ebook img

Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366 PDF

0.53 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kinematic and stellar population properties of the counter-rotating components in the S0 galaxy NGC 1366

Astronomy&Astrophysicsmanuscriptno.30046_ap (cid:13)cESO2017 January27,2017 Kinematic and stellar population properties of the ⋆ counter-rotating components in the S0 galaxy NGC 1366 L.Morelli1,2,A.Pizzella1,2,L.Coccato3,E.M.Corsini1,2,E.DallaBontà1,2,L.M.Buson2,V.D.Ivanov3,4, I.Pagotto1,E.Pompei4,andM.Rocco1 1 DipartimentodiFisicaeAstronomia“G.Galilei”,UniversitàdiPadova,vicolodell’Osservatorio3,I-35122Padova,Italy e-mail:[email protected] 7 2 INAF-OsservatorioAstronomicodiPadova,vicolodell’Osservatorio2,I-35122Padova,Italy 1 3 EuropeanSouthernObservatory,Karl-Schwarzschild-Strasse2,D-85748GarchingbeiMünchen,Germany 0 4 EuropeanSouthernObservatory,AvenidaAlonsodeCórdova3107,Vitacura,Casilla19001,SantiagodeChile,Chile 2 January27,2017 n a J ABSTRACT 6 Context. Many disk galaxies host two extended stellar components that rotate in opposite directions. The analysis of the stellar 2 populations of the counter-rotating components provides constraints on the environmental and internal processes that drive their formation. ] A Aims. The S0 NGC 1366 in the Fornax cluster is known to host a stellar component that is kinematically decoupled from the mainbodyofthegalaxy.Herewesuccessfullyseparatedthetwocounter-rotatingstellarcomponentstoindependentlymeasurethe G kinematicsandpropertiesoftheirstellarpopulations. . Methods. We performed a spectroscopic decomposition of the spectrum obtained along the galaxy major axis and separated the h relativecontributionofthetwocounter-rotatingstellarcomponentsandoftheionized-gascomponent.Wemeasuredtheline-strength p indicesofthetwocounter-rotatingstellarcomponentsandmodeledeachofthemwithsinglestellarpopulationmodelsthataccount - o fortheα/Feoverabundance. r Results.Wefoundthatthecounter-rotatingstellarcomponentisyounger,hasnearlythesamemetallicity,andislessα/Feenhanced t thanthecorotatingcomponent.Unlikemostofthecounter-rotatinggalaxies,theionizedgasdetectedinNGC1366isneitherassoci- s a atedwiththecounter-rotatingstellarcomponentnorwiththemaingalaxybody.Onthecontrary,ithasadisordereddistributionand [ adisturbedkinematicswithmultiplevelocitycomponentsobservedalongtheminoraxisofthegalaxy. Conclusions.Thedifferentpropertiesofthecounter-rotatingstellarcomponentsandthekinematicpeculiaritiesoftheionizedgas 1 suggestthatNGC1366isatanintermediatestageoftheacquisitionprocess,buildingthecounter-rotatingcomponentswithsomegas v cloudsstillfallingontothegalaxy. 1 3 Key words. galaxies: abundances — galaxies: kinematics and dynamics — galaxies: formation — galaxies: stellar content — 6 galaxies:individual:NGC1366 7 0 1.1. Introduction components. A counter-rotating stellar disk can be built from 0 gasaccretedwithanoppositeangularmomentumwithrespectto The photometric and kinematic analysis of nearby objects re- 7 thepre-existinggalaxyfromtheenvironmentorfromacompan- 1veals that disk galaxies may host decoupled structures on var- ion galaxy. The counter-rotating gas settles on the galaxy disk :ious scales, from a few tens of pc (e.g., Pizzellaetal. 2002; andformsthecounter-rotatingstars.Inthiscase,thegasiskine- v Corsinietal. 2003; Erwin 2004) to several kpc (e.g., Rubin i maticallyassociatedwiththecounter-rotatingstellarcomponent, X1994; Kuijken&Garcia-Ruiz 2001; Combes 2006). In partic- which is younger and less massive than the main body of the ular, observational evidence for two stellar disks, two gaseous r galaxy(Thakar&Ryden 1996, 1998; Algorryetal. 2014). An- adisks, or for a gaseous disk and a stellar disk rotating in op- other viable, but less probable, formation process is related to posite directions have been found on large scales in galaxies themajormergerbetweentwodiskgalaxieswithoppositerota- ofdifferentmorphologicaltypes(Galletta1996;Corsini2014). tion. The difference in age of the two counter-rotatingcompo- Counter-rotating stellar and/or gaseous disks occur in ∼ 30% nents depends on the stellar population of the progenitors and of S0 galaxies (Pizzellaetal. 2004; Davisetal. 2011) and in on the timescale of the star formation triggered by the binary ∼ 10% of spirals (Kannappan&Fabricant 2001; Pizzellaetal. merger. Moreover, the two stellar disks are expected to have 2004;Corsinietal.2012). a different thickness (Puerari&Pfenniger 2001; Crockeretal. Different processes have been proposed to explain the for- 2009; Bettonietal. 2014). Finally, the dissolution of a bar or mation of a galaxy with two counter-rotatingstellar disks, and triaxial stellar halo can build two counter-rotating stellar com- eachformationscenarioisexpectedtoleaveanoticeablesigna- ponents with similar age and mass without involving gas. One ture in the stellar population properties of the counter-rotating of them is rotating in the same direction as the bulge and disk of the pre-existing galaxy (Evans&Collett 1994, but see also ⋆ BasedonobservationsmadewithESOTelescopesattheLaSilla- Sellwood&Merritt1994;Khoperskov&Bertin2016). ParanalObservatoryunderprogrammes075.B-0794and077.B-0767. Articlenumber,page1of8 A&Aproofs:manuscriptno.30046_ap Thesepredictionsaredifficulttobetested,sinceoutsideour Galaxy it is a hard task to separate the single componentsof a compositestellarpopulation.However,thisispossibleinafew galaxiesbecause of the differencein velocity of their extended counter-rotating stellar components. Counter-rotating galaxies are thereforeideallaboratoriesfor studyinghow galaxiesgrow byepisodicorcontinuousaccretionofgasandstarsthroughac- quisition and merging events. Coccatoetal. (2011) presented a spectroscopic decomposition technique that allows separat- ingtherelativecontributionoftwostellarcomponentsfromthe observed galaxy spectrum. This allows us to study the kine- matics and spectroscopic properties of individual components independently, minimizing their cross-contamination along the line of sight. We applied this technique to many of the galax- ies known to host counter-rotating stellar disks with the aim of constraining their formation process (Coccatoetal. 2011, 2013, 2015; Pizzellaetal. 2014). In most of these cases, the available evidence supports the hypothesis that stellar counter- rotation is the end productof a retrogradeacquisition of exter- nal gas and subsequent star formation. Other teams developed their own algorithms for separating the kinematics and stellar populationsofcounter-rotatinggalaxiesandfoundresultssimi- lartoours(Johnstonetal.2013;Katkovetal.2011,2013,2016; Mitzkusetal.2017). NGC 1366 is a bright and spindle galaxy (Fig. 1) in the Fig. 1. Contour plots in arbitrary scale of the R-band image of Fornax cluster at a distance of 17 Mpc (Ferguson 1989). It is NGC1366takenfromMorellietal.(2008).Thesolidlinesmarkthepo- classified asS00 by deVaucouleursetal. (1991) andS01(7)/E7 sitionoftheslitalongthemajorandminoraxisofthegalaxy.Thebrown by Sandage&Bedke (1994) because it has a highly inclined andorangesegmentscorrespondtotheradialbinswherewewereable thin disk. Although NGC 1366 belongs to the LGG 96 group, toseparatethetwocounter-rotatingstellarcomponents.Orientationof Garciaetal.(1993),itdoesnothaveanynearbybrightcompan- thefieldofviewisgiveninthefigure,andthescaleis82pcperarcsec. ionandshowsanundisturbedmorphology.Ithasanabsoluteto- talBmagnitudeM0 =−18.30mag,asderivedfromB =11.97 BT T CCD has 2048 × 4096 pixels of 15 × 15 µm2. We adopted a mag (deVaucouleursetal. 1991) by correcting for the inclina- 2×2pixelbinning.Thewavelengthrangebetweenabout4800 tion and extinction givenby HyperLeda(Makarovetal. 2014). Åand5400Åwascoveredwithareciprocaldispersionof0.40Å The apparentisophotaldiametersmeasuredata surfacebright- nesslevelofµ = 25magarcsec−2 are2.1×0.9arcmincorre- pixel−1 after2×2pixelbinning.Allthespectrawerebiassub- B tracted, flat-field corrected, cleaned of cosmic rays, and wave- spondingto10.4×4.5kpc.Itssurface-brightnessdistributionis lengthcalibratedusingstandardIRAF1routines.Thespectraob- wellfitbyaSérsicbulgeandanexponentialdiskwithabulge- to-total luminosity ratio B/T = 0.2, as found by Morellietal. tainedalongthesameaxiswerecoaddedusingthecenterofthe stellar continuumas reference.Furtherdetails aboutthe instru- (2008).Theseauthorsdetectedakinematicallydecoupledstellar mental setup and spectra acquisition are given in Morellietal. component that is younger than the host bulge and has proba- (2008). We followed the prescriptions of Morellietal. (2016) blyformedbyenrichedmaterialacquiredthroughinteractionor forthedatareduction. minormerging. In this paper we revisit the case of NGC 1366 by success- fullyseparatingthetwocounter-rotatingcomponentsandprop- 2.2. Stellarandionized-gaskinematics erly measuring the propertiesof their stellar populations(Sect. 2). The analysis of the kinematics of the stars and ionized gas We derivedthestellarkinematicsalongboththemajorandmi- and of the stellar populations is consistent with the formation noraxisofNGC1366withasingle-componentandwithatwo- ofthecounter-rotatingcomponentfromexternalgasthatisstill componentsanalysisasdoneinPizzellaetal.(2014). accretingontothegalaxy(Sect.3). We first measured the spectra without separating the two counter-rotatingcomponents(Morellietal. 2015). We used the penalizedpixelfitting(pPXF,Cappellari&Emsellem2004)and 2. Long-slitspectroscopy gas and absorption line fitting (GANDALF, Sarzietal. 2006) IDL2 codes with the ELODIE library of stellar spectra from 2.1. Observationsanddatareduction Prugniel&Soubiran (2001) and adopting a Gaussian line-of- sightvelocitydistribution(LOSVD)toobtainthevelocitycurve We carried out the spectroscopic observations of NGC 1366 and velocity dispersion radial profile along the observed axes. on 2005 January 25 with the 3.5 m New Technology Tele- scope (NTT) at the European Southern Observatory (ESO) in 1 ImageReductionandAnalysisFacility(IRAF)isdistributedbythe La Silla (Chile).We obtained2×45-minutesspectra alongthe National Optical Astronomy Observatory (NOAO), which isoperated major(P.A.= 2◦)andminor(P.A.= 92◦)axisofthegalaxywith bytheAssociationofUniversitiesforResearchinAstronomy(AURA), the ESO Multi-Mode Instrument (EMMI). It mounted a 1200 Inc. under cooperative agreement with the National Science Founda- groovesmm−1 grating with a 1.0 arcsec × 5.5 arcmin slit, giv- tion. ing an instrumentalresolutionσinst = 25 km s−1. The detector 2 InteractiveDataLanguage(IDL)isdistributedbyITTVisualInfor- was a mosaic of the No. 62 and No. 63 MIT/LL CCDs. Each mationSolutions. Articlenumber,page2of8 L.Morellietal.:Counter-rotatingstellarcomponentsinNGC1366 Fig.2.Line-of-sightvelocitydispersion(toppanel)andvelocity(bottompanel)radialprofilesmeasuredalongthemajoraxisofNGC1366for thetotal(blackfilledcircles),counter-rotating(bluefilledsquare),andco-rotating(redfilleddiamonds) stellarcomponentsandfortheionized gascomponent(greenopentriangles).Errorbarssmallerthansymbolsarenotshown.Theblueandredhorizontallinesinthetoppanelmarkthe radialbinsweadoptedformeasuringthecounter-rotatingandcorotatingcomponents,respectively.Theblueandreddashedlinesinthebottom panel areatentativeindicationofthevelocityrotationcurvesforthecounter-rotatingandcorotatingcomponent,respectively. Fig.3.Line-of-sightvelocitydispersion(toppanel)andvelocity(bottompanel)radialprofilesmeasuredalongtheminoraxisofNGC1366forthe totalstellar(blackfilledcircles)andtwoionized-gascomponents(cyanopentrianglesandvioletfilledtriangles).Errorbarssmallerthansymbols arenotshown. Wesubtractedthemeasuredvelocitiesfromthesystemicveloc- andgalaxyinclination,whilewecorrectedthemeasuredveloc- ity, but we did not apply any correction for the slit orientation itydispersionfortheinstrumentalvelocitydispersion. Articlenumber,page3of8 A&Aproofs:manuscriptno.30046_ap We foundapeculiarstellar kinematicsalongthemajoraxis ofNGC 1366(Fig.2).The velocitycurveis symmetricaround the center for the innermost |r| ≤ 11′′. It is characterized by a steep rise reaching a maximum of |v| ≃ 50 km s−1 at |r| ≃ 2′′ anddecreasingfartheroutto|v|≃0kms−1 at6<∼|r|<∼11′′.For |r| ≥ 11′′ the spectral absorption lines clearly display a double peakthatisduetothedifferenceinvelocityofthetwocounter- rotatingcomponents.Theabsorptionlinesofthetwostellarpop- ulationsaresowellseparatedthatthepPXF-GANDALFproce- durefit onlyone of the two components.Thisis the reasonfor theshiftinvelocitiesandthedropinvelocitydispersiontolower valuesthatwemeasuredonbothsidesofthegalaxyat|r|≥11′′ (Fig. 2). The velocitiesmeasuredatlarge negativeandpositive radii are related to the counter-rotating and corotating compo- nent,respectively.Thevelocitydispersionshowsacentralmax- imum σ ≃ 150 km s−1 and decreases outwards. It rises again topeakatσ ≃ 140km s−1 at|r| ≃ 9′′ anddecreasestoavalue of σ ≃ 100 km s−1 at |r| ≃ 25′′. The combinationof zero ve- locitywithtwooff-centeredandsymmetricpeaksinthevelocity dispersion of the stellar componentmeasured along the galaxy major axis is indicative of two counter-rotating components. This feature shows up in the kinematics obtained from long- slit (Bertolaetal. 1996; Verganietal. 2007) and integral-field spectroscopy (Krajnovic´etal. 2011; Katkovetal. 2013) when the two counter-rotating componentshave almost the same lu- minosityandtheirdifferenceinvelocityisnotresolved. Wefoundnokinematicsignatureofstellardecouplingalong theminoraxisofNGC1366(Fig.3).Thevelocitycurveischar- acterizedby|v| ≃ 0 km s−1 atall radii,indicatingthatthe pho- tometric and kinematic minor axesof the galaxycoincidewith eachother.Thevelocitydispersionprofileisradiallysymmetric and smoothly declines from σ ≃ 150 km s−1 in the center to ≃60kms−1atthelastmeasuredradius(r≃14′′). Finally, we derived the kinematics of the two counter- rotatingcomponentsalongthemajoraxisattheradiiwheretheir differenceinvelocitywasresolved,givingrisetodouble-peaked absorptionlines.Toreachthesignal-to-noiseratio(S/N)needed to successfully perform the spectral decomposition, we aver- aged the galaxy spectrum along the spatial direction in the re- gionswiththehighestcontributionofthecounter-rotatingcom- ponent. We obtained a minimum S/N ≥ 30 per resolution ele- ment,whichincreasestoamaximumvalueS/N ≃50inthevery centralregion. We performed the spectroscopic decomposition using the implementationofthepPXFdevelopedbyCoccatoetal.(2011). Webuiltforeachstellarcomponentabest-fittingsynthetictem- plate as linear combinationof the ELODIEstellar spectra. The two templates depend on the correspondingstellar populations ofthecorotatingandcounter-rotatingcomponentsandwerecon- volved with a Gaussian LOSVD accordingto their kinematics. Weaddedmultiplicativepolynomialstodealwithdifferencesin thecontinuumshapeofthegalaxyandstellarspectraduetoflux calibration and flat fielding residuals. We also included a few Gaussianfunctionstoaccountfortheionized-gasemissionlines andgeneratedasyntheticgalaxyspectrumthatmatchestheob- Fig.4.Portionofmajor(toppanel)andminor-axis(bottompanel)rest- served spectrum. The spectroscopic decomposition returns the framespectraofNGC1366showingthe[OIII]λ5007emissionlineaf- luminosity fraction, the line-of-sightvelocity, and velocity dis- tersubtractingthebest-fittingstellartemplate. persion of the two stellar components, the line-of-sight veloc- ityandvelocitydispersionoftheionizedgas,andthetwobest- fitting synthetic stellar templates to be used for the analysis of thestellarpopulationproperties.Wequantifiedtheerrorsonthe luminosity fraction, line-of-sight velocity, and velocity disper- ofMonteCarlosimulationsonasetofartificialgalaxyspectra, sionofthetwocounter-rotatingstellarcomponentswithaseries asdoneinCoccatoetal.(2011). Articlenumber,page4of8 L.Morellietal.:Counter-rotatingstellarcomponentsinNGC1366 Fig.5.Decompositionofthemajor-axisspectrumofNGC1366(blackline)intheanalyzedspatialbins(r = −20.9′′,−12.6′′,11.4′′ and19.9′′). Thebest-fittingmodel(magentaline)isthesumofthespectraofthecorotating(redline)andcounter-rotatingstellarcomponent(blueline)and oftheionized-gascomponent(cyanline).Thenormalizedfluxofthefitresidual(greenline)hasafalsezero-pointforviewingconvenience.The yellowshadedareaindicatesaspectralregionmaskedinthefitthatisduetotheimperfectsubtractionofthespurioussignal,whichistheresultof areflectionontheEMMICCD. Thedecompositionofthegalaxyspectrumintheradialbins and a lower velocity dispersion (σ ≃ 30) than the counter- atr=−20.9′′,−12.6′′,11.4′′and19.9′′areshowninFig.5,and rotating stars that rotate with a |v| ≃ 90 km s−1 and have a the resulting kinematics of the corotating and counter-rotating (σ ≃ 80 km s−1). The corotating and counter-rotatingcompo- stellar components are plotted in Fig. 2. Corotating stars are nentscontribute(45±15)%and(55±15)%ofthestellarluminos- characterized by a higher rotation velocity (|v| ≃ 120) km s−1 ity at all the measuredradii. We convertedthe luminosityfrac- Articlenumber,page5of8 A&Aproofs:manuscriptno.30046_ap tion of each componentinto mass fraction using the measured Table 1. Line-strength indices of the corotating and counter-rotating stellarcomponentsofNGC1366. ages and metallicities and adopting the models by Maraston (2005). We derived stellar mass-to-light ratios of M/L = 3.02 and M/L = 1.63 for the corotating and counter-rotating com- r Hβ Mgb Fe5270 Fe5335 ponents, respectively. From these quantities we found that the [′′] [Å] [Å] [Å] [Å] stellarmassfractionsofthecorotatingandcounter-rotatingcom- Corotatingcomponent ponentsare60%and40%,respectively. −20.9 1.72±0.71 2.32±0.79 2.11±0.89 1.32±0.80 A comparison between the stellar and ionized-gas velocity −12.6 1.43±0.48 2.51±0.48 2.16±0.47 1.39±0.49 curves indicates that the gas is disturbed and is not associated 11.4 2.27±0.36 3.03±0.33 2.94±0.39 2.52±0.44 withoneofthetwocounter-rotatingcomponents.Infact,thegas 19.9 2.57±0.51 2.76±0.60 2.47±0.68 2.02±0.68 rotatesinthesamedirectionandwithavelocityamplitudeclose Counter-rotatingcomponent to that of the stellar component at small (|r| <∼ 1′′) and large radii (|r| ≥ 11′′). A broad feature is clearly visible in the gas −20.9 2.40±0.32 2.57±0.32 2.70±0.38 2.54±0.35 structureat|r|≃7−10′′alongthemajoraxis(Fig.4).Although −12.6 2.85±0.26 2.22±0.26 2.42±0.27 2.32±0.27 11.4 2.35±0.22 2.44±0.21 2.35±0.25 2.23±0.29 the[OIII]λ5007emissionlinehasabroadprofile(Fig.5),there 19.9 2.59±0.26 1.87±0.33 1.84±0.39 1.83±0.38 isnoclearevidenceforadoublepeak.Thewavelengthrangeof ourspectradoesnotcovertheHαregion,whichpreventsusform Table 2. Properties of the stellar populations of the corotating and building a complete diagnostic diagram to properlydistinguish counter-rotatingstellarcomponentsofNGC1366. betweenthedifferentexcitationmechanismsoftheionizedgas. However, the high value of log([OIII]λ5007/Hβ)≃ 1.5 favors theshocksasexcitationmechanism. Component L/L Age [Z/H] [α/Fe] T We detected two ionized-gas rotating components along [Gyr] [dex] [dex] the galaxy minor axis as it results from the double-peaked [OIII]λ5007 emission line shown in Fig. 4. We independently Corotating 0.45 5.6±2.7 −0.18±0.16 0.08±0.13 measured the brighteremission line at lower velocitiesand the Counter-rotating 0.55 2.6±0.5 −0.16±0.11 −0.07±0.08 fainteremissionlineathighervelocities.Theirvelocityandve- locity dispersionare shownin Fig. 3. The two gascomponents haveasystematicandalmostconstantoffsetinvelocitywithre- specttothestellarcomponent,suggestingthepresenceofmore [α/Fe]ratioofthecounter-rotatingcomponent([α/Fe]= −0.07 gas cloudsalongthe line of sight. We preferthis interpretation dex)pointstoalongerstar-formationtimescalethanthatofthe to the ideaofhavingtwo gascomponentswithmirroredasym- corotating component, which is characterized by a supersolar metricdistributionswithabrighterandafaintersideandgiving [α/Fe]ratio([α/Fe]= 0.08dex). risetoanX-shaped[OIII]λ5007emissionline.Thegasvelocity dispersionistypicallyσ < 100km s−1 andmostlyσ ≃ 50 gas gas km s−1 alongbothaxesaftercorrectingfortheinstrumentalve- 3. Discussionandconclusions locitydispersion. There is no morphological or photometric evidence that NGC 1366 is hosting two counter-rotating stellar components. 2.3. Stellar populations NGC1366ischaracterizedbyanundisturbedmorphologywith nosignofrecentinteractionwithsmallsatellitesorcompanion We measured the Lick line-strength indices (as defined in galaxies of similar size (Morellietal. 2008). This is common Gorgasetal. 1990;Wortheyetal. 1994;Thomasetal. 2003) of formostofthecounter-rotatinggalaxiessincetheirenvironment the corotating and counter-rotating components on the best- doesnotappearstatisticallydifferentfromthatofnormalgalax- fitting synthetic templates and derived the age, metallicity, ies,seeBettonietal.(2001).Inaddition,thesurfacebrightness and [α/Fe] ratio of the corresponding stellar population as in distribution of NGC 1366 is remarkably well fitted by a Sér- Morellietal. (2012). We derived the errors on the equivalent sic bulge and an exponential disk with no break at any radius widths of the line-strength indices of the two counter-rotating (Morellietal.2008). stellarcomponentswithaseriesofMonteCarlosimulationson We provided the spectroscopic evidence of two counter- asetofartificialgalaxyspectraasdoneinCoccatoetal.(2011). rotating stellar components with a high rotation velocity and WereportthemeasurementsinTable1andcomparethemtothe low velocity dispersion (v/σ ≃ 2) that give almost the same line-strengthindicespredictedforasinglestellarpopulationthat contribution to the galaxy luminosity. We infer that they have accounts for the α/Fe overabundance by Thomasetal. (2003) asimilarscalelengthfromtheconstantslopeoftheexponential in Fig. 6. We obtainedthe stellar populationpropertiesof both surface-brightnessradialprofileoutsidethebulge-dominatedre- componentsfromthe line-strengthindicesaveragedon thetwo gionasinNGC4138(Joreetal.1996;Pizzellaetal.2014)and galaxysides.TheyaregiveninTable2togetherwiththerelative NGC4550(Rixetal.1992;Coccatoetal.2013;Johnstonetal. luminosityofthecorotatingandcounter-rotatingcomponents. 2013). These kinematic and photometricpropertiessupportthe Thecomparisonoftheaveragedagevaluessuggeststhatthe disknatureofthetwocomponents. counter-rotatingcomponentissignificantlyyounger(Age= 2.6 The stellar populationof the corotatingcomponentis char- Gyr) than the corotating component(age= 5.6 Gyr). The two acterizedbyanolderage,consistentwiththatofbulge(5.1±1.7 averagedmetallicitiesarebothsubsolarandsimilartoeachother Gyr, Morellietal. 2008), subsolar metallicity, and almost so- ([Z/H]=−0.16and−0.18dexforthecounter-rotatingandcoro- lar α/Fe enhancement. This suggests a formation timescale of tating components, respectively). However, the large scatter in afewGyrthatoccurredatthetimeofthegalaxyassembly.The themetallicitymeasurementsofthecorotatingcomponentdoes counter-rotatingstellar componentis remarkably younger with notallowustogiveafirmconclusion.Atfacevalue,thesubsolar lowerα/Feenhancementandsubsolarmetallicity.Themetallic- Articlenumber,page6of8 L.Morellietal.:Counter-rotatingstellarcomponentsinNGC1366 However, this rises the question about the origin of the newly suppliedandkinematicallydecoupledgassincethereisnoclear donorcandidateintheneighborhoodofNGC1366.Thisleaves uswiththepossibilityoftheacquisitionofsmallgascloudscom- ing either from the environment or from the internal reservoir insidethegalaxyitself.Whenexternalgasiscapturedindistinct clouds, it settles onto the galaxy disk in a relatively short time Å] (∼ 1Gyr,Thakaretal. 1997;Algorryetal. 2014;Mapellietal. [ 2015). In this case, NGC 1366could be an objectcaughtat an intermediatestageoftheacquisitionprocess,beforeitsconfigu- rationbecomesstable.Itisinterestingtonotethatthiscouldalso haveoccurredin galaxieswithgasassociatedwiththe counter- rotating stellar component. Without clear evidence of ongoing star formation or very young stars, the counter-rotating stellar componentcouldbetheresultofapastacquisitionofgascom- ing from the same reservoir that provides the counter-rotating [Å] gasweobserveatpresent. An intriguing alternative was explored by Crockeretal. (2009). They showed the time evolution of the distribution and kinematics of gas and stars in a set of numerical simula- tionsaimedatinvestigatingtheformationofthestellarcounter- rotating disks of NGC 4550 from a binary merger. One Gyr after the merger, while the stars have settled in two counter- rotatingdiskswitharelativelyregularkinematics,thegasdistri- Å] [ butionstillremainsratherdisorderedwithadisturbedkinemat- ics. However,thisconfigurationis notstable,andthe gastends to a more regular configurationbetween 1 and 2 Gyr from the mergingevent. The structure and stellar populationsproperties ofthecounter-rotatingcomponentsofNGC1366aresomewhat differentfromthoseofNGC4550foradirectcomparisonofour results with the simulations by Crockeretal. (2009), and dedi- cated simulations are needed for a firmer interpretation of this galaxyintermsofabinarymerger. [Å] Thesespeculationsneedfurtherevidencesincetheavailable spectroscopic data are not conclusive. To date, NGC 1366 is a Fig. 6. Values of Hβ and [MgFe]′ line-strength indices (top panel) unique example, and it may become a corner stone for under- and hFei and Mgb line-strength indices (bottom panel) for the coro- standingthe formationof counter-rotationin relativelyisolated tating (small red diamonds) and counter-rotating stellar component and undisturbedgalaxies.Mappingthe ionized-gasdistribution (small blue squares) measured along the major axis of NGC 1366 andkinematicsofNGC1366withintegral-fieldspectroscopyis (r=−20.9′′,−12.6′′,11.4′′,and19.9′′).Thelargersymbolscorrespond acrucialcomplementforthepresentdatasetandisnecessaryto totheaveragedline-strengthindicesforthetwostellarcomponents.The distinguishbetweendifferentscenariosandaddressthequestion linesindicatethemodelpredictionsbyThomasetal.(2003)fordiffer- of the origin of the gas. In the case of a episodic gas acquisi- ent[α/Fe]ratios(toppanel)andages(bottompanel). tion,weexpecttoseeaclearmorphologicalandkinematicsig- natureof the incominggas withouta counter-partin the stellar ity andagevaluesobtainedforthetwo componentsareconsis- distribution. In contrast, in the case of a galaxy binary merger, tentwithin theerrorswith the resultsobtainedby Morellietal. we expect to observe a morphologicalassociation between the (2008)onthegalaxyintegratedlightwhenconsideringitsstrong distributionofstarsandgas,aregularvelocityfieldforthetwo radial gradients of stellar population properties. Therefore, the counter-rotatingstellar disks, andan irregularvelocityfield for counter-rotatingstellar componentcould be the end result of a theionizedgas. slowerstar formationprocessthatoccurredina diskofgasac- Acknowledgements. We benefited from discussion with Roberto P. Saglia. creted by a preexisting galaxy and settled onto retrograde or- This work was supported by Padua University through grants 60A02- bits. However, unlike most of previously studied cases (e.g., 5857/13, 60A02-5833/14, 60A02-4434/15, and CPDA133894. LM and EMC Johnstonetal. 2013; Pizzellaetal. 2014; Coccatoetal. 2015; acknowledge financial support from Padua University grants CPS0204 and BIRD164402/16, respectively. LM is grateful to the ESO Scientific Vis- Katkovetal.2016),theionizedgasofNGC1366isnotassoci- itor Programme for the hospitality at ESO Headquarters while this pa- atedwiththecounter-rotatingstellarcomponent.Ithaspeculiar per was in progress. This research made use of the HyperLeda Database kinematics with multiple velocity componentsalong the minor (http://leda.univ-lyon1.fr/) and NASA/IPAC Extragalactic Database (NED) axiswithdifferentgascloudsalongtheline ofsight.Thekine- whichisoperatedbytheJetPropulsionLaboratory,CaliforniaInstituteofTech- nology,undercontractwiththeNationalAeronauticsandSpaceAdministration matic mismatch between the ionized gas and counter-rotating (http://ned.ipac.caltech.edu/). stellarcomponentcomplicatesthescenarioofgasaccretionfol- lowedbystarformation. The most obviouspossibility is to consideran episodic gas accretion.Thefirsteventofcaptureofexternalgasoccurred∼3 References Gyragoandbuiltthecounter-rotatingstellarcomponent.Itwas Algorry,D.G.,Navarro,J.F.,Abadi,M.G.,etal.2014,MNRAS,437,3596 followed by a subsequentevent that is still ongoing at present. Bertola,F.,Cinzano,P.,Corsini,E.M.,etal.1996,ApJ,458,L67 Articlenumber,page7of8 A&Aproofs:manuscriptno.30046_ap Bettoni,D.,Galletta,G.,&Prada,F.2001,A&A,374,83 Bettoni,D.,Mazzei,P.,Rampazzo,R.,etal.2014,Ap&SS,354,83 Cappellari,M.,&Emsellem,E.2004,PASP,116,138 Coccato,L.,Morelli,L.,Corsini,E.M.,etal.2011,MNRAS,412,L113 Coccato,L.,Morelli,L.,Pizzella,A.,etal.2013,A&A,549,A3 Coccato,L.,Fabricius,M.,Morelli,L.,etal.2015,A&A,581,A65 Combes,F.2006,inMassProfilesandShapesofCosmologicalStructures,eds. G.A.Mamon,F.Combes,C.Deffayet,&B.Fort,EASPubl.Ser.,20,97 Corsini,E.M.,Méndez-Abreu,J.,Pastorello,N.,etal.2012,MNRAS,423,L79 Corsini,E.M.2014,inMulti-SpinGalaxies, eds.E.Iodice, &E.M.Corsini, ASPConf.Ser.,486,51 Corsini,E.M.,Pizzella,A.,Coccato,L.,&Bertola,F.2003,A&A,408,873 Crocker,A.F.,Jeong,H.,Komugi,S.,etal.2009,MNRAS,393,1255 Davis,T.A.,Alatalo,K.,Sarzi,M.,etal.2011,MNRAS,417,882 deVaucouleurs,G.,deVaucouleurs,A.,Corwin,H.G.,etal.1991,ThirdRefer- enceCatalogueofBrightGalaxies(Springer,Berlin) Erwin,P.2004,A&A,415,941 Evans,N.W.&Collett,J.L.1994,ApJ,420,L67 Ferguson,H.C.1989,AJ,98,367 Galletta, G. 1996, in Barred Galaxies, eds. R. Buta, D. A. Crocker, & B. G. Elmegreen,ASPConf.Ser.,91,429 Garcia,A.M.,Paturel,G.,Bottinelli,L.,&Gouguenheim,L.1993,A&AS,98, 7 Gorgas,J.,Efstathiou,G.,&Aragón-Salamanca,A.1990,MNRAS,245,217 Johnston,E.J.,Merrifield,M.R.,Aragón-Salamanca,A.,&Cappellari,M.2013, MNRAS,428,1296 Jore,K.P.,Broeils,A.H.,&Haynes,M.P.1996,AJ,112,438 Kannappan,S.J.,&Fabricant,D.G.2001,AJ,121,140 Katkov, I., Chilingarian, I., Sil’chenko, O., Zasov, A., & Afanasiev, V. 2011, BalticAstronomy,20,453 Katkov,I.Y.,Sil’chenko,O.K.,&Afanasiev,V.L.2013,ApJ,769,105 Katkov, I.Y.,Sil’chenko, O.K.,Chilingarian, I.V., Uklein, R.I.,&Egorov, O.V.2016,MNRAS,461,2068 Khoperskov,S.,&Bertin,G.2016,A&A,inpress[arXiv:1610.02705] Krajnovic´,D.,Emsellem,E.,Cappellari,M.,etal.2011,MNRAS,414,2923 Kuijken,K.,&Garcia-Ruiz, I.2001,inGalaxyDisksandDiskGalaxies,eds. J.G.Funes,&E.M.Corsini,ASPConf.Ser.,230,401 Makarov,D.,Prugniel,P.,Terekhova,N.,Courtois,H.,&Vauglin,I.2014,A&A, 570,A13 Mapelli,M.,Rampazzo,R.,&Marino,A.2015,A&A,575,A16 Maraston,C.2005,MNRAS,362,799 Mitzkus,M.,Cappellari,M.,&Walcher,C.J.2017,MNRAS,464,4789 Morelli,L.,Pompei,E.,Pizzella,A.,etal.2008,MNRAS,389,341 Morelli,L.,Corsini,E.M.,Pizzella,A.,etal.2012,MNRAS,423,962 Morelli,L.,Pizzella,A.,Corsini,E.M.,etal.2015,AstronomischeNachrichten, 336,208 Morelli,L.,Parmiggiani,M.,Corsini,E.M.,etal.2016,MNRAS,463,4396 Pizzella,A.,Corsini,E.M.,Morelli,L.,etal.2002,ApJ,573,131 Pizzella,A.,Corsini,E.M.,VegaBeltrán,J.C.,&Bertola,F.2004,A&A,424, 447 Pizzella,A.,Morelli,L.,Corsini,E.M.,etal.2014,A&A,570,A79 Prugniel,P.,&Soubiran,C.2001,A&A,369,1048 Puerari,I.,&Pfenniger,D.2001,Ap&SS,276,909 Rix,H.-W.,Franx,M.,Fisher,D.,&Illingworth,G.1992,ApJ,400,L5 Rubin,V.C.1994,AJ,108,456 Sandage,A.,&Bedke,J.1994,TheCarnegieAtlasofGalaxies(CarnegieInsti- tutionofWashington,Washington,DC) Sarzi,M.,Falcón-Barroso,J.,Davies,R.L.,etal.2006,MNRAS,366,1151 Sellwood,J.A.,&Merritt,D.1994,ApJ,425,530 Thakar,A.R.,&Ryden,B.S.1996,ApJ,461,55 Thakar,A.R.,&Ryden,B.S.1998,ApJ,506,93 Thakar,A.R.,Ryden,B.S.,Jore,K.P.,&Broeils,A.H.1997,ApJ,479,702 Thomas,D.,Maraston,C.,&Bender,R.2003,MNRAS,339,897 Vergani,D.,Pizzella,A.,Corsini,E.M.,etal.2007,A&A,463,883 Worthey,G.,Faber,S.M.,Gonzalez,J.J.,&Burstein,D.1994,ApJS,94,687 Articlenumber,page8of8

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.