityandtheirdifferenceinvelocityisnotresolved. Wefoundnokinematicsignatureofstellardecouplingalong theminoraxisofNGC1366(Fig.3).Thevelocitycurveischar- acterizedby|v| ≃ 0 km s−1 atall radii,indicatingthatthe pho- tometric and kinematic minor axesof the galaxycoincidewith eachother.Thevelocitydispersionprofileisradiallysymmetric and smoothly declines from σ ≃ 150 km s−1 in the center to ≃60kms−1atthelastmeasuredradius(r≃14′′). Finally, we derived the kinematics of the two counter- rotatingcomponentsalongthemajoraxisattheradiiwheretheir differenceinvelocitywasresolved,givingrisetodouble-peaked absorptionlines.Toreachthesignal-to-noiseratio(S/N)needed to successfully perform the spectral decomposition, we aver- aged the galaxy spectrum along the spatial direction in the re- gionswiththehighestcontributionofthecounter-rotatingcom- ponent. We obtained a minimum S/N ≥ 30 per resolution ele- ment,whichincreasestoamaximumvalueS/N ≃50inthevery centralregion. We performed the spectroscopic decomposition using the implementationofthepPXFdevelopedbyCoccatoetal.(2011). Webuiltforeachstellarcomponentabest-fittingsynthetictem- plate as linear combinationof the ELODIEstellar spectra. The two templates depend on the correspondingstellar populations ofthecorotatingandcounter-rotatingcomponentsandwerecon- volved with a Gaussian LOSVD accordingto their kinematics. Weaddedmultiplicativepolynomialstodealwithdifferencesin thecontinuumshapeofthegalaxyandstellarspectraduetoflux calibration and flat fielding residuals. We also included a few Gaussianfunctionstoaccountfortheionized-gasemissionlines andgeneratedasyntheticgalaxyspectrumthatmatchestheob- Fig.4.Portionofmajor(toppanel)andminor-axis(bottompanel)rest- served spectrum. The spectroscopic decomposition returns the framespectraofNGC1366showingthe[OIII]λ5007emissionlineaf- luminosity fraction, the line-of-sightvelocity, and velocity dis- tersubtractingthebest-fittingstellartemplate. persion of the two stellar components, the line-of-sight veloc- ityandvelocitydispersionoftheionizedgas,andthetwobest- fitting synthetic stellar templates to be used for the analysis of thestellarpopulationproperties.Wequantifiedtheerrorsonthe luminosity fraction, line-of-sight velocity, and velocity disper- ofMonteCarlosimulationsonasetofartificialgalaxyspectra, sionofthetwocounter-rotatingstellarcomponentswithaseries asdoneinCoccatoetal.(2011). Articlenumber,page4of8 L.Morellietal.:Counter-rotatingstellarcomponentsinNGC1366 Fig.5.Decompositionofthemajor-axisspectrumofNGC1366(blackline)intheanalyzedspatialbins(r = −20.9′′,−12.6′′,11.4′′ and19.9′′). Thebest-fittingmodel(magentaline)isthesumofthespectraofthecorotating(redline)andcounter-rotatingstellarcomponent(blueline)and oftheionized-gascomponent(cyanline).Thenormalizedfluxofthefitresidual(greenline)hasafalsezero-pointforviewingconvenience.The yellowshadedareaindicatesaspectralregionmaskedinthefitthatisduetotheimperfectsubtractionofthespurioussignal,whichistheresultof areflectionontheEMMICCD. Thedecompositionofthegalaxyspectrumintheradialbins and a lower velocity dispersion (σ ≃ 30) than the counter- atr=−20.9′′,−12.6′′,11.4′′and19.9′′areshowninFig.5,and rotating stars that rotate with a |v| ≃ 90 km s−1 and have a the resulting kinematics of the corotating and counter-rotating (σ ≃ 80 km s−1). The corotating and counter-rotatingcompo- stellar components are plotted in Fig. 2. Corotating stars are nentscontribute(45±15)%and(55±15)%ofthestellarluminos- characterized by a higher rotation velocity (|v| ≃ 120) km s−1 ity at all the measuredradii. We convertedthe luminosityfrac- Articlenumber,page5of8 A&Aproofs:manuscriptno.30046_ap tion of each componentinto mass fraction using the measured Table 1. Line-strength indices of the corotating and counter-rotating stellarcomponentsofNGC1366. ages and metallicities and adopting the models by Maraston (2005). We derived stellar mass-to-light ratios of M/L = 3.02 and M/L = 1.63 for the corotating and counter-rotating com- r Hβ Mgb Fe5270 Fe5335 ponents, respectively. From these quantities we found that the [′′] [Å] [Å] [Å] [Å] stellarmassfractionsofthecorotatingandcounter-rotatingcom- Corotatingcomponent ponentsare60%and40%,respectively. −20.9 1.72±0.71 2.32±0.79 2.11±0.89 1.32±0.80 A comparison between the stellar and ionized-gas velocity −12.6 1.43±0.48 2.51±0.48 2.16±0.47 1.39±0.49 curves indicates that the gas is disturbed and is not associated 11.4 2.27±0.36 3.03±0.33 2.94±0.39 2.52±0.44 withoneofthetwocounter-rotatingcomponents.Infact,thegas 19.9 2.57±0.51 2.76±0.60 2.47±0.68 2.02±0.68 rotatesinthesamedirectionandwithavelocityamplitudeclose Counter-rotatingcomponent to that of the stellar component at small (|r| <∼ 1′′) and large radii (|r| ≥ 11′′). A broad feature is clearly visible in the gas −20.9 2.40±0.32 2.57±0.32 2.70±0.38 2.54±0.35 structureat|r|≃7−10′′alongthemajoraxis(Fig.4).Although −12.6 2.85±0.26 2.22±0.26 2.42±0.27 2.32±0.27 11.4 2.35±0.22 2.44±0.21 2.35±0.25 2.23±0.29 the[OIII]λ5007emissionlinehasabroadprofile(Fig.5),there 19.9 2.59±0.26 1.87±0.33 1.84±0.39 1.83±0.38 isnoclearevidenceforadoublepeak.Thewavelengthrangeof ourspectradoesnotcovertheHαregion,whichpreventsusform Table 2. Properties of the stellar populations of the corotating and building a complete diagnostic diagram to properlydistinguish counter-rotatingstellarcomponentsofNGC1366. betweenthedifferentexcitationmechanismsoftheionizedgas. However, the high value of log([OIII]λ5007/Hβ)≃ 1.5 favors theshocksasexcitationmechanism. Component L/L Age [Z/H] [α/Fe] T We detected two ionized-gas rotating components along [Gyr] [dex] [dex] the galaxy minor axis as it results from the double-peaked [OIII]λ5007 emission line shown in Fig. 4. We independently Corotating 0.45 5.6±2.7 −0.18±0.16 0.08±0.13 measured the brighteremission line at lower velocitiesand the Counter-rotating 0.55 2.6±0.5 −0.16±0.11 −0.07±0.08 fainteremissionlineathighervelocities.Theirvelocityandve- locity dispersionare shownin Fig. 3. The two gascomponents haveasystematicandalmostconstantoffsetinvelocitywithre- specttothestellarcomponent,suggestingthepresenceofmore [α/Fe]ratioofthecounter-rotatingcomponent([α/Fe]= −0.07 gas cloudsalongthe line of sight. We preferthis interpretation dex)pointstoalongerstar-formationtimescalethanthatofthe to the ideaofhavingtwo gascomponentswithmirroredasym- corotating component, which is characterized by a supersolar metricdistributionswithabrighterandafaintersideandgiving [α/Fe]ratio([α/Fe]= 0.08dex). risetoanX-shaped[OIII]λ5007emissionline.Thegasvelocity dispersionistypicallyσ < 100km s−1 andmostlyσ ≃ 50 gas gas km s−1 alongbothaxesaftercorrectingfortheinstrumentalve- 3. Discussionandconclusions locitydispersion. There is no morphological or photometric evidence that NGC 1366 is hosting two counter-rotating stellar components. 2.3. Stellar populations NGC1366ischaracterizedbyanundisturbedmorphologywith nosignofrecentinteractionwithsmallsatellitesorcompanion We measured the Lick line-strength indices (as defined in galaxies of similar size (Morellietal. 2008). This is common Gorgasetal. 1990;Wortheyetal. 1994;Thomasetal. 2003) of formostofthecounter-rotatinggalaxiessincetheirenvironment the corotating and counter-rotating components on the best- doesnotappearstatisticallydifferentfromthatofnormalgalax- fitting synthetic templates and derived the age, metallicity, ies,seeBettonietal.(2001).Inaddition,thesurfacebrightness and [α/Fe] ratio of the corresponding stellar population as in distribution of NGC 1366 is remarkably well fitted by a Sér- Morellietal. (2012). We derived the errors on the equivalent sic bulge and an exponential disk with no break at any radius widths of the line-strength indices of the two counter-rotating (Morellietal.2008). stellarcomponentswithaseriesofMonteCarlosimulationson We provided the spectroscopic evidence of two counter- asetofartificialgalaxyspectraasdoneinCoccatoetal.(2011). rotating stellar components with a high rotation velocity and WereportthemeasurementsinTable1andcomparethemtothe low velocity dispersion (v/σ ≃ 2) that give almost the same line-strengthindicespredictedforasinglestellarpopulationthat contribution to the galaxy luminosity. We infer that they have accounts for the α/Fe overabundance by Thomasetal. (2003) asimilarscalelengthfromtheconstantslopeoftheexponential in Fig. 6. We obtainedthe stellar populationpropertiesof both surface-brightnessradialprofileoutsidethebulge-dominatedre- componentsfromthe line-strengthindicesaveragedon thetwo gionasinNGC4138(Joreetal.1996;Pizzellaetal.2014)and galaxysides.TheyaregiveninTable2togetherwiththerelative NGC4550(Rixetal.1992;Coccatoetal.2013;Johnstonetal. luminosityofthecorotatingandcounter-rotatingcomponents. 2013). These kinematic and photometricpropertiessupportthe Thecomparisonoftheaveragedagevaluessuggeststhatthe disknatureofthetwocomponents. counter-rotatingcomponentissignificantlyyounger(Age= 2.6 The stellar populationof the corotatingcomponentis char- Gyr) than the corotating component(age= 5.6 Gyr). The two acterizedbyanolderage,consistentwiththatofbulge(5.1±1.7 averagedmetallicitiesarebothsubsolarandsimilartoeachother Gyr, Morellietal. 2008), subsolar metallicity, and almost so- ([Z/H]=−0.16and−0.18dexforthecounter-rotatingandcoro- lar α/Fe enhancement. This suggests a formation timescale of tating components, respectively). However, the large scatter in afewGyrthatoccurredatthetimeofthegalaxyassembly.The themetallicitymeasurementsofthecorotatingcomponentdoes counter-rotatingstellar componentis remarkably younger with notallowustogiveafirmconclusion.Atfacevalue,thesubsolar lowerα/Feenhancementandsubsolarmetallicity.Themetallic- Articlenumber,page6of8 L.Morellietal.:Counter-rotatingstellarcomponentsinNGC1366 However, this rises the question about the origin of the newly suppliedandkinematicallydecoupledgassincethereisnoclear donorcandidateintheneighborhoodofNGC1366.Thisleaves uswiththepossibilityoftheacquisitionofsmallgascloudscom- ing either from the environment or from the internal reservoir insidethegalaxyitself.Whenexternalgasiscapturedindistinct clouds, it settles onto the galaxy disk in a relatively short time Å] (∼ 1Gyr,Thakaretal. 1997;Algorryetal. 2014;Mapellietal. [ 2015). In this case, NGC 1366could be an objectcaughtat an intermediatestageoftheacquisitionprocess,beforeitsconfigu- rationbecomesstable.Itisinterestingtonotethatthiscouldalso haveoccurredin galaxieswithgasassociatedwiththe counter- rotating stellar component. Without clear evidence of ongoing star formation or very young stars, the counter-rotating stellar componentcouldbetheresultofapastacquisitionofgascom- ing from the same reservoir that provides the counter-rotating [Å] gasweobserveatpresent. An intriguing alternative was explored by Crockeretal. (2009). They showed the time evolution of the distribution and kinematics of gas and stars in a set of numerical simula- tionsaimedatinvestigatingtheformationofthestellarcounter- rotating disks of NGC 4550 from a binary merger. One Gyr after the merger, while the stars have settled in two counter- rotatingdiskswitharelativelyregularkinematics,thegasdistri- Å] [ butionstillremainsratherdisorderedwithadisturbedkinemat- ics. However,thisconfigurationis notstable,andthe gastends to a more regular configurationbetween 1 and 2 Gyr from the mergingevent. The structure and stellar populationsproperties ofthecounter-rotatingcomponentsofNGC1366aresomewhat differentfromthoseofNGC4550foradirectcomparisonofour results with the simulations by Crockeretal. (2009), and dedi- cated simulations are needed for a firmer interpretation of this galaxyintermsofabinarymerger. [Å] Thesespeculationsneedfurtherevidencesincetheavailable spectroscopic data are not conclusive. To date, NGC 1366 is a Fig. 6. Values of Hβ and [MgFe]′ line-strength indices (top panel) unique example, and it may become a corner stone for under- and hFei and Mgb line-strength indices (bottom panel) for the coro- standingthe formationof counter-rotationin relativelyisolated tating (small red diamonds) and counter-rotating stellar component and undisturbedgalaxies.Mappingthe ionized-gasdistribution (small blue squares) measured along the major axis of NGC 1366 andkinematicsofNGC1366withintegral-fieldspectroscopyis (r=−20.9′′,−12.6′′,11.4′′,and19.9′′).Thelargersymbolscorrespond acrucialcomplementforthepresentdatasetandisnecessaryto totheaveragedline-strengthindicesforthetwostellarcomponents.The distinguishbetweendifferentscenariosandaddressthequestion linesindicatethemodelpredictionsbyThomasetal.(2003)fordiffer- of the origin of the gas. In the case of a episodic gas acquisi- ent[α/Fe]ratios(toppanel)andages(bottompanel). tion,weexpecttoseeaclearmorphologicalandkinematicsig- natureof the incominggas withouta counter-partin the stellar ity andagevaluesobtainedforthetwo componentsareconsis- distribution. In contrast, in the case of a galaxy binary merger, tentwithin theerrorswith the resultsobtainedby Morellietal. we expect to observe a morphologicalassociation between the (2008)onthegalaxyintegratedlightwhenconsideringitsstrong distributionofstarsandgas,aregularvelocityfieldforthetwo radial gradients of stellar population properties. Therefore, the counter-rotatingstellar disks, andan irregularvelocityfield for counter-rotatingstellar componentcould be the end result of a theionizedgas. slowerstar formationprocessthatoccurredina diskofgasac- Acknowledgements. We benefited from discussion with Roberto P. Saglia. creted by a preexisting galaxy and settled onto retrograde or- This work was supported by Padua University through grants 60A02- bits. However, unlike most of previously studied cases (e.g., 5857/13, 60A02-5833/14, 60A02-4434/15, and CPDA133894. LM and EMC Johnstonetal. 2013; Pizzellaetal. 2014; Coccatoetal. 2015; acknowledge financial support from Padua University grants CPS0204 and BIRD164402/16, respectively. LM is grateful to the ESO Scientific Vis- Katkovetal.2016),theionizedgasofNGC1366isnotassoci- itor Programme for the hospitality at ESO Headquarters while this pa- atedwiththecounter-rotatingstellarcomponent.Ithaspeculiar per was in progress. This research made use of the HyperLeda Database kinematics with multiple velocity componentsalong the minor (http://leda.univ-lyon1.fr/) and NASA/IPAC Extragalactic Database (NED) axiswithdifferentgascloudsalongtheline ofsight.Thekine- whichisoperatedbytheJetPropulsionLaboratory,CaliforniaInstituteofTech- nology,undercontractwiththeNationalAeronauticsandSpaceAdministration matic mismatch between the ionized gas and counter-rotating (http://ned.ipac.caltech.edu/). stellarcomponentcomplicatesthescenarioofgasaccretionfol- lowedbystarformation. The most obviouspossibility is to consideran episodic gas accretion.Thefirsteventofcaptureofexternalgasoccurred∼3 References Gyragoandbuiltthecounter-rotatingstellarcomponent.Itwas Algorry,D.G.,Navarro,J.F.,Abadi,M.G.,etal.2014,MNRAS,437,3596 followed by a subsequentevent that is still ongoing at present. Bertola,F.,Cinzano,P.,Corsini,E.M.,etal.1996,ApJ,458,L67 Articlenumber,page7of8 A&Aproofs:manuscriptno.30046_ap Bettoni,D.,Galletta,G.,&Prada,F.2001,A&A,374,83 Bettoni,D.,Mazzei,P.,Rampazzo,R.,etal.2014,Ap&SS,354,83 Cappellari,M.,&Emsellem,E.2004,PASP,116,138 Coccato,L.,Morelli,L.,Corsini,E.M.,etal.2011,MNRAS,412,L113 Coccato,L.,Morelli,L.,Pizzella,A.,etal.2013,A&A,549,A3 Coccato,L.,Fabricius,M.,Morelli,L.,etal.2015,A&A,581,A65 Combes,F.2006,inMassProfilesandShapesofCosmologicalStructures,eds. G.A.Mamon,F.Combes,C.Deffayet,&B.Fort,EASPubl.Ser.,20,97 Corsini,E.M.,Méndez-Abreu,J.,Pastorello,N.,etal.2012,MNRAS,423,L79 Corsini,E.M.2014,inMulti-SpinGalaxies, eds.E.Iodice, &E.M.Corsini, ASPConf.Ser.,486,51 Corsini,E.M.,Pizzella,A.,Coccato,L.,&Bertola,F.2003,A&A,408,873 Crocker,A.F.,Jeong,H.,Komugi,S.,etal.2009,MNRAS,393,1255 Davis,T.A.,Alatalo,K.,Sarzi,M.,etal.2011,MNRAS,417,882 deVaucouleurs,G.,deVaucouleurs,A.,Corwin,H.G.,etal.1991,ThirdRefer- enceCatalogueofBrightGalaxies(Springer,Berlin) Erwin,P.2004,A&A,415,941 Evans,N.W.&Collett,J.L.1994,ApJ,420,L67 Ferguson,H.C.1989,AJ,98,367 Galletta, G. 1996, in Barred Galaxies, eds. R. Buta, D. A. Crocker, & B. G. Elmegreen,ASPConf.Ser.,91,429 Garcia,A.M.,Paturel,G.,Bottinelli,L.,&Gouguenheim,L.1993,A&AS,98, 7 Gorgas,J.,Efstathiou,G.,&Aragón-Salamanca,A.1990,MNRAS,245,217 Johnston,E.J.,Merrifield,M.R.,Aragón-Salamanca,A.,&Cappellari,M.2013, MNRAS,428,1296 Jore,K.P.,Broeils,A.H.,&Haynes,M.P.1996,AJ,112,438 Kannappan,S.J.,&Fabricant,D.G.2001,AJ,121,140 Katkov, I., Chilingarian, I., Sil’chenko, O., Zasov, A., & Afanasiev, V. 2011, BalticAstronomy,20,453 Katkov,I.Y.,Sil’chenko,O.K.,&Afanasiev,V.L.2013,ApJ,769,105 Katkov, I.Y.,Sil’chenko, O.K.,Chilingarian, I.V., Uklein, R.I.,&Egorov, O.V.2016,MNRAS,461,2068 Khoperskov,S.,&Bertin,G.2016,A&A,inpress[arXiv:1610.02705] Krajnovic´,D.,Emsellem,E.,Cappellari,M.,etal.2011,MNRAS,414,2923 Kuijken,K.,&Garcia-Ruiz, I.2001,inGalaxyDisksandDiskGalaxies,eds. J.G.Funes,&E.M.Corsini,ASPConf.Ser.,230,401 Makarov,D.,Prugniel,P.,Terekhova,N.,Courtois,H.,&Vauglin,I.2014,A&A, 570,A13 Mapelli,M.,Rampazzo,R.,&Marino,A.2015,A&A,575,A16 Maraston,C.2005,MNRAS,362,799 Mitzkus,M.,Cappellari,M.,&Walcher,C.J.2017,MNRAS,464,4789 Morelli,L.,Pompei,E.,Pizzella,A.,etal.2008,MNRAS,389,341 Morelli,L.,Corsini,E.M.,Pizzella,A.,etal.2012,MNRAS,423,962 Morelli,L.,Pizzella,A.,Corsini,E.M.,etal.2015,AstronomischeNachrichten, 336,208 Morelli,L.,Parmiggiani,M.,Corsini,E.M.,etal.2016,MNRAS,463,4396 Pizzella,A.,Corsini,E.M.,Morelli,L.,etal.2002,ApJ,573,131 Pizzella,A.,Corsini,E.M.,VegaBeltrán,J.C.,&Bertola,F.2004,A&A,424, 447 Pizzella,A.,Morelli,L.,Corsini,E.M.,etal.2014,A&A,570,A79 Prugniel,P.,&Soubiran,C.2001,A&A,369,1048 Puerari,I.,&Pfenniger,D.2001,Ap&SS,276,909 Rix,H.-W.,Franx,M.,Fisher,D.,&Illingworth,G.1992,ApJ,400,L5 Rubin,V.C.1994,AJ,108,456 Sandage,A.,&Bedke,J.1994,TheCarnegieAtlasofGalaxies(CarnegieInsti- tutionofWashington,Washington,DC) Sarzi,M.,Falcón-Barroso,J.,Davies,R.L.,etal.2006,MNRAS,366,1151 Sellwood,J.A.,&Merritt,D.1994,ApJ,425,530 Thakar,A.R.,&Ryden,B.S.1996,ApJ,461,55 Thakar,A.R.,&Ryden,B.S.1998,ApJ,506,93 Thakar,A.R.,Ryden,B.S.,Jore,K.P.,&Broeils,A.H.1997,ApJ,479,702 Thomas,D.,Maraston,C.,&Bender,R.2003,MNRAS,339,897 Vergani,D.,Pizzella,A.,Corsini,E.M.,etal.2007,A&A,463,883 Worthey,G.,Faber,S.M.,Gonzalez,J.J.,&Burstein,D.1994,ApJS,94,687 Articlenumber,page8of8