ebook img

Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser. PDF

0.97 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High Power Laser.

Kilotesla Magnetic Field due to a Capacitor-Coil Target Driven by High SUBJECTAREAS: Power Laser APPLIEDPHYSICS ELECTRICALANDELECTRONIC ENGINEERING ShinsukeFujioka1,ZheZhang1,KazuhiroIshihara1,KeisukeShigemori1,YouichiroHironaka1, HIGH-ENERGYASTROPHYSICS TomoyukiJohzaki2,AtsushiSunahara3,NaojiYamamoto4,HidekiNakashima4,TsuguhiroWatanabe5, HiroyukiShiraga1,HiroakiNishimura1&HiroshiAzechi1 FLUIDDYNAMICS 1InstituteofLaserEngineering,OsakaUniversity,2-6Yamada-oka,Suita,Osaka565-0871,Japan,2GraduateSchoolof Received Engineering,HiroshimaUniversity,1-4-1Kagamiyama,Higashi-Hiroshima,Hiroshima739-8527,Japan,3InstituteforLaser 21August2012 Technology,2-6Yamada-oka,Suita,Osaka565-0871,Japan,4DepartmentofAdvancedEnergyEngineeringScience,Kyushu Accepted University,6-1Kasuga-Koen,Kasuga,Fukuoka816-8580,Japan,5NationalInstituteofFusionScience,Toki,Gifu509-5292, 27December2012 Japan. Published 30January2013 Laboratorygenerationofstrongmagneticfieldsopensnewfrontiersinplasmaandbeamphysics,astro-and solar-physics,materialsscience,andatomicandmolecularphysics.Althoughkiloteslamagneticfieldshave alreadybeenproducedbymagneticfluxcompressionusinganimplodingmetaltubeorplasmashell, accessibilityatmultiplepointsandbettercontrolledshapesofthefieldaredesirable.Herewehavegenerated Correspondenceand kiloteslamagneticfieldsusingacapacitor-coiltarget,inwhichtwonickeldisksareconnectedbya requestsformaterials U-turncoil.Amagneticfluxdensityof1.5 kTwasmeasuredusingtheFaradayeffect650mmawayfromthe shouldbeaddressedto coil,whenthecapacitorwasdrivenbytwobeamsfromtheGEKKO-XIIlaser(at1 kJ(total),1.3 ns,0.53or 1mm,and531016 W/cm2). S.F.(sfujioka@ile. osaka-u.ac.jp) Laboratorygenerationofstrong,shapedmagneticfieldsoffersanewexperimentaltestbedtostudyplasmaand beamphysics1,astro-2andsolar-physics3,4,materialsscience5,andatomicandmolecularphysics6.Infast- ignitionlaserfusionresearch,collimationofarelativisticelectronbeambyanaxialmagneticfieldisakey schemetoincreasethecouplingefficiencybetweenthelaserandthecore7.Magneticfieldreconnection3,4and collisionlessshockgeneration1inaplasmasubjecttoastrongmagneticfieldarealsocurrentresearchobjectives. Magneticfieldisgeneratedspontaneouslyinalaser-producedplasma8,andseveralkiloteslafield9,10hasbeen measuredinarelativisticallyintenselaser-plasmainteractionexperimentinsmallspatialandtemporalscales. Kiloteslafieldshavebeenproducedbymagneticfluxcompressionusingimplodingmetaltubes11andplasma shells12–15.Upto4 kThasbeengeneratedbycompressinga6-TseedmagneticfieldattheOMEGAlaserfacility. Thismagneticfieldwasusedinacentral-ignitioninertialfusionexperiment13.Thetemperatureofthehotspot increasesbyembeddingthemagneticfieldseedinthefusionfuelbecausethestrongfieldinhibitselectronheat conductiontothesurroundingcoldfuel. Although the spontaneous magnetic field generation and the flux compression scheme are useful, others techniquesarenecessarybecausemultipointaccessibilityandcontrolledshapeofthefieldarerequiredforseveral applications. We have demonstrated that kT magnetic flux densities can be produced using a capacitor-coil target16. Results Figure1showsphotographsofacapacitor-coiltargetinsideandfrontviews.Twonickeldisksareconnectedbya U-turncoil.Kilojoule,nanosecondlaserpulsesarefocusedontothefirstdiskthroughaholeintheseconddisk.A plasmaisgeneratedatthefirstdisk,andsuprathermalhotelectronswithtemperaturesexceeding10 keVare emitted fromtheplasmacorona17.Thehotelectronsstreamdowntheelectrondensitygradient aheadofthe expandingplasmaplumeandimpacttheseconddisk.Theseconddiskacquiresanegativecharge,andalarge electricalpotentialdevelopsbetweenthedisks.ThatpotentialdifferencedrivesacurrentintheU-turncoil.A strong magnetic field pulse is generated in the coil. A previous study of this scheme18 indicated that 100-T magneticfieldscouldbecreated.Inthoseexperiments,apick-upcoilprobewasusedtodetectthefluxdensity SCIENTIFICREPORTS |3:1170|DOI:10.1038/srep01170 1 www.nature.com/scientificreports Figure1|Photographsofacapacitor-coiltargetfrom(a)itssideand(b)itsfront. ThetwonickeldisksareconnectedbyanickelU-turncoil. atthecoil.However,suchprobesaresusceptibletotheelectromag- Figure3showsaschematicofthemagneticfluxdensitymeasure- neticnoisegeneratedbythelaser-plasmainteractions. mentwithFaradayeffect19.Thehorizontallypolarizedsecondhar- TheFaradayeffectisamagneto-opticalphenomena,producinga monic of a Q-switched Nd:YAG laser (at a wavelength l of rotationoftheplaneofpolarizationthatislinearlyproportionalto 0.532 mm) was used as the probe light. The probe light pulse is thecomponentofthemagneticfieldinthedirectionofpropagation. coincident with the GEKKO laser. Fused silica was used as the TheangleofrotationhisproportionaltothelengthLoftheoptical Faraday medium with a Verdet constant of 298 6 12 deg/T m at pathinthemedium,theVerdetconstantVofthemedium,andthe 0.532 mm.The fused silica has a cylindrical shape whose diameter magneticfluxdensityHaccordingtoh5LVH. and length are 600 mm and 100 or 500 mm, respectively. The rear The average value of the flux density within a Faraday medium surfaceislocated600 mmawayfromthecoil,thereforethecenterof (B@measureinTable1)issimplycalculatedas theFaradaymediumis650or850 mmawayfromthecoilforthe100 or500 mmthickmedium,respectively. h H ~ , ð1Þ Thetransmittedprobelightisimagedbylens1ontotheiris.The measure VL central part of the image, having a diameter of 100 mm on the Thethickness(100or500 mm)oftheFaradaymediumiscomparable Faradaymedium,isselectedbytheiris.Theimageistransferredto tothedistancebetweenthecoilandthecylinder.Nonuniformityof thevisible streak camera bylens 2. Heat absorption and bandpass themagneticfieldinthemediumisnotnegligible.Peaknormalized filtersbetweentheirisandlens2excludethelaserharmonicsandthe profile of themagnetic flux density along the path of probe, H^ðxÞ thermalemissionfromtheplasma.Itwasexperimentallyconfirmed that the our imaging system detects only the probe light. The showninFig.2,wascalculatedwiththeinitialshapeoftheU-turn Wollastonprismdividestherotatedlightintohorizontalandvertical coil,wherexisacoordinatealongthepathofprobe. components. Magneticfluxdensityatthearbitraryposition,H(x),iscalculated Theequatoroftheimageisselectedbyaslitonthestreakcamera as cathodeinFig.3andthestreakimageisrecordedonaCCDcamera. HðxÞ~HmeasureðxRH^ðxÞ , ð2Þ T(Ihe1rIot)a5tiocnosahn/(gcloeshh1issidnehte)rbmetiwneedenftrhoemhotrhiezoinnttaelnIsitayndravteiortiIcHa/l H^ðxÞdx H V H I components.Thetemporalresolutionis150 ps. xxF {x VFigure 4 is a streak image of a magnetic field measurement. A R F 500 mm-thickcylinderwasusedastheFaradaymediuminthisshot Herex andx arethepositionsofthefrontandrearsurfacesofthe (35869).Inthereferenceimage,forwhichacapacitor-coiltargetwas F R Faradaymedium.InTable1,magneticfluxdensitiesat850 mmaway notdrivenbytheGEKKO-XIIlaser,onlythehorizontalcomponent fromthecoilarelistedforthecomparison. waspresent.Whenthecapacitor-coiltargetwasdrivenbytwobeams Table1|Summaryofmagneticfluxdensityat850mmfromthecoil ShotID lL EL IL ILl2L B@measure B@850mm Method mm J W/cm2 W/cm2mm2 T T 35866 1.053 1000 4.331016 4.831016 11006130 9906120 FR:500mm 35870 1.053 990 2.131016 2.331016 15006330 8806190 FR:100mm 35869 1.053 740 1.631016 1.731016 480660 430660 FR:500mm 35868 0.526 190 4.131015 1.131015 180650 160650 FR:500mm 35477 0.526 540 8.231014 2.231014 N/A 3368 Pickupcoil SCIENTIFICREPORTS |3:1170|DOI:10.1038/srep01170 2 www.nature.com/scientificreports Figure2|Peaknormalizedprofileofthemagneticfluxdensityalongthepathofprobe,whichwascalculatedwiththeinitialshapeoftheU-turncoil usedinthisexperiment. ThesurfaceoftheFaradaymediumwaslocatedat600mmawayfromthecoil.100mmor500mm-thickfusedsilicacylinderwas usedastheFaradaymedium. ofthelaser,averticalcomponentappearsandthehorizontalcom- Maximum rotation angle of 162 6 7 deg. was obtained with a ponentdisappears1.5 nsafterthelaserirradiation.Thisdelayinthe 500 mm-thick fused silica cylinder in the highest intensity shot magneticfieldindicatesthattheseconddiskneeds1.5 nstoacquire (35866).Thethickness ofacylinderwaschangedfrom500 mmto hotelectronstodrivecurrentinthecoil.Theintensityratiowas0.26 100 mm to confirm that the rotation is occurred in the cylinder. 60.07, corresponding to 71 66 degrees of rotation. The average Rotation angle of 45 6 8 deg. was obtained with a 100 mm-thick densityofmagneticfluxintheFaradaymediumiscalculatedtobe cylinder (35870). Positions of the cylinder center (650 mm or 480660 TfromtherotationangleandaVerdetconstant.Itwas 850 mm)weredifferent,twolaserbeamswerenotoverlappedcor- foundthattheprobelightwasblockedsoonafterthemagneticfield rectlyintheshot(35870),andtheintensitywasahalfofthehighest generation. intensity. With the consideration of the above differences, the Figure3|MagneticfluxdensitymeasurementusingtheFaradayeffect. Acylindermadeoffusedsilica,whosediameterandlengtharerespectively 600mmand500or100mm,islocatedawayfromthecoil.Horizontallypolarizedsecond-harmoniclightfromaNd:YAGlaserisusedastheprobe.The transmittedprobelightisimagedbylens1ontotheiris.Thecentralpartoftheimage,havingadiameterof100mmontheFaradaymedium,isselectedby theiris.Theimageistransferredtothevisiblestreakcamerabylens2.Heatabsorptionandbandpassfiltersbetweentheirisandlens2excludethelaser harmonicsandthethermalemissionfromtheplasma.TheWollastonprismdividestherotatedlightintohorizontalandverticalcomponents. SCIENTIFICREPORTS |3:1170|DOI:10.1038/srep01170 3 www.nature.com/scientificreports Figure4|Streakimagesofthehorizontalandverticalcomponentsoftheprobebeamin(a)thereferenceand(b)themagneticfieldgeneration(35869) shots. dependenceoftherotationangleonthecylinderthicknesssupports cylinder to obtain a scaling law of the flux density against laser thattherotationisoccurreddominantlyinthecylinder. intensity and wavelength. Table 1 and Fig. 6 summarize the max- Thetransmittanceofthefusedsilicarecoveredwithintheduration imummagneticfieldobtained.Averagevaluesofmagneticfluxden- oftheprobelightpulseinoneshot(35870).Thetemporalevolution sitywithintheFaradaymedium(B@measure)andthefluxdensityat of the magnetic flux density was calculated from the intensity 850 mmawayfromthecoil(B@850 mm)werelistedinTable1.The ratio. Dynamics of a plasma between the two nickel disks was maximumvalueofthemagneticfluxdensitymeasuredinthisexperi- simultaneouslyobservedfromthesideusinganx-rayimagingsys- mentwas15006330 T,650 mmawayfromthecoil.Thedottedline temcoupledtoanx-raystreakcamera. inFig.6showsalinerlineasB(I )52.7310214I .Peakdensityof L L Figure5(a)plotstheevolutionofthemagneticfluxdensitymea- themagneticfluxseemstobeinproportionaltolaserintensitynot suredwiththeFaradayeffect.Thehatchedregionindicatesthedura- productofintensityandthesquareoflaserwavelength. tionoftheprobepulseblackout.Figure5(b)showsanx-raystreak A pick-up coil probe was also used to detect the magnetic flux imageoftheplasma.Thezerooftimeisthebeginningofthelaser densityinthelowestlaserintensityshot(35477).Thediameterofthe irradiation.Themagneticfielddevelopsat1.5 nsinFig.5(a),anda pick-upcoilwas5 mmandthecoilwaslocatedat100 mmfromthe plasmaisgeneratedattheseconddiskatthissametimeasshownin capacitor-coiltarget.Thepick-upsignaliseasilyaffectedbyelectro- Fig.5(b).Consequently,hotelectronswithanexpansionspeedof5.1 magnetro noise generated by laser-plasma interactions. In our 3107 cm/s arrive atthesecond diskand produced aplasma.The experimental conditions, we obtained a meaningful signal only at magnetic field once disappears at 3.0 ns in Fig. 5(a), but plasma thelowestintensityandagreenlaserirradiation. emissionattheseconddiskincreasesatthattime.Aplasmaplume Magneticfieldspontaneouslygeneratedbylaser-plasmainterac- withanexpansionspeedof2.53107 cm/smayarriveat3.0 nsafter tionsoverlapsasbackgroundonasignal.Aplanarnickeldiskwith- the laser irradiation. The resulting potential difference drives the outacoilwasirradiatedbythelaserandthespontaneousfieldwas currentintheplume. measuredwiththepick-upcoil.Thefielddensitygeneratedwiththe Wemeasuredthemagneticfluxdensitiesbyvaryingtheintensity U-turn coil was ten times higher than the spontaneous one, and andwavelengthofthedrivelaserandthethicknessofthefusedsilica directionofthespontaneousfieldisdifferentfromthatofthefield Figure5|(a)Temporalevolutionoftheintensityratiobetweenhorizontalandverticalcomponentsandthemagneticfluxdensityusing100-mm-thick fusedsilicacylinder.Thehatchmarksinthegraphrepresentthedurationofthattheprobelightwasblocked.(b)Anx-raystreakimageoftheplasma generatedinthetargetcapacitor. SCIENTIFICREPORTS |3:1170|DOI:10.1038/srep01170 4 www.nature.com/scientificreports Figure6|Variationofthemagneticfluxdensityat850mmfromthecoilasafunctionofthelaserintensity. Theredcirclesandgreensquaresrepresent thefluxdensitygeneratedbya1.064-mmlaseranda0.526-mmlaser,respectively.TheclosedorclosedmarksrepresentresultsobtainedwiththeFaraday rotationorthepick-upcoilmeasurements.ThedottedlineshowsalinerlineasB(I )52.7310214I . L L generatedbytheU-turncoil,therefore, weneglectedthespontan- Discussion eousfieldintheFaradayrotationmeasurement. ThefirstimportantdiscussionissueisavalidityoftheFaradayrota- Figure 7 shows temporal change of the magnetic flux density tionmeasurementforlargeBanddB/dtachievedinthisexperiment. measuredwiththepick-upcoil.Thefielddecayswithacharacteristic Inourexperiment,BanddB/dtreach1.5 kTand3 kT/ns,respect- timeof28 nsthatisnotsofarfromthedecaytimeofaclosedcircuit ively. Faraday rotation angles for a GaP crystal at a wavelength of withcharacteristicL/R517 ns,whereR,5.431022VandL,9.2 632.8 nmweremeasuredasafunctionofafieldstrengthupto400 T 310210 Hwereused,respectively.Thedeepdiparound3 nsisfound measured by a pick-up coil20. The rotation angle shows a linear intheevolutionofthefield.Thisphenomenonisfoundalsointhe increase withthefield strengthand thecoefficient of10100 deg/T Faraday rotation measurement as shown in Fig. 5, but the mech- m that is very close to the value measured at weak field strength anismisnotclear.Peakfluxdensitywas3368 T,thisisalsoshown (10050 deg/Tm). inFig.6andTable1. TheFaradayrotation inafusedsilicafiberwasrecentlyusedin magneticcompressionexperimentwithalaser-acceleratedfoilanda cavity15.Thetimehistoryofthemagneticfieldduringthecompres- sionwassuccessfullymeasured,measuredamplificationagreeswith theratiobetweeninitialandfinaldimensionsofthefieldembedded area.BanddB/dTreached800 Tand1 kT/nsintheirexperiment, thereforethisresultrevealsthattheFaradayrotationmeasurement canbeusedforatleastB,800 TanddB/dt,1 kT/ns. ValidityoftheFaradayrotationmeasurementforthelargeBand dB/dtachievedinthisexperimentisstillanopenquestion,however, nonlinearityoftheFaradayeffectinducedbylargeBanddB/dtseems not to cause a significant error in the estimation of field strength, becausethosetwovaluesobtainedinourexperimentareonlytwoor threetimeslargerthantheexperimentallyvalidatedvalues. Theseconddiscussionissueistotalenergyofthemagneticfield generatedbythelaser-drivencapacitorcoil.Bycomparingthemea- suredfielddensityandthatcalculatedwiththeinitialshapeofthe U-turn coil, current in the coil and total energy of the field were estimated to be 8.6 MA and 15 kJ. The field energy was obtained byintegratingmagneticfieldenergy(B2/m )atthefieldpeaktiming 0 inthecalculationspace(23435 mm3).Thetotalenergyisincon- ceivable,because15 kJismuchlargerthanthelaserenergy(1 kJ). Explosion of the coil due to ohmic heating by a large current and Figure7|Temporalevolutionofthemagneticfieldmeasuredwitha consequentimplosionofthefieldinsidethecoilisacandidatemech- pick-upcoil.Thedottedlineisanexponentialcurvewiththedecaytimeof anism to explain the experimental result, but we have no experi- 28ns. mentalevidenceforthat.Black-outoftheprobelightfoundinthe SCIENTIFICREPORTS |3:1170|DOI:10.1038/srep01170 5 www.nature.com/scientificreports 0:6961663l2 0:4079426l2 0:8974794l2 Table2|Verdetconstantoffusedsilicaatvariouswavelengths n2ðlÞ~1z z z : ð4Þ l2{ð0:0684043Þ2 l2{ð0:1162414Þ2 l2{ð9:896161Þ2 l V ConsequentlytheVerdetconstantat532nmiscalculatedtobe287deg/Tm. nm degT21m21 Byanothermethod,theVerdetconstantat532nmwasdeterminedtobe310deg/ Tmbyinterpolationofdata35,36listedinTable2.fittedtothepowerlaw 632 212.21335 589 274.55035 VðlÞ~4:13539|108: ð5Þ 546.1 288.47736 l2:2455 435.8 472.83736 V5298612deg/TmisusedinthethisstudyasaVerdetconstantofafusedsilicaat 334.2 859.46236 0.532mm. 302.2 1099.5336 284.8 1271.9536 Errorinestimationofmagneticfluxdensityfromfaradayrotation.Intensityratio betweenhorizontalandverticalcomponentsoftherotatedlight(I /(I 1I )has H H V fluctuationof60.07ofatypicalvalue.Thisfluctuationwasconsideredinthe Faradayrotationmeasurementmaybeexplainedbythecoilimplo- calculationoftherotationanglefromtheintensityratio.UncertainlyofVerdet sion, because the probe light is blocked when the imploding coil constantofafusedsilicaat0.532mmlight(V5298612deg./Tm)wasconsidered inthecalculationofthemagneticfluxdensityfromtherotationangle.Theupperand collidesatthecenterofthecoil.Onlyasmallportionofthemagnetic lowervaluesofthefluxdensitywerecalculatedbyusingV5286and310deg./Tm field(100 mmindiameterand500 mminlength)wasmeasuredin fromtherotationangle,respectively.Consequenterrorwasintherangefrom612to the experiment, spatial distribution of the magnetic field must be 631%ofthefluxdensity. measured to conclude why the strong field is generated by the laser-drivencapacitor-coiltarget.Thismeasurementisafuturework. 1. Sagdeev,R.Z.ReviewsofPlasmaPhysics,chap.CooperativePhenomenaand Oneadvantageofthisschemeisitenablesvariousmagneticfield ShockWavesinCollisionlessPlasmas,23(ConsultantsBureau,NewYork,1966). geometries. The GEKKO-XII facility has twelve nanosecond laser 2. Santangelo,A.etal.ABEPPOSAXstudyofthepulsatingtransientX0115163: beams, and a magnetic mirror or cusp geometry can be produced ThefirstX-rayspectrumwithfourcyclotronharmonicfeatures.Astro.Phys.J. by using two or four capacitor-coil targets, each driven by two or Lett.523,L85(1999). 3. Kopp,R.A.&Pneuman,G.W.Magneticreconnectioninthecoronaandtheloop threelaserbeams.Thisgeometryaffordsnovelexperimentsinmag- prominencephenomenon.SolarPhys.50,85(1976). neticfieldreconnection,asoccursinthesolarcoronaandhasprev- 4. Masuda,S.,Kosugi,T.,Hara,H.,Tsuneta,S.&Ogawara,Y.Aloop-tophardx-ray iouslybeenstudiedwithaself-generatedmagneticfield21–25.Itcan sourceinacompactsolarflareasevidenceformagneticreconection.Nature371, also be used to study collisionless shock26–30 which is a possible 495(1994). 5. Herlach,F.&Miura,N.(eds.)HighMagneticFields:ScienceandTechnology mechanism for high-energy particle acceleration and cosmic-ray (WorldScientificPubCoInc,Singapore,2003). generation.Dynamics ofelectron-positron plasmascanbeinvesti- 6. Gilch,P.,Po¨llinger-Dammer,F.,Musewald,C.,Michel-Beyerle,M.E.&Steiner, gatedbyinteractionsbetweenanintenselaserandahigh-Zmaterial U.E.Magneticfieldeffectonpicosecondelectrontransfer.Science281,982 inthisstrongmagneticfield31,32. (1998). Astronomersareinterestedinthex-rayspectrumofpulsarsinthe 7. Strozzi,D.J.etal.Fast-ignitiondesigntransportstudies:Realisticelectronsource, integratedPIC-hydrodynamics,imposedmagneticfields.Phys.Plasma19, presenceofmegateslamagneticfields2.Intensitydips2areobserved 072711(2012). in the continuum spectrum. One explanation for these dips is 8. Stamper,J.A.,Papadopoulos,K.,Sudan,R.N.,Dean,S.O.&McLean,E.A. ComptonscatteringinaLandau-quantizedplasma.Whenthecyclo- Spontaneousmagneticfieldsinlaser-producedplasmas.Phys.Rev.Lett.26,1012 tronradiusofanelectroninastrongmagneticfieldissmallcom- (1971). 9. Tatarakis,M.etal.Measuringhugemagneticfield.Nature415,280(2002). paredtoitsdeBrogliewavelengthandtheallowedenergylevelsare 10.Wagner,U.etal.Laboratorymeasurementsof0.7GGmagneticfieldsgenerated discretized, then absorption bands appear. An energy gap DE~ duringhigh-intensitylaserinteractionswithdenseplasmas.Phys.Rev.E70, eB v ~ equalto0.1 eVat1 kTarisesintheextremeultraviolet 026401(2004). c m 11.Takeyama,S.,Sawabe,H.&Kojima,E.Recentdevelopmentsoftheelectro- range. e magneticfluxcompression.J.LowTemp.Phys.159,328(2010). 12.Knauer,J.P.etal.Compressingmagneticfieldswithhighenergylasers.Phys. Methods Plasmas17,056318(2010). Experimentaldetails.TwolaserbeamsatGEKKO-XIIwereusedtodrivethe 13.Chang,P.Y.etal.Fusionyieldenhancementinmagnetizedlaser-driven capacitor-coiltarget.Themaximumtotallaserenergy,minimumlaserspotdiameter, implosions.Phys.Rev.Lett.107,035006(2011). pulseduration,andwavelengthswere1000J,50mm,1.2ns,and1.053or0.53mm, 14.Hohenberger,M.etal.Inertialconfinementfusionimplosionswithimposed respectively. magneticfieldcompressionusingtheOMEGAlaser.Phys.Plasmas19,056306 Thecapacitor-coiltargetwasdesignedbasedonpreviouswork16,18.Thetarget (2012). consistsoftwo50-mm-thicknickeldisksandaU-turncoilmadeof50mm350mm 15.Yoneda,H.etal.Strongcompressionofamagneticfieldwithalaser-accelerated nickelrod.Thediameterofthediskis3568mmandthediameteroftheholeinthe foil.Phys.Rev.Lett.109,125004(2012). firstdiskis1784mm,topreventtheGEKKObeamsfromhittingtheperipheryofthe 16.Daido,H.etal.Generationofastrongmagneticfieldbyanintenseco2laserpulse. hole.Theseparationbetweenthetwodisksis780mm,limitedbythefractionofthe Phys.Rev.Lett.56,846(1986). hotelectronsthatdonotreachtheseconddiskduetotheE3Bdriftintheself- 17.Forslund,D.W.,Kindel,J.M.&Lee,K.Theoryofhot-electronspectraathigh generatedmagneticfieldaroundtheplasma.TheradiusofcurvatureoftheU-turn laserintesity.Phys.Rev.Lett.39,284(1977). coilis500mm.Aglassstalk,usedtosupportthetargetinthevacuumchamber,is 18.Courtois,C.,Ash,A.D.,Chambers,D.M.,Grundy,R.A.D.&Woolsey,N.C. connectedtothefirstdisk. Creationofauniformhighmagnetic-fieldstrengthenvironmentforlaser-driven Theprobelaserhadmultiplepeaksintime-domainduetomulti-modeoperation experiments.J.Appl.Phys.98,054913(2005). ofalaseroscillatorwithoutasingle-modeseedinglight,envelopeoftheprobepulse 19.Hasegawa,N.etal.High-resolutionspectroscopyofthenickel-likemolybdenum had7nsoffullwidthathalfmaximum.Theprobebeamswasshapedwitha1-mm- X-raylasertowardthegenerationofcircularlypolarizedX-raylaser.Journalof diameteraperture,theshapedprobebeampassedthroughtheFaradaymedium. OpticalSocietyofKorea13,60(2009). Energyoftheprobebeamwasadjustedbyinsertingseveralfiltersinthelaserpathto 20.Miura,N.Solidstatephysicsinmegagaussfieldsgeneratedbyelectromagnetic theacceptableenergyforavisiblestreakcamera. fluxcompressionandsingle-turncoils.Phys.B.201,40(1994). 21.Yates,M.A.,vanHulsteyn,D.B.,Rutkowski,H.,Kyrala,G.&Brackbill,J.U. Experimentalevidenceforself-generatedmagneticfieldsandremoteenergy Verdetconstantat532nm.TheVerdetconstantdependsonthewavelengthofthe depositioninlaser-irradiatedtargets.Phys.Rev.Lett.49,1702(1982). probe.Itwascalculatedfor532nmlightbyamodel.TheVerdetconstantV(inrad 22.Nilson,P.M.etal.Magneticreconnectionandplasmadynamicsintwo-beam T21m21)dependsonthewavelength(innm)accordingto33 laser-solidinteractions.Phys.Rev.Lett.97,255001(2006). e dnðlÞ 23.Li,C.K.etal.Observationofmegagauss-fieldtopologychangesduetomagnetic VðlÞ~ cl ð3Þ reconnectioninlaser-producedplasmas.Phys.Rev.Lett.99,055001(2007). 2mc2 dl 24.Nilson,P.M.etal.Bidirectionaljetformationduringdrivenmagnetic wheree,m,andcaretheelectroncharge,electronmass,andspeedoflight.Herecis reconnectionintwobeamlaser–plasmainteractions.Phys.Plasma15,092701 themagnetoopticalanomalyequalto0.692.Thedispersionintherefractiveindexis34 (2008). SCIENTIFICREPORTS |3:1170|DOI:10.1038/srep01170 6 www.nature.com/scientificreports 25.Zhong,J.etal.Modellingloop-topX-raysourceandreconnectionoutflowsin alsothankProf.J.Honrubia(UPM),Prof.F.Wang(NAOatCAS),Dr.T.Enoto(RIKEN), solarflareswithintenselasers.Nat.Phys.6,984(2010). Dr.D.Salzmann(WI),andProf.H.Takabe(ILE)forfruitfuldiscussions.Thisresearchwas 26.Taylor,R.J.,Baker,D.R.&Ikezi,H.Observationofcollisionlesselectrostatic supportedbytheJapaneseMinistryofEducation,Science,Sports,andCulture(MEXT),by shocks.Phys.Rev.Lett.24,206(1970). SpecialEducationandResearchExpensesfor‘LaboratoryAstrophysicswithHigh-Power 27.Ikezi,H.,Kamimura,T.,Kako,M.&Lonngren,K.E.Laminarelectrostaticshock Laser’andaGrant-in-AidforYoungScientists(A)for‘ExtremeMagneticFieldGeneration wavesgeneratedbyanionbeam.Phys.Fluids16,2167(1973). forQuantumBeamControlandLaboratoryX-rayAstronomy(No.24684044),’ 28.Courtois,C.etal.Experimentoncollisionlessplasmainteractionwith CollaborationResearchprogrambyNIFS(NIFS12KUGK057andNIFS11KUGK054)and applicationstosupernovaremnantphysics.Phys.Plasmas11,3386(2004). bytheInstituteofLaserEngineeringatOsakaUniversity(undercontract‘LaboratoryX-ray 29.Bailung,H.,Nakamura,Y.&Saitou,Y.Observationofion-acousticshockwave AstrophysicswithStrongMagneticField’). transitionduetoenhancedLandaudamping.Phys.Plasmas15,052311(2008). 30.Kuramitsu,Y.etal.Timeevolutionofcollisionlessshockincounterstreaming laser-producedplasmas.Phys.Rev.Lett.106,175002(2011). Authorcontributions 31.Cowan,T.E.etal.Highenergyelectrons,nuclearphenomenaandheatingin S.F.istheprincipalinvestigatorwhoproposedandorganizedtheexperiment.Z.Z.andI.K. petawattlasersolidexperiments.LaserPart.Beam17,773(1999). prepared,conducted,andanalyzedtheFaradayrotationmeasurement.K.S.andY.H. 32.Wilks,S.C.etal.Electron-positronplasmascreatedbyultra-intenselaserpulses developedtheimagingsystemusedinthemeasurement.Thisworkwasmotivatedby interactingwithsolidtargets.Astro.SpaceSci.298,347(2005). fast-ignitionsimulationsdonebyT.J.andA.S.,whileN.Y.andH.N.gaveadviceon 33.Munin,E.,Roversi,J.A.&Villaverde,A.B.Faraday-effectandenergy-gapin magnetic-fieldmeasurements.T.W.carriedoutthecalculationofthemagneticfield opticalmaterials.J.Phys.D25,1635(1992). structure.H.N.isacoordinatorofthisexperiment,andH.S.andH.A.aretheleadersofthe 34.Kitamura,R.,Pilon,L.&Jonasz,M.Opticalconstantsofsilicaglassfromextreme project. ultraviolettofarinfraredatnearroomtemperature.Appl.Optics46,8118(2007). 35.Mitscheke,F.FiberOptics:PhysicsandTechnology(Springer,2009). 36.Kaye,G.W.C.&Laby,T.H.(eds.).TablesofPhysicalandChemicalConstantsand Additionalinformation SomeMathematicalFunctions(16thedition)143(Longmans,London,1995). Competingfinancialinterests:Theauthorsdeclarenocompetingfinancialinterests. License:ThisworkislicensedunderaCreativeCommons Attribution-NonCommercial-NoDerivs3.0UnportedLicense.Toviewacopyofthis license,visithttp://creativecommons.org/licenses/by-nc-nd/3.0/ Acknowledgements Howtocitethisarticle:Fujioka,S.etal.KiloteslaMagneticFieldduetoaCapacitor-Coil TheauthorsthankthetechnicalsupportstaffattheGEKKO-XIIfacilityforlaseroperation, targetfabrication,andplasmadiagnostics.TheauthorsacknowledgeDr.N.Hasegawa TargetDrivenbyHighPowerLaser.Sci.Rep.3,1170;DOI:10.1038/srep01170(2013). (JAEA)andDr.K.Kondo(TIT)forvaluablecontributionstothisexperiment.Theauthors SCIENTIFICREPORTS |3:1170|DOI:10.1038/srep01170 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.