ebook img

Kimberlites, Orangeites, and Related Rocks PDF

422 Pages·1995·16.842 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kimberlites, Orangeites, and Related Rocks

KIMBERLITES, ORANGEITES, AND RELATED ROCKS KIMBERLITES, ORANGEITES, AND RELATED ROCKS Roger Howard Mitchell Lakehead University Thunder Bay, Ontario Canada SPRINGER SCIENCE+BUSINESS MEDIA, LLC Library of Congress Cataloging-in-Publication Data On file ISBN 978-1-4613-5822-0 ISBN 978-1-4615-1993-5 (eBook) DOI 10.1007/978-1-4615-1993-5 © 1995 by Springer Science+Business Media New York Originally published by Plenum Press New York in 1995 Softcover reprint of the hardcover 1s t edition 1995 Ali rights reserved No part of this book may be reproduced, stored in a retrieval system, or transmitted in any form or by any means, electronic, mechanical, photocopying, microfilming, recording, or otherwise, without written permission from the Publisher This work is dedicated to my wife VALERIE ANNE DENNISON in recognition of her support and encouragement of my studies of alkaline rocks, and for providing an environment favorable to the preparation of this book What stuff ~is made, whereof it is born, 1 am to learn. The Merchant of Veil ice, Act I, Sc.1 W. Shakespeare PREFACE This is the final volume of a trilogy of monographs devoted to the petrology of primary diamond-bearing rocks. It should be noted that, in common with the previous volumes, Kimberlites and Petrology of Lamproites, the book is not about upper mantle xenoliths or exploration for diamond. The principal objective of this work is to present a revised terminology for primary diamond-bearing rocks. To this end orangeites are recognized as a group of rocks distinct in mineralogy, geochemistry, and petrology from archetypal kimberlites and lamproites. The name orangeite is used in recognition of the initial discovery of these rocks in the Orange Free State of South Africa. The name is not a new one: In 1928, Percy Wagner suggested that the term orangite [sic] be used to describe the rocks that are currently known as micaceous or group II kimberlites. Much of this monograph is devoted to summarizing all that is known of the mineralogy and geochemistry of orangeites. The work incorporates several thousand new analyses of minerals from orangeites and kimberlites, together with new trace element geochemical data. These data are used to compare and contrast orangeites with kimber lites and lamproites. The work also presents a revised textural genetic classification of kimberlites and reviews some of the advances in kimberlite petrology since 1986. The work is a critical synthesis of existing data, not merely a summary of received concepts, although current hypotheses for the genesis of kimberlite and orangeite are critically reviewed. These rocks present particular challenges for petrological investigation because of their mineralogical complexity and the absence of modern equivalents. Curiously, despite over 100 years of study, we remain far from achieving a complete understanding of the mineralogy of kimberlites and orangeites. Hence, it is not surprising that hypotheses regarding the nature and evolution of their parental magmas remain, to this day, highly speculative. Although primary diamond-bearing rocks are relatively rare rock types, they have an economic and petrological importance which far outweighs their relative obscurity and therefore justifies continued study oftheir petrogenesis. Thus, it is particularly hoped that the novel ideas and concepts advanced in the work will stimulate much further study of the character and evolution of primary diamond-bearing rocks. vii viii PREFACE Many people have contributed to the production of this book, and I wish to acknowledge the following colleagues who have, over the past 15 years, contributed much discussion, preprints, thin sections, rock samples, and unpublished and/or difficult-to obtain information: Steve Bergman, Roger Clement, Howard Coopersmith, Barry Dawson, Alan Edgar, Tony Erlank, Steve Haggerty, Barry Hawthorne, Bram Janse, Viktoria Komilova, Sergei Kostrovitskii, Henry Meyer, Peter Nixon, Nick Rock, Mike Skinner, Patricia Sheahan, Simon Shee, Barbara Scott Smith, Andy Spriggs, Ken Tainton, Larry Taylor, Nikolai Vladykin, Allan Woolley, and Peter Wyllie. Special thanks go to Henry Meyer, for providing many hours of microprobe time at Purdue University, and to Mike Skinner, for samples and the opportunity to examine the Anglo-American Research Laboratory collection of orangeites. Particular thanks are expressed to Ken Tainton for permission to quote data from his Ph.D. thesis. Particular gratitude is expressed to Sam Spivak for drafting and photographic work and to Anne Hammond for preparing many polished thin sections of these difficult rocks. Their dedication, skills, and attention to detail are greatly appreciated by the author. Others from Lakehead University who helped materially during the production of this work include Reino Viitala (thin sections), Alan MacKenzie (electron microscopy), and Shelley Moogk-Pickard (trace element analysis). Carl Hager is thanked for assistance in using the Purdue microprobe. Critical reviews of all or portions of Chapters 1, 2, and 3 were provided by Henry Meyer, Barbara Scott Smith, lain Downie, Craig Smith, Alan Edgar, and Howard Coopersmith. Valerie Dennison is thanked for proofreading innumerable drafts of this manuscript, typing tables, collating the citations, and improving my written English! The Natural Sciences and Engineering Research Council of Canada, Lakehead University, and De Beers Consolidated Mines are acknowledged for financial and logistical assistance during the course of preparation of this work. Roger H. Mitchell Thunder Bay CONTENTS Chapter 1. Kimberlites and Orangeites . . . . . . . . . . • • . . . . . • . • • 1 1.1. Etymology of Group I and II Kimberlites . . . . . 1 1.2. Definitions of Cryptogenic and Primary Phases . . 5 1.3. The Hybrid Nature of Kimberlites and Orangeites 5 1.4. Philosophy and Principles of Classification . 7 1.4.1. Modal versus Genetic Classifications 7 1.4.2. Petrological Clans. . . . . . . . . . . 8 1.4.3. The Lamprophyre Clan . . . . . . . . 9 1.4.4. Mineralogical-Genetic Nomenclature within Petrological Clans. . . . . . . . . . . . . . . . 10 1.5. Mineralogical Comparisons between Kimberlites and Orangeites II 1.6. Definitions of Orangeites and Kimberlites . 14 1.6.1. Orangeites . . . . . . . . . . 14 1.6.2. Kimberlites . . . . . . . . . 14 1.7. Age and Distribution of Orangeites 16 1.8. Occurrences of Orangeites . 18 1. 8.1. Finsch . . . . . . . . 18 1.8.2. Barkly West Region. 21 1.8.2.1. Bellsbank. 21 1.8.2.2. Sover . . . 25 1.8.2.3. Newlands. 27 1.8.2.4. Pniel . . . 27 1.8.3. Boshof District . . . 27 1.8.3.1. Roberts Victor 28 1.8.3.2. New Elands 28 1.8.4. Winburg District ... 28 1.8.5. Kroonstad District .. 29 1.8.6. Swartruggens District. 30 1.8.7. Dokolwayo .. 31 1.8.8. Prieska District 32 1.8.9. Summary ... 35 ix x CONTENTS 1.9. Textural-Genetic Classifications of Petrological Clans . 35 1.9.1. Kimberlites ........ 37 1.9.1.1. Crater Facies . . . 37 1.9.1.2. DiatremeFacies . 41 1.9.1.3. Hypabyssal Facies 48 1.9.1.4. Spatial Relationships between Diatreme and Hypabyssal Facies Kimberlites. . 51 l.9.2. Orangeites . . . . . . . . . . . . . 58 l.9.3. Melilitite Clan . . . . . . . . . . . . . . . 58 1.10. Petrographic Characteristics of Orangeite . . . . 60 1.11. Petrographic Differences with Respect to Kimberlites . . 74 1.12. Petrographic Differences with Respect to Lamproites . . 79 Chapter 2. Mineralogy of Orangeites • . • • • • . . . • • • • • . • . . • • •• 91 2.1. Mica .................. 91 2.1.1. Paragenesis .......... 91 2.1.2. Composition of Primary Mica. 94 2.1.2.]. Ah03-Ti02 Variation 97 2.1.2.2. Ah03-FeOT Variation 104 2.1.2.3. Macrocrysts versus Microphenocrysts . 109 2.] .2.4. Minor Elements. . . . . . 111 2.1.2.5. Trace Elements. . . . . . 114 2.1.3. Aluminous Mica-Microxenoliths 115 2.1.4. Aluminous Biotite Macrocrysts . . 117 2.1.5. Micas from the Swartruggens Male Lamprophyre 118 2.1.6. Summary of Mica Compositional Variation . 119 2.1.7. Solid Solutions in Orangeite Mica 122 2.1.8. Mica in Kimberlites . . 126 2.1.8.1. Macrocrysts . . . . . . . . 127 2.] .8.2. Primary Micas ...... 128 2.1.8.3. Summary of Kimberlite Mica Compositional Variation . 155 2.1.9. Mica in Lamproites . . . . . . . . 157 2.1.10. Mica in Minettes. . . . . . . . . . 160 2.1.11. Mica in Ultramafic Lamprophyres 161 2.2. Clinopyroxene . . . . 166 2.2.1. Paragenesis .,. 166 2.2.2. Composition... 166 2.2.2.1. Diopside 166 2.2.2.2. Titanian Aegirine . 171 2.2.2.3. Minor Elements . . ] 72 2.2.3. Pyroxenes in the Swartruggens Male Lamprophyre .. 176 2.2.4. Megacrystal Pyroxenes . . . . . . . . . . . . . . . .. 177 CONTENTS xi 2.2.5. Comparison with Pyroxenes in Kimberlites 178 2.2.6. Comparisons with Pyroxenes in Lamproites 179 2.2.7. Comparisons with Pyroxenes in Ultramafic Lamprophyres . . . . . . . . . . . . . . . . 180 2.2.8. Comparisons with Pyroxenes from Minettes . 181 2.3. Olivine . . . . . . . 181 2.3.1. Paragenesis . . . . . . . . . . . . . . . . . 181 2.3.2. Composition ................ 183 2.3.3. Comparisons with Olivines in Kimberlites . 185 2.3.4. Comparisons with Olivines in Lamproites . 187 2.4. Spinel . . . . . . . . 188 2.4.1. Paragenesis . . . . . . . . . . . . . . . 188 2.4.2. Composition .............. 189 2.4.3. Comparisons with Kimberlite Spinels . 195 2.4.4. Spinel Compositional Variation in Lamproites and Lamprophyres . . . . 198 2.5. Potassium Barium Titanates 200 2.5.1. Hollandite . . . . . . 200 2.5 .1.1. Paragenesis . 200 2.5.1.2. Composition 201 2.5.1.3. Comparison with Hollandites from Lamproites, Kimberlites, and Other Potassic Rocks 207 2.5.2. Potassium Triskaidecatitanate . 213 2.5.3. Barium Pentatitanate 216 2.6. Perovskite ..... 216 2.6.1. Paragenesis . . . . . 216 2.6.2. Composition .... 218 2.6.3. Comparison with Perovskites from Kimberlite 221 2.6.4. Comparison with Lamproite Perovskite 223 2.7. Phosphates . . . . . . . . . 225 2.7.1. Apatite ....... 225 2.7.1.1. Paragenesis. 225 2.7.1.2. Composition 225 2.7.1.3. Comparison with Kimberlite and Lamproite Apatite . 225 2.7.2. Daqingshanite . . . . 227 2.7.3. Monazite ...... 228 2.7.4. Sr-REE Phosphate . 229 2.8. Amphiboles-Potassium Richterite 229 2.8.1. Paragenesis . . . . . . . . . 229 2.8.2. Composition ........ 230 2.8.3. Comparison with Potassium Richterite in Lamproite and Other Potassic Rocks 233 2.9. Potassium Feldspar 235 2.10. Ilmenite . . . . . . . . . . 237 xii CONTENTS 2.10.1. Comparison with Groundmass I1menites from Kimberlites . . . . . . . . . . . . . . . . . . . . 240 2.10.2. Comparison with Ilmenites in Lamproites . . . . 241 2.11. Rutile . . . . . . . . . . . . . 241 2.12. Zirconium Silicates 243 2.12.1. Zircon .. 243 2.12.2. Wadeite .. 243 2.12.3. Zirconium-Bearing Garnet . . . . .. 244 2.12.4. Calcium Zirconium Silicate .... . 245 2.13. Carbonates .... . .......... . 245 2.13.1. Calcite . . . . . . . . . . . . . . . . 245 2.13.2. Dolomite . . . . . . . 245 2.13.3. Other Carbonates. 246 2.14. Other Minerals 247 2.15. Summary ........ . 247 Chapter 3. Geochemistry of Orangeites • • • • • • • • • • • • • • • • • • • • • 249 3.1. Contamination and Alteration . . . . . . . . . 250 3.2. Primary Magma Compositions. . . . . . . . . . . . . . . . . . 252 3.3. Major Element Geochemistry . . . . . . . . . . . . . . . . . . 252 3.3.1. Unevolved Orangeites .............. . 253 3.3.2. Mineralogical Controls on the Major Element Geochemistry . . . . . . . . . . . . . . 255 3.3.3. Evolved Orangeites . . . . . . . . . . . . . . . 257 3.3.4. Comparison with Kimberlites ........ . 258 3.3.5. Comparison with Lamproites . . . . . . . . . . . . 261 3.4. First-Period Transition Elements. . . . . . . . . . 262 3.5. Incompatible Elements . . . . . . . . . . . . . . . . . . . 264 3.5.1. Alkaline Earths . . . . . . . . . . . . . . . . . . . 265 3.5.2. Second-and Third-Period Transition Elements .. 265 3.5.2.1. Zirconium and Hafnium ......... . 265 3.5.2.2. Niobium and Tantalum ......... . 268 3.5.3. Thorium and Uranium. . . . . . . . . 271 3.5.4. Rare Earth Elements ........... . 272 3.5.5. Alkali Elements . . . . . . . . . . . 277 3.5.6. Lead . . . . . . . . . . . . . . . . . . . . . 279 3.6. Inter-Element Relationships . . . . . . . . . . . . . . . . . . . 280 3.6.1. Extended Incompatible Element Distribution Diagrams 280 3.6.2. CeIY and La/Yb versus Zr/Nb . . . 286 3.7. Peridotite Mixing and Assimilation .... 288 3.8. Radiogenic Isotopes .. . . . . . . . . . . 292 3.8.1. Strontium and Neodymium ..... 292 3.8.2. Lead . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.