sustainability Article Key Factors Affecting the Price of Airbnb Listings: A Geographically Weighted Approach ZhihuaZhang1,RachelJ.C.Chen2,*,LeeD.Han3,*andLuYang1 1 DepartmentofCivilandEnvironmentalEngineering,TheUniversityofTennessee, Knoxville,TN37996-2313,USA;[email protected](Z.Z.);[email protected](L.Y.) 2 CenterforSustainableBusinessandDevelopment,TheUniversityofTennessee, 311ConferenceCenterBuilding,Knoxville,TN37996-4134,USA 3 DepartmentofCivilandEnvironmentalEngineering,319JohnD.TickleBuilding, TheUniversityofTennessee,Knoxville,TN37996-2313,USA * Correspondence:[email protected](R.J.C.C.);[email protected](L.D.H.); Tel.:+1-865-974-0505(R.J.C.C.);+1-865-974-7707(L.D.H.) Received:7August2017;Accepted:12September2017;Published:14September2017 Abstract: Airbnbhasbeenincreasinglygainingpopularitysince2008duetoitslowpricesanddirect interactions with the local community. This paper employed a general linear model (GLM) and a geographically weighted regression (GWR) model to identify the key factors affecting Airbnb listingpricesusingdatasetsof794samplesofAirbnblistingsofbusinessunitsinMetroNashville, Tennessee. The results showed that the GWR model performs better than the GLM in terms of accuracyandaffectedvariableselections. Statisticallysignificantdifferencesvariedacrossregions inMetroNashville. Thecoefficientsillustrateadecreasingtrendwhilethereisanincreaseinthe distancefromthelistedunitstotheconventioncenter, whichindicatesthatAirbnblistingprices aremoresensitivetothedistancefromtheconventioncenterinthecentralareathaninotherareas. ThesefindingscanalsoprovideimplicationsforstakeholderssuchasAirbnbhoststogainabetter understandingofthemarketsituationandformulateasuitablepricingstrategy. Keywords: Airbnb;sharingeconomy;price;GWR;factors 1. Introduction Inrecentyears,thesharingeconomyhasgainedpopularityinmanybusinesssectors[1]suchas transportation(e.g.,Uber,Lyft)andaccommodation(e.g.,Airbnb,HomeAway). Thesharingeconomy can be defined as “peer-to-peer-based activity of obtaining, giving, or sharing the access to goods andservices,coordinatedthroughcommunity-basedonlineservices”[2]. Inthepeer-to-peer(P2P) accommodationindustry,Airbnbisaprominentexample,enablingownerstooffertheirunoccupied housesorroomsforshort-termrental[3]. Foundedin2008,Airbnbhasbeenincreasingandgrowing dramaticallyandhasservedmorethan150milliongueststhroughover3millionlistingsinmorethan 190countriesinlessthanadecade[4]. ThekeystothesuccessofAirbnbincludelowcostsanddirect interactionswithlocalcommunitythatprovidesguestswithuniquestayexperiences[5]. Priceisoftenconsideredasoneofthekeyfactorsthatimpactsclients’selectionoflodgings. Past studieshaveinvestigatednumerousfactorsaffectinghotelprice,identifyingasetofpricedeterminants suchasbrandname,starrating,location,hotelage,numberofrooms,amenities,andsoforth[6–9]. Airbnbisarecentlodgingconceptthatdiffersfromtraditionalhotelsintermsofbookingsystems, facilities,websitedesigns,andcustomerservice. BecauseofthegrowingdemandforAirbnb,several studieshavefocusedonidentifyingpricedeterminantsofAirbnblistings[10,11]. Recently, global regression models (GLM) such as OLS regression and quantile regression are the most commonly adoptedmethodstoinvestigatefactorsaffectingAirbnblistingpricesincurrentstudies. Sustainability2017,9,1635;doi:10.3390/su9091635 www.mdpi.com/journal/sustainability Sustainability2017,9,1635 2of13 Duetotheirspatialautocorrelation,theglobalregressionmodelsexploreonlytherelationships betweenanindependentvariableandasetofdependentvariables,maskingspatialheterogeneityinthe relations[7,12]byignoringtheexistenceoflocalvariations. Tobetterunderstandthedeterminantsof Airbnblistingspricesandhowtherelationshipscanbeaffectedbylocationdetails,thegeographically weightedregression(GWR)modelisimplementedtoinvestigatetheeffectsoflocalfactorsonAirbnb listingprices. TheGWRmodelallowsestimatedparameterstovaryacrossregionstoaccommodate potential spatial dependencies [12]. Therefore, this study aims to adopt a GWR model to explore thespatialvariationintherelationshipbetweenAirbnblistingpricesandtheirpricedeterminants, andtocomparethemodelperformanceandestimationresultsbetweentheGLMandGWRmodelin ordertocontributetotheliterature. Therestofthispaperisorganizedasfollows: Section2discusses priorresearch,andSection3presentsthedataandmethodsusedinthispaper;next,inSection4we presentthemainestimatedmodelresultsandtheirimplications,andconclusionsandsuggestionsare presentedinSection5. 2. LiteratureReview 2.1. Airbnb SincetheadventofAirbnbin2008,ithasgrownexponentially. ThisAirbnbphenomenonhas attractedscholarlyattention,andmanystudieshaveexploredavarietyoftopicsrelatedtoAirbnb. NumerousstudieshavefocusedonAirbnb’sadvantages,challenges[5,13,14],andlegalissues[15,16]. For example, Guttentag [5] analyzed the Airbnb issues through the lens of disruptive innovation theory,andpointedoutthatthemainstrengthofAirbnbareitsrelativelylowcostandvariousbenefits associated with staying in a local residence, while the potential threats to Airbnb’s future growth arewidespreadillegality,potentialcrackdownfromlandlordsandcondoboards,andsafetyissues. EdelmanandGeradin[16]reportedthatnewregulatoryframeworksshouldbeestablishedtoallow software platforms such as Uber and Airbnb to operatelegally so that both service providers and consumerscanenjoytheconvenienceandefficiencytheseplatformsprovide. Several past studies have focused on Airbnb’s impacts on the hotel industry, including hotel revenue[17,18]andtourismindustryemployment[3]. Forinstance,Zervas,ProserpioandByers[17] found that the entry of Airbnb into the Texas market had a quantifiable negative impact on local hotelrevenues,showingthata1%increaseinAirbnblistingsinTexasresultedina0.05%decrease inquarterlyhotelrevenues. Usingthedataofatotalof657distinctlistingsforIdaho, USA,Fang, YeandLaw[3]investigatedtheeffectofthesharingeconomy(Airbnb)onthetourismindustry,and found that the sharing economy would generate new job positions and benefit the entire tourism industry,butthemarginaleffectdecreasesasthesizeofthesharingeconomyincreases. Paststudies haveexaminedtheimpactofAirbnbonhousingcost[15,19]. Barron,KungandProserpio[19]studied theimpactofAirbnbbusinessesonhousepricesandrentalrates. Theirresultsshowedthata0.39% increaseinrentalratesanda0.64%increaseinhousepricesresultedina10%businessincreasein Airbnblistings. ScholarsexploredhowguestswouldtrustandrateAirbnb,andhowanAirbnblistingachievesa highreputation. TheirfindingsconcludedthatAirbnblisting’sreputationorguests’trustinAirbnb listingcanbeaffectedby“Superhost”status[20],geolocatedAirbnbrentalimages[21],Airbnbhosts’ personalphotos[22],perceivedauthenticity,electronicword-of-mouth,pricesensitivity[23],and/or perceivedbrandpersonality[24]. Severalstudieshaveinvestigatedhowcustomers’experienceand servicequalityimpactedAirbnb’sbusinessreputation[25–29]thatpavedthewayforthesuccessof Airbnb. Tohaveanin-depthunderstandingofcustomerexperienceswithAirbnb,Brochado,Troilo, andShah[25]summarized1776reviewsfrom24Airbnblistingsacrossthreecountriesusingcontent analysesandidentifiedeightthemesthatshowedaconvergenttrendofconsumerexperiencetowards Airbnblistingusesandlodgingservices. Mody,SuessandLehto[26]developedamodeltoidentify factorsaffectingcustomers’experienceinthehospitalityindustryandtestedtheirmodelinshared Sustainability2017,9,1635 3of13 economysettings. Priporasetal.[28]investigatedtherelationshipsamongservicequality,satisfaction, andconsumers’loyaltytowardsAirbnb,indicatingthatservicequalitywaspositivelycorrelatedwith consumers’satisfactionandloyalty. 2.2. AirbnbListingPrice Priceisavitaltopicinthehospitalityindustry[6],foraproperpricingstrategycanleadacompany or enterprise to the next level of financial success [8]. Price plays an important role in the shared economyinthehospitalityindustriessuchasAirbnbbecausepriceimpactsguests’lodgingselection andalsosignificantlyimpactshosts’profits[13]. Thus,knowingfactorsaffectingthepriceisofgreat value,andcanhelphostsaskareasonablepricesothatboththehostsandguestscanbenefitfrom thesharingeconomy. Limitedstudieshavebeenconductedtoidentifywhatfactorsaffecttheprice of Airbnb listings (Table 1). For example, Ikkala and Lampinen [10] reported that the reputation of Airbnb listings is correlated with their price. Using Airbnb listings information from 33 cities, WangandNicolau[11]identifiedfiveprice-determinantcategoriesofAirbnblistings,includinghost attributes,siteandpropertyattributes,amenitiesandservices,rentalrules,andonlinereviewratings. Lietal.[30]provedtheeffectsofdistancetothenearestlandmark,theimpactoffacility,andnearest landmarkpopularityonAirbnblistingprices. Ahighratingscorecanbeconvertedtoapriceinthe hospitalityindustry,andoneempiricalstudyreportedthatratingvisibilityleadstoanincreaseinprice by2.69€[31]. Table1.OverviewofreviewedstudiesonAirbnb’spricedeterminants. Literature Determinants Effects Details Ikkalaand Qualitativestudy,11in-depth Reputation(positivereviews) Positive Lampinen[10] semi-structuredinterviewswithAirbnbhosts Ratingvisibilities(morethan Ratingvisibilityleadstoanincreaseinprice GuttandHerrmann[31] threereviews) Positive by2.69€ Multi-ScaleAffinityPropagation(MSAP) Facility Positive methodtocluster;LinearRegressionmodel Lietal.[30] Distancetonearestlandmarks Positive withNormalNoise(LRNN)topredictthe reasonableprice Hostattributes Siteandpropertyattributes OLSregressionandquantileregression WangandNicolau[11] Amenitiesandservices Mixed DataofAirbnblistinginformationform Rentalrules 33cities Onlinereviewratings Though few studies have been conducted on Airbnb listings prices, a series of studies have exploredthepricedeterminantsofhotels. Servalimportantfactorsaffectingthehotelroompricehave beenidentifiedsuchaslocation[6,7],hotelcategory[32,33],customerratings[34,35],hotelamenities andservices[36,37],marketaccessibility[38],andproximityofcompetitors[33]. Previousempirical studiesoftenemployedaglobalregressionmodel,consideringonlytherelationshipbetweenhotel roompriceandexplanatoryvariablesonagloballevel. GWRhasbeenwidelyusedinmanyfields, andhasproventobeausefultooltocapturethespatialvariationsinrelations[7,39,40]. Insummary,thereareonlyafewstudiesonpricedeterminantsofAirbnblistings,whichneed to be extended. The purpose of this study is to identify the factors affecting Airbnb listing prices. ConsideringthattherelationshipbetweenAirbnblistingpricesandtheirfactorscanvaryfromlocation tolocation,theGWRmethodisselectedtoinvestigatethefactorsaffectingAirbnblistingpriceslocally ratherthanglobally. Sustainability 2017, 9, 1635 4 of 13 3. Data and Method 3.1. Study Area and Data In this paper, Metro Nashville (Davidson County), Tennessee, was chosen as the study site. The government of the City of Nashville and Davidson County merged in 1963. The county and city government is known as the “Metropolitan Government of Nashville and Davidson County”, or “Metro Nashville” for short. Metro Nashville was divided into 35 districts under the legislative authority of the Metropolitan Government of Nashville and Davidson County, Metropolitan Council. The shape format layer data of Metro Nashville, including road networks, council districts, and boundaries, were obtained from the U.S. Census Bureau, and the Planning Department of Metropolitan, Government of Nashville, and Davidson County. SustainTahbieli tyd2a0t1a7 ,o9f, 1A63i5rbnb listings for Metro Nashville were collected and analyzed. The data 4woefr1e3 obtained from the website [4], which provides Airbnb listing information drawn from Airbnb.com. Considering that some Airbnb listings did not have any transactions or were just listed but not well 3. DataandMethod managed, we selected the listings with a super host status, namely, experienced hosts who are passionate about making guests’ trips memorable. Finally, 974 samples of Airbnb listings from Metro 3.1. StudyAreaandData Nashville were retrieved. Figure 1 shows the spatial distribution of Airbnb listings in Metro NashIvniltlhe,i sanpda paes rs,hMowetnro, thNea Ashirvbilnleb l(iDstainvgidss aorne mCoauinnltyy i)n, Ttheen nceenssterael, awreaas. chosen as the study site. The gToavbeler n2m deenpticotsf tthhee vCairtiyabolfesN saeslhecvtieldle aasn pdosDsaibvlied psorendCicotournst oyf mAeirrbgnebd liinsti1n9g6 3p.riTcehse bcaosuedn toyna tnhde rceitvyiegwo voefr nlimtereanttuirse kanboowven. aLsotchaetio“nM iest rao pcoomlitmanonGlyo vaecrcnempteendt foafctNora sphrvoivlleena tnod aDffaecvti dAsiornbnCbo luisnttiyn”g, porri“cMes.e LtroocNataioshnv ciallne ”bef orrepsrheosretn.tMede atrso dNisatasnhcvei lflreowma tshde icvitidy ecdenitnetro, h3i5gdhwistaryicst, sour nlodcearl athtteralectgiiosnlast [i7v]e. Sauintcheo rMityetorof tNheasMhevtirlolep oisl intaont Ga ohvuegrne mcietnyt aonfdN tahseh vmilalejoarn adttDraacvtiidonsosn aCreo uinn ttyh,eM deotrwonptoolwitann aCroeau,n Hcil-. TDhisetasnhcaep aenfdo rCm-Datisltaaynecre dwaetrae oafdMopetterdo tNo ainshvvesiltlieg,aitne ctlhued einffgecrto oafd lonceattwioonr kosn, Acoirubnncbi llidstiisntrgi cptsr,icaen idn tbhoius nsdtuadriye.s R,weveireewosb taaninde rdatfirnogms athree aUls.So. iCmepnsourtsaBnut rfeaacuto,rasn idn tAhierbPnlabn lnisintigngD pepriacretsm. Benottho fhMigehteror praotliintagns, aGnodv emrnorme ennutmoferNoaussh rveivlliee,wasn cdaDn alevaidd stoon a Choiguhnetry .price [10,31]. Thus, the number of reviews (Reviews) and tThhee rdataitnagso f(RAaitribnngbs)l iosft iAngirsbfnobr lMisteitnrgosN aaresh cvaitlelegowriezreedc oasll eecxtpeldanaantdorayn valayrziaebdl.esT ihne tdhaist astwuderye. “oAbtgaein” ecdanf rpoamrtltyh eacwcoeubnsitt efo[r4 h],owtehl ipcrhicpinrogv bideheasvAioirrb [n6b]. Ilins ttihnigs sintufodrym, tahteio “nAdgrea”w vnarfiraobmle,A niarmbnebly.c, othme. dCuornastiidoenr ionfg titmhaet ssinocmee thAei rlbisntibngli swtiansg sesdtaidblinsohtedh,a wveasa nseyletcrtaends aacst iao nfascotorr wafefreectjiunsgt Alisirtebdnbb ulisttninogt wpreicllesm. aGnivagened t,hawt eAsierblencbte ids ath neewlisltyin fgosunwdiethd caosmuppaenryh, otshte smtaotunsth, nisa mdeesliyr,aebxlep earsi ethnec eudniht oosft sagwe htoo bareettepra psesirocneiavtee tahbeo inuftlumenakcein ogf agguee ostns ’prtircipe.s Fmineamllyo, rtahbel ed.epFeinndaelnlyt, v9a7r4iabsalem (Pprleicse)o ufsAedir ibnn tbhilsi ssttiundgys ifsr olimst Mpreictreos, Nwahsihcvhi lmleawy ebree ar seutriiteavbeled .suFbisgtiuturete1 dsuheo two slatchke osfp aactciaeslsd tios ttrhibeu atcitounalo tfraAnisrabcntbionli sptirnicges. MineManewtrohiNlea, sthhve ivllaer,iaanbdle apsrsicheo iws nth,eth reatAioir obfn lbisltiesdti npgrsicaer peemr aniinglhyt ionvtehre thceen mtraaxliamreuam. guests. Figure1.SpatialdistributionofAirbnblistingsinMetroNashville. Figure 1. Spatial distribution of Airbnb listings in Metro Nashville. Table2depictsthevariablesselectedaspossiblepredictorsofAirbnblistingpricesbasedonthe reviewofliteratureabove. LocationisacommonlyacceptedfactorproventoaffectAirbnblisting prices. Locationcanberepresentedasdistancefromthecitycenter,highways,orlocalattractions[7]. SinceMetroNashvilleisnotahugecityandthemajorattractionsareinthedowntownarea,H-Distance andC-DistancewereadoptedtoinvestigatetheeffectoflocationonAirbnblistingpriceinthisstudy. ReviewsandratingsarealsoimportantfactorsinAirbnblistingprices. Bothhigherratingsandmore numerousreviewscanleadtoahigherprice[10,31]. Thus,thenumberofreviews(Reviews)andthe ratings(Ratings)ofAirbnblistingsarecategorizedasexplanatoryvariablesinthisstudy. “Age”can partlyaccountforhotelpricingbehavior[6]. Inthisstudy,the“Age”variable,namely,thedurationof timesincethelistingwasestablished,wasselectedasafactoraffectingAirbnblistingprices. Given thatAirbnbisanewlyfoundedcompany,themonthisdesirableastheunitofagetobetterperceive Sustainability2017,9,1635 5of13 theinfluenceofageonprice. Finally,thedependentvariable(Price)usedinthisstudyislistprices, whichmaybeasuitablesubstituteduetolackofaccesstotheactualtransactionprice. Meanwhile, thevariablepriceistheratiooflistedpricepernightoverthemaximumguests. Table2.Variablesandbriefdescriptions. Variable Description Price Theratiooflistedpricepernightoverthemaximumguests(U.S.dollars). Reviews NumberofreviewsofAirbnblistings. H-Distance TheEuclideandistancetonearesthighway(km). C-Distance TheEuclideandistancetotheNashvilleConventionCenter(km). Age Monthssincethelistingwasestablished. Rating TheoverallratingscoreofAirbnblistings. 3.2. GeneralLinearModel(GLM) InaGLMmodel,thedependentvariableisestimatedwithasetofdependentvariablesglobally. Themodelspecificationisexpressedas: p ∑ y = β + β X +ε (1) i 0 k ik i k=1 where y denotes the ith observation of dependent variable, β = (β , β , β , ...... β ) are the i 0 1 2 m coefficientsofthepredictorsestimatedinthemodel,andε istherandomerror. i 3.3. GeographicallyWeightedRegression(GWR) IntheGWRmodel,thedependentvariableispredictedbyaseriesofexplanatoryvariablesin whichtheestimatedparameterscanvaryspatially. ThebasicGWRmodelisshownbelow[40]. m ∑ y = β (u,v )+ β (u,v )X + ε (2) i 0 i i k i i ik i k=1 wherey denotesthedependentvariableatlocationi,X denotesthevalueofkthexplanatoryvariable i ik atlocationi, and β = (β , β , β , ...... β )arethecoefficientsofthepredictorsestimatedinthe 0 1 2 m model. (u,v )denotesthecoordinatesoflocationi,andε istherandomerroratlocationi. i i i Theβatlocationiisestimatedusingweightedleastsquare,andcanbeexpressedas: (cid:104) (cid:105)−1 βˆ(i) = XTW X XTW Y (3) (i) (i) whereW denotesannbyndiagonalspatialweightedmatrix. Xdenotestheexplanatoryvariables (i) datamatrix. Ydenotesthevectorofdependentvariable. Wi1 0 ··· 0 1 x11 ··· xm1 y1 0 Wi2 ··· 0 1 x12 ··· xm2 y2 W(i) = ... ... ... ... X= ... ... ... ... Y= ... (4) 0 0 ··· Win 1 x1n ... xmn yn ForspatialweightedmatrixW ,severalmethodsarecompiled. TheGaussianandbi-square (i) functionsarecommonlyadoptedtocalculatetheweightedmatrix. Inthisstudy,theGaussianfunction isemployed,whichcanbeexpressedas: (cid:32) (cid:18)d (cid:19)2(cid:33) ij W(i) =exp −0.5 (5) j b Sustainability2017,9,1635 6of13 where d denotes the distance between location i and observed point j, b denotes the distance ij bandwidth. Agivendistanceorafixednumberofneighborhoodscanbeusedtodefinethebandwidth. TheselectionofoptimalbandwidthcanbedeterminedbyselectingthemodelwithlowestAkaike InformationCriterion(AIC)score;themodelwiththelowestAICistheoptimalmodel[39]. 4. Results 4.1. GLMEstimation Thispaperinvestigatedtherelationshipsbetweenthedependentvariable(Airbnblistingprice) andtheindependentvariables(Reviews,Age,H-Distance,C-Distance,Ratings)usingtheGLM.Note thatthisstudydidnotfocusoncomparingtheAirbnblistingswiththetypesoflistingpropertiessuch asawholehouse,asharedroom,orasingleroom. Logically,thepriceofalistedwholehouseisalways higherthanalistedsharedroomduetoitshighercapacityformorecustomers. Therefore,priceper maximumnumberofguestswasutilizedasadependentvariableinthisstudy.Variousfactorsaffecting theAirbnblistingpricehavebeenexploredandidentifiedintheliterature. Inthisstudy,wefocusedon exploringspatialfactorsandexaminingrelationshipsbetweenidentifiedspatialfactors(forexample, distancerelated)andprice. TheattributesofanAirbnbpropertyaffectlistingpriceandaretreated asdummyvariablesthatcanbeeasilymodelledwithinalinearregressionmodel,butthosedummy variablesmaynotbesuitableforinclusioninaGWRmodelduetopotentialmulticollinearityissues. InaGWRmodel,weanalyzedtherelationshipbetweenpriceandlocationofeachAirbnblisting. The price attribute of a specific Airbnb listing is treated as a dependent variable, not by using the averagepriceofthosedistricts. The35districtsinMetroNashvillearenotcompletelyrelatedtothe GWRmodellingprocedures;therefore,certaindistrictswereincludedselectivelyinthisstudy. The resultsconcludedthattherelationshipbetweenpriceandratingisstatisticallysignificantindistricts5, 6,and19,whilethereisnosignificantrelationshipbetweenthespatialfactorandAirbnblistingsin otherincludeddistricts. TheAirbnbconceptisstillatanearlystageinTennessee. Airbnb’slistings inthestudiedcitypresentastrategybyofferingacomparativelylowerpricetoenticecustomersas oneofAirbnb’sbusinessstrategiestopromoteitsservicesintheregion. ItisplausiblethatAirbnbin Nashvilleisreceivinganaverageoraboveaverageratingduetoacomparativelowpriceofferedinthe market,whichisappreciatedbythemajorityofcustomerswhostayedovernightinthatstudiedregion. Table 3 shows the estimated results modeled by GLM. The Reviews and C-Distance are significantlycorrelatedwithAirbnblistingprices,andthesetwovariablesaffectedAirbnblistingprices negatively. Forexample,thecoefficientofReviewsis−0.051,whichmeansoneunitincreaseinthe numberofreviewscanleadto5.1%decreaseinAirbnblistingprice. Also,thecoefficientofC-Distance is −1.524, which means one unit increase in the distance to a convention center will decrease the Airbnblistingpriceby152.4%. ThecoefficientofRatingis−0.073,andoneunitincreaseinRatingcan decreasetheAirbnblistingpriceby7.3%. Insummary,thenumberofreviews,thereviewscores,and thedistancetoconventioncenterarenegativelyrelatedtotheAirbnblistingprice,andtheinfluenceof thedistancetotheconventioncenteronpriceisthebiggest. However,theAirbnbestablisheddateand thedistancetothenearesthighwaydonotsignificantaffecttheAirbnblistingprice. Table3.Summaryofestimationresultsofthegenerallinearmodel(GLM). Variable Coefficient StandardError t-Value p-Value 95%ConfidenceLimits Intercept 56.32561** 3.78106 14.90 <0.0001 48.90558 63.74563 H-Distance −0.36897 0.45514 −0.81 0.4178 −1.26215 0.52421 C-Distance −1.52435** 0.17030 −8.95 <0.0001 −1.85855 −1.19016 Reviews −0.05080** 0.01303 −3.90 0.0001 −0.07637 −0.02524 Age 0.02233 0.03803 0.59 0.5572 −0.05229 0.09695 Rating −0.07317* 0.03662 −2.00 0.0460 −0.14502 −0.00131 Notes:**=p<0.01;*=p<0.05 . Sustainability 2017, 9, 1635 7 of 13 Sustainability2017,9,1635 7of13 4.2. GWR Estimation 4.2. GWREstimation Summaries of parameter estimates in the GWR are shown in Table 4. The dataset used here is the sSaumme masa rwieitsho tfhpea GraLmMe.t eCroensstiimdeartiensgi nthteh learGgWe sRamarpelesh soizwen, siinx Tdaebslceri4p.tiTvhee pdaaratamseetteursse edsthimeraeteiss twheersea smuemamsawriizthedth ine tGhLe Mtab.Cleo, wnshidicehr ianrge tthhee mlaergane,s maminpimleusmiz,e l,oswixedr eqsucarriptitleiv, empeadriaamn, eutperpseer sqtuimarattieles, wanedre msuamximmaurmiz evdaliunetsh. eTtaabbllee 4,w shhoicwhsa trheatth tehme eesatnim,matiendim puamra,mloewteerr cqouefafritciileen,tms evdairayn s,iugpnpifeicraqnutalyr.t ile, andmaximumvalues. Table4showsthattheestimatedparametercoefficientsvarysignificantly. Table 4. Estimated geographically weighted regression (GWR) coefficients. Table4.Estimatedgeographicallyweightedregression(GWR)coefficients. Variable Mean Min First Quartile Median Third Quartile Max Intercept 59.794 26.863 47.879 57.155 71.177 96.336 Variable Mean Min FirstQuartile Median ThirdQuartile Max Reviews −0.063 −0.184 −0.128 −0.016 −0.003 0.021 IRntaetrincegp t −509..079964 −206..384653 −407..186779 −507..015515 7−10.1.07075 960.3.03564 ReAvgieew s −0.00.6046 3 −−00.1.11884 −−00.0.13298 −0.00.1031 6 −00..010638 0.00.23129 Rating −0.096 −0.345 −0.167 −0.051 −0.005 0.054 H-Distance 5.580 −1.079 2.292 4.964 7.425 18.403 Age 0.064 −0.118 −0.039 0.013 0.168 0.329 C-Distance −4.542 −16.479 −7.599 −2.536 −1.487 −0.330 H-Distance 5.580 −1.079 2.292 4.964 7.425 18.403 TCh-De iesftfaenccte of ex−pl4a.5n4a2tory v−a1r6i.a4b7l9es on Ai−rb7n.5b9 9listing pr−ic2e.s5 3a6re shown− in1. 4F8i7gures 2–6−. S0.i3g3n0ificant spatial heterogeneity exists in the explanatory variables across the region, indicating that GWR may be a Tbheetteefrf ecchtooifceex tpol ainnavteosrtyigvaateri atbhlee skoeyn Afaicrtbonrbs laisffteincgtinpgr ictehse aAreirsbhnobw lnisitninFgi gpurriecses2 –i6n.-dSeigpnthifi. cTahnet sdpiasttaianlchee tteor othgee nceointyveenxitsiotsni ncetnheteerx apnladn tahtoer nyuvmarbiaebr leosf arcervoiseswtsh earree gnioeng,aitnivdeilcya trinelgattehda ttGo WthRe mAairybbneb alisbteinttge rpcrhicoei,c ewthoilien vtheest digiasttaentchee tkoe tyhfea ncteoarrseastf fhecigtihnwgathy,e tAheir rbenvbielwist irnagtinpgrisc, easnidn -tdheep atghe. Tohf ethdei slitsatninceg tcoanth beec eointhveern tpioonsitcievnetleyr oarn ndetghaetinvuelmy bceorrroeflaretevdie wwistha rAeinrbegnabt ilvisetliyngre plarticeeds.t otheAirbnblistingprice, whileInth Feigduisrtea n2,c esitgontihfiecanneta nreesgtahtiivgeh wcoaryr,etlahteiornevs ibeewtwraeteinn gths,ea dnidsttahnecea gtoe othfet hceonlivsteinntgiocna ncebneteeri tahnedr pAoisribtinvbe llyistoirngn epgraitciev eelxyiscto irnr emlaotsetd owf aitlhl rAegiribonnbs leixsctienpgt pforric tehse. small west central area (districts 18,24) in MIentrFoi gNuarseh2v,isllieg.n Iitfi icsa unntdneergsattainvdeacbolrer etlhaattio tnhse bdeotwwneetonwthne adreisat aonfcfeertso mthuechco mnvoeren tcioonnvceenniteenrcaen idn Aacircbenssbinligs ttirnagnspproicretaetxioisnt, ianttmraocstitoonfsa, lalnrdeg einotnesrteaxincempetnfot rfatchielitsimesa, lrlewsuelsttincge nintr aa lhairgehae(rd loisdtrgiicntsg 1p8r,i2c4e). iInt cManet rboe Napasphliveidll eto. Itthies uAnirdbenrbst alinstdinabgl eprthicaet, tshpeecdiofiwcanlltyo,w thnea rceloasoerff ethrse mlisutcinhgm iso rteo ctohne vceonnivenencetioinn accecnetsesri,n tghetr haingshpeorr ittast ipornic,ea.t tTrahcet icoonesf,fiacniedntesn itlelrutsatirnamtee an tdfeaccrieliatsieinsg,r terseunldti nwghiinlea thheigrhe eisr laond ignicnrgeapsrei cien. Itthcea dnisbteanacpep flrieodmt othteh elisAteidrb unnbitlsis ttion gthpe rcicoen,vsepnetcioifinc acellnyt,etrh, ewchloicshe rinthdeiclaistetisn tghaist ttohet hAeircbonnbv elnisttiionng cpernicteer ,ist hmeohrieg hseenrsititsivper itcoe .tTheh edcisoteafnficcei efnrotsmil ltuhset rcaotnevaedneticornea cseinngtetrr einn dthwe hcielnettrhael raeriesaa tnhainnc rinea ostehienr tahreeadsi.s tancefromthelistedunitstotheconventioncenter,whichindicatesthattheAirbnblistingprice ismoresensitivetothedistancefromtheconventioncenterinthecentralareathaninotherareas. Figure2.Spatialdistributionofestimatedcoefficientsandtvaluesofthedistancetoconventioncenter. Figure 2. Spatial distribution of estimated coefficients and t values of the distance to convention center. FFiigguurree 33 sshhoowwss tthhee eeffffeeccttss ooff tthhee ddiissttaannccee ttoo tthhee nneeaarreesstt hhiigghhwwaayy oonn AAiirrbbnnbb lliissttiinngg pprriicceess.. TThhee cceennttrraall MMeettrroo NNaasshhvviillllee ((ddiissttrriiccttss 55,,66,,1188,,1199)) sshhoowwss aa ssiiggnniifificcaanntt eeffffeecctt.. TThhee ddiissttaannccee iiss ppoossiittiivveellyy aaffffeeccttiinngg tthhee pprriiccee;; tthhee ffaarrtthheerr tthhee ddiissttaannccee ttoo tthhee nneeaarreesstt hhiigghhwwaayy,, tthhee hhiigghheerr tthhee pprriiccee.. TThhee iinntteerrssttaattee highways are away from the Nashville downtown, which means the listings away from the highway Sustainability 2017, 9, 1635 8 of 13 Sustainability 2017, 9, 1635 8 of 13 Saurset aicnlaobsileitry 2t0o1 7d,o9,w16n3t5own in central Metro Nashville. Thus, it seems logical that the closer it 8iosf t1o3 downtown, the higher the Airbnb price will be listed. are closer to downtown in central Metro Nashville. Thus, it seems logical that the closer it is to In Figure 4, it clearly shows that the effects of the established date of a listing on Airbnb listing hdiogwhwntaoywsna,r ethaew haigyhferor mtheth AeiNrbansbh vpirlileced wowilln btoew lisnt,ewd.h ichmeansthelistingsawayfromthehighway prices are significant mainly in southern Metro Nashville (districts 16–18,25–27,30), and the effect on are clIons Ferigtuored 4o,w itn ctolewarnlyi nshcoewntsr athlaMt tehtreo efNfeacsths voifl lteh.e Tehstuasb,liisthseede mdastelo ogfi caa llistthinatg tohne Acliorbsenrb iltisistintog price is positive, indicating that the earlier the Airbnb listing is established, the higher the Airbnb dporiwcenst oawren s,igthneifhiciagnhte mrtahienlAyi irnb nsbouptrhiecernw Millebtreo lNistaesdh.ville (districts 16–18,25–27,30), and the effect on listing price. It seems that the older Airbnb listings tend to charge more partly because the lodging priceI nisF pigousirteiv4e,, itincdleicaarltyinsgh othwast tthhea tetahrelieefrf ethctes Aofirtbhnebe slitsatbinligsh ies desdtaatbeliosfhaedli,s tthineg hoignhAerir tbhneb Aliisrtbinngb places that have been listed through Airbnb with a longer period are more experienced, and those plirsitcinesg aprericseig. nIti fisceaenmtsm thaiant lythien osloduetrh AerinrbMnbe tlriostNinagssh tveinllde t(od icshtraicrgtse 1m6–o1r8e, 2p5a–r2tl7y,3 b0e),caaundset htheee lfofedcgtionng hosts are aware of why their guests are more likely to trust previous experiences in terms of safety pprlaicceesis thpaots ihtiavvee, binedenic alitsitnegd tthhartotuhgehe Aarilribenrbth weiAthi rab nlobnlgisetri npgeriisoeds taarbe lmishoerde ,etxhpeerhiiegnhceerdt, haenAd itrhbonsbe and service quality. lhisotsitnsg aprer iacew.aIrtes eoefm wshtyh athtethire gouldesetrs Aarireb mnborleis ltiikneglsy tteon dtrutostc phraervgieomuso erxeppearrietlnycbese cianu tseermthse olof dsagfientgy panladc essertvhiacteh qauvaelibtye.e nlistedthroughAirbnbwith alongerperiodaremoreexperienced,andthose hostsareawareofwhytheirguestsaremorelikelytotrustpreviousexperiencesintermsofsafetyand servicequality. Figure 3. Spatial distribution of estimated coefficients and t values of the distance to the nearest highway. Figure 3. Spatial distribution of estimated coefficients and t values of the distance to the Fignuearere 3s.t Shpigahtiwala dyi.stribution of estimated coefficients and t values of the distance to the nearest highway. Figure4.Spatialdistributionofestimatedcoefficientsandtvaluesofage. Figure 4. Spatial distribution of estimated coefficients and t values of age. InFigure5a,significantnegativecorrelationsbetweennumberofreviewsandpriceexistprimarily Figure 4. Spatial distribution of estimated coefficients and t values of age. inwestMetroNashville(districts18,20–25,34).Thenegativecorrelationsindicatethatthemorereviews thelistinghas,thelowertheprice,whichisinconsistentwithpreviousstudies[11]. InMetroNashville, gueststendtochooselowerpricelistings,andthenAirbnbhostswouldbemorelikelytolowertheir priceinordertoattractmoreguests. ForMetroNashville,thereviewshavenotproventobecorrelated totheprice. Sustainability 2017, 9, 1635 9 of 13 Sustainability2017,9,1635 9of13 (a) (a) Figure5.SpatialdistributionofestimatedcoefficientsandtvaluesofReviews(a)andRating(b). Figure 5. Spatial distribution of estimated coefficients and t values of Reviews (a) and Rating (b). InFo FriFgiugruer e55ab, ,ssiiggnniiffiiccaanntt nneeggaattiivvee ccoorrrreellaattiioonnss bbeetwtweeeennr envuiemwbreart ionfg rsecvoireewssa nadndA irpbrnicbe liesxtiinstg pprrimiceareilxyi sitn pwreimsta Mrileytroin Naasshmvailllle c(ednistrtrailctasr 1e8a,2o0f–2M5e,3t4ro). TNhaes hnveiglaletiv(de icsotrrircetlsat5i,o6n,1s9 i)n.diTchatee ntheagta tthivee mcoorrree lraetvioienwsss uthgeg elisstttihnagt hthase, hthigeh leorwtheer trhaeti npgriscceo, rwe,htihche liosw inecrotnhseisptreincet ,wwithhi cphriesviinocuosn sstiustdeinets w[1i1th]. tIhne Mpreetrvoio Nusasshtuvdillye,[ 1g0u,3e1st]s. Ttehnisd mtoa ychboeodseu elotwoethr eprpihcee nliosmtinegnso, nanthda tththene aAvierbrangbe hroastitns gwsoounldA ibreb nmboarree lidkrealmy atoti cloawllyerm thoreeirp porsiicteiv ien tohradnetrh toos aetotrnacott hmeorrpel agtufoesrtms.s F[o1r7 ]M. Ientrtoe rNmassohfvliollwe,e trhpe rriecveiceowrrse hlaatveed ntoota phriogvheenr tsoa tbisef accotriroenlartaetdin tgo, twhee pspriecceu. latethatitispartlybecauseguestsmighthavelowerexpectations ofanFoAr iFrbignubreli s5tbin, sgigwniitfhicaanlot wnepgaritcive;e tchoernretlhaetiyoncas nbebteweeaesnil yresvaietiwsfi readtianngd scaorreems aonrde lAikierblynbto ligsitvinega phriigceh reaxtiisntg p. Crimurarreinlytl yi,ns aat issfmacatlilo ncernattrinalg aoruetac oomf eMshetarvoe Nnoatsbheveilnler e(fldeiscttreidctisn 5t,h6e,1p9r).i cTehine tnheisgsattuivdey , caosrrtehleatoiountcso smuegsgoesftp trheavti othues shtiugdhieers ’thfien draintignsg tshcaotrhei, gthheer lpowriceer rtehseu pltrsicine, hwighhicehr sias tiinsfcaocntisoisnternatti nwgisth. the previous study [10,31]. This may be due to the phenomenon that the average ratings on Airbnb are dramatically more positive than those on other platforms [17]. In terms of lower price correlated to a higher satisfaction rating, we speculate that it is partly because guests might have lower Sustainability 2017, 9, 1635 10 of 13 expectations of an Airbnb listing with a low price; then they can be easily satisfied and are more likely Sustainability2017,9,1635 10of13 to give a high rating. Currently, satisfaction rating outcomes have not been reflected in the price in this study, as the outcomes of previous studies’ findings that higher price results in higher satisfaction ratings. 4.3. ComparisonbetweenGWRModelandGLM 4.3. TChoemcpoamrispoanr biseotwnebeent wGWeeRn Mtheodeesl taimnda GteLdMre sultsoftheGWRmodelandtheGLMwasconducted. Intheglobalmodel,somefactorsdidnotshowanysignificanteffectsonAirbnblistingprices,butdid The comparison between the estimated results of the GWR model and the GLM was conducted. significantlyrelatetothepriceinsomespecifiedareainGWRmodel,whichindicatesthattheGWR In the global model, some factors did not show any significant effects on Airbnb listing prices, but modelcanachievebetterperformance. did significantly relate to the price in some specified area in GWR model, which indicates that the Table 5 shows the comparison of the performance of the GWR model and the GLM. R2 and GWR model can achieve better performance. adjustedR2obtainedusingGWRweremuchhigherthanthatusingtheGLM;also,theAICrelatedto Table 5 shows the comparison of the performance of the GWR model and the GLM. R2 and theGWRmodelwerealsolower. TheseallsuggestconsiderableimprovementusingtheGWRmodel adjusted R2 obtained using GWR were much higher than that using the GLM; also, the AIC related comparedwiththeGLM. to the GWR model were also lower. These all suggest considerable improvement using the GWR Figure6showsthespatialvariationofthemodel’sexplanatorypower(LocalR2)producedby model compared with the GLM. GWRmodel. R2variedfrom0.086to0.376acrosstheregions,andthebiggerR2areprimarilylocated incentFriagluarned 6n sohrothwesrn thMe estproatNiaal svhavriilalet.ioInt sohfo tuhled mbeondoetle’sd etxhpatlaanltahtoouryg hpothweeorv (eLroacllaRl 2Rw2) apsriomdpurcoevde bdy bGyWtheR GmWodReml. oRd2 evla,rtiheedr efraormes 0ti.l0l8s6o mtoe 0l.o37ca6l aRc2rolossw tehret rheagnio0n.1s2, ,awndh itchhes bhiogugledr bRe2 eaxrep lporriemdatroiliym lporcoavteed in central and northern Metro Nashville. It should be noted that although the overall R2 was itsexplanatorypower. improved by the GWR model, there are still some local R2 lower than 0.12, which should be explored to improve its explanatory power. Table5.ThecomparisonoftheperformanceoftheGWRmodelandtheGLM Table 5. The comparison of the performance of the GWR model and the GLM Performance GLMModel GWRModel PerformancRe 2 GLM0 .M12odel 0.3G0WR Model AdjustedR2 0.11 0.25 R2 0.12 0.30 AIC 8482.355540 8351.141298 Adjusted R2 0.11 0.25 Numberofparameters 6 6 ResAidIuCa lssumofsquares 384408,328.325.5545843024 272,217.9863051172.141298 Number of parameters 6 6 Residuals sum of squares 340,382.548324 272,217.960172 Figure6.Spatialdistributionofthepowerofexplanatoryvariables(LocalR2). Figure 6. Spatial distribution of the power of explanatory variables (Local R2).
Description: