ebook img

Keplerian solutions PDF

236 Pages·2008·6.044 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Keplerian solutions

F O O R P To Liping,Jia,Yuxi,PanDandYan E T C E R R O C N U F O O R P D E T C E R R O C N U Preface F O O R P Thepurposeofthisreferenceandhandbookistodescribea ndtoderivetheanalytic solutionsoftheequationsofsatellitemotionperturbedbyDextraterrestrialandgeopo- tentialdisturbancesofthesecondorder.Theequationsofsatellitemotionperturbed by extraterrestrial disturbances are solved by means of discretization and approx- E imated potential function as well as Gaussian equations. The equations perturbed bygeopotentialdisturbancesaresolvedbysymbolicmathematicaloperations.The traditionalproblemofsingularityinthesolutionsTissolvedbyso-calledsingularity- freeorbittheory.Simplifieddisturbedequationsofmotionareproposedtosimplify the solutions. Applications of the theory forCanalytic orbit determination are also discussed.Indeed,thisisthefirstbooksincethesatelliteera,whichdescribessys- tematicallytheorbittheorywithanalyticalsolutions,withrespecttoallofextrater- E restrialandgeopotentialdisturbancesofthesecondorder,andthesolutionsarefree ofsingularity.Basedonsuchatheory,thealgorithmsoforbitdeterminationcanbe renewed;deeperinsightintothephysicRsofdisturbancesbecomespossible;theway toavarietyofnewapplicationsandrefinementsisopened. My primary knowledge of the orbit theory came from my education of mathe- R maticswhilestudyingphysicsandtheoreticalmechanics(1981).Myfirstpractical experience with orbit came from the research activity at the Technical University (TU) Berlin on orbit correctioOns of the satellite altimetry data (1988–1992). The extensiveexperienceonorbitcamefromtheGPS/Galileosoftwaredevelopmentfor orbitdeterminationandgeopotentialmappingattheGFZ(2001–2004). Thetradi- C tional adjustment model of the solar radiation used in numerical orbit determina- tionisinvestigatedandconsiderednotreasonablephysically;andanewadjustment modelisproposedintNheusermanualoftheMulti-FunctionalGPS/Galileosoftware (MFGsoft)(Xu,2004),whichisalsoreportedinthe2ndeditionofthebookGPS– Theory, Algorithms and Applications (Xu, 2007). Indeed, one of the ways to ob- U tainthesolutionsoftheextraterrestrialdisturbancesofthesatellitemotionisfound during that investigation. However, it has not been realised until two scientists, Dr.XiaochunLuandDr.XiaohuiLioftheNationalTimeServiceCenter(NTSC) inXi’an,cametovisitandtocooperatewithmeatGFZ.Wediscussedthevirtual navigationsystemandtriedtosolvethestabilityproblemofthe3-Dpositioningof vii viii Preface tem.Byconsideringwhatissignificantintheoryand,whatismoreimportantthan ournumericalstudy,theideaofsolvingthedisturbedequationsofmotionwasob- tained,andthesolutionsoftheextraterrestrialdisturbancesoftheequationofsFatel- litemotionwerefound.Becauseoftheimportanceofthegeopotentialdisturbances, greateffortswerethenmadetoderivetherelatedsolutions.Thereafter,altOernative solutions of the extraterrestrial disturbances were found by using different means (besidesthediscretization,alsoapproximatedpotentialfunctionandGaussiandis- O turbedequations).Tosimplifythesolutions,thesimplifieddisturbedequationswere proposed. Tosolvetheproblem ofsingularity,thesingularity-freetheorywasalso developed. R Afterpublishingmybook,GPS–Theory,AlgorithmsandApplications,in2003, Ididnotwanttoeverwriteanotherscientificbookbecausethisprocesstookmore thantwoyearsextremehardwork.However,ImustfinishthisPbookbecausesome of the scientists have contributed their lifetime to the theoretical solutions of the geopotential disturbances of the equation of satellite mot ion and now the results are here. The solutions of the extraterrestrial disturbancDes of the orbit motion are of extreme importance for practice, but they are rarely investigated because they arehighlycomplex.Fromthetheory,aspecialconfusionrelatedtothesolarradia- E tionfromthepurenumericalorbitdeterminationhasbeencleared.Manyinteresting applicationswillfollowsoon.Tomaketheprocessofwritingeasy,asmallportion ofthebasiccontentsofmyGPSbookispartlymoTdifiedandimportedorrearranged andused. The book includes ten chapters. After a bCrief introduction, the coordinate and timesystemsaredescribedinthesecondchapter.Thethirdchapterisdedicatedto the Keplerian satellite orbits – the orbits of the satellite under the attraction of the E centralforceoftheEarth. Thefourthchapter dealswithperturbationsoftheorbit.Perturbedequations of satellitemotionarederived.PerturbatioRnforcesofthesatellitemotionarediscussed indetail,includingtheperturbationsoftheEarth’sgravitationalfield,Earthtideand oceantide,thesun,themoonandplanets,solarradiationpressure,andatmospheric R drag,aswellascoordinateperturbation. The fifth chapter covers the analytic solution ofC¯ perturbation, including the 20 completeformulasofthelongOterm,andlongandshortperiodicterms.Thederiva- tionalsogivesthealgorithmandmodeloftheorbitcorrection.Thesolutionsofother geopotentialdisturbancesofhigherorderanddegreearedescribedinthesixthchap- C ter.Asexamples,solutionsofdisturbancesofC ,D andD aregiven.General 30 21 22 solutionsofdisturbanceofD arederived.Symbolicoperationsoftwareforderiv- lm ingsolutionsofgeopoNtentialdisturbancesofanyorderanddegreesaredesignedand used. The seventh chapter covers the solutions of extraterrestrial disturbances such U as solar radiation pressure, atmospheric drag and the disturbances of the sun, the moonandplanets.Theprincipleandstrategythatleadtothesolutionaredescribed. Thesolutionsarederivedviadiscretizationandapproximatedpotentialfunctionas wellasGaussianperturbedequationsofmotion.Simplifieddisturbedequationsare Preface ix proposedandusedpartly.Theephemerisofthesun,themoonandplanetsaregiven forpracticaluse. The eighth chapter is dedicated to numerical orbit determination, includinFg its principle,thealgebraicsolutionsofthevariationequations,andthenumericalinte- grationandinterpolationalgorithms,aswellastherelatedderivatives. O Theninthchapterdescribestheprincipleofanalyticalorbitdeterminationbased ontheproposednewsolutions.Realtimeabilityandpropertiesoftheanalyticorbit O solutionsarediscussed. The final chapter includes algorithms that lead to singularity-free orbit theory andtheequationsofmotioninnon-inertialframeaswellasdiscussionsconcerning R thefurtherdevelopmentoftheorbittheoryanditsapplicationsaswellascomments onsomeremainingproblems. ThebookhasbeensubjectedtoanindividualreviewofchapPtersandsectionsand ageneralreview.IamgratefultoreviewersProf.MarkusRothacherofGFZ,Prof. DieterLelgemannofTUBerlin,Prof.YuanxiYangoftheIn stituteofSurveyingand Mapping(ISM)inXi’an,Dr.JianfengGuoofInformatioDnEngineeringUniversity (IEU)inZhengzhou,Prof.XuhaiYangofNTSCinXi’an,Dr.JunpingChenofGFZ. AgrammaticalcheckoftechnicalEnglishwritinghasbeenperformedbySpringer E Heidelberg. IwishtosincerelythankProf.MarkusRothacherforhissupportandtrustduring myresearchactivitiesatGFZ.Dr.Ju¨rgenKuscheTisthankedforhisencouragement and help. Dr. Christoph Reigber is thanked for granting me special freedom of re- search. My grateful thanks go to Dr. XiaochCun Lu and Dr. Xiaohui Li of NTSC in Xi’an. Their visit to and cooperation at the GFZ have led to the derivations of thekeycontentsofthisbook.Dr.JiangfengGuoofIEUinZhengzhou followeda E partofmyderivationandcheckedforthecorrectness.VolkerGrundofGFZhelped me greatly by assisting in the application of software tools, which is another key tothesolutionofgeopotentialdisturbaRnces.QianxinWangofGFZhelpedtocheck a part of the formula typing. Dr. Jinghui Liu of the educational department of the ChineseEmbassyinBerlin,Prof.YuanxiYangofISMinXi’an,Prof.HepingSun R of the Institute of Geodesy and Geophysics (IGG) in Wuhan and Prof. Qin Zhang of ChangAn University in Xi’an are thanked for their friendly support during my scientificactivitiesinChina.TOheChineseAcademyofSciencesisthankedforthe OutstandingOverseasChineseScholarsFund,whichsupportedgreatlymanyvalu- ablescientificactivitiesevenoutsideChina. C Duringthiswork,manyvaluablediscussionshavebeenheldwithmanyscientists and friends.My special thanks go to Dr.Luisa Bastos of the Astronomical Obser- vatory of University PNorto, Dr. Rene Forsberg of Danish National Space Center, Prof. Jo¨rg Reinking of Oldenburg University of Applied Sciences, Prof. Jikun Ou andProf.YunbinYuanofIGGinWuhan,Prof.WuChenofHongKongPolytech- U nic University, Prof. Yunzhong Shen of Tongji University in Shanghai, Dr. Yanx- iong Liu of the First Oceanic Institute in Qingdao, Prof. Jiancheng Li of Wuhan University, Prof. Ta-Kang Yeh of the ChingYun University of Taiwan, Dr. Ju¨rgen Neumeyer,Dr.FranzBarthelmes,andDr.SvetozarPetrovicofGFZ,Dr.UweMeyer ofGeoZentrumHannover,Dr.LudgerTimmenofUniversityHannover,Dr.Xiong x Preface Li of Hugro Inc. Houston, Dr. Daniela Morujao of Lisbon University, Prof. Klaus HehlofTechnicalUniversityofAppliedSciencesBerlin,etc. IalsowishtosincerelythankAngelikaSvarovskyandHartmutPflugofGFFZfor their kind help. I am also grateful to Dr. Chris Bendall of Springer Heidelberg for hisvaluableadvice. O MywifeLiping,sonJiaanddaughtersYuxi,PanandYanarethankedfortheir constantsupportandunderstanding,aswellasfortheirhelp. O October2007 GuochangXu R P D E T C E R R O C N U Contents F O O R P 1 Introduction.................................. ................. 1 D 2 CoordinateandTimeSystems ................................... 5 2.1 GeocentricEarth-FixedCoordinateSystems .................... 5 E 2.2 CoordinateSystemTransformations........................... 8 2.3 LocalCoordinateSystem .................................... 9 2.4 Earth-CentredInertialCoordinateSystTem ...................... 11 2.5 IAU2000Framework....................................... 15 2.6 GeocentricEclipticInertialCoordinCateSystem.................. 19 2.7 SatelliteFixedCoordinateSystem............................. 19 2.8 TimeSystems.............................................. 22 E 3 KeplerianOrbits............................................... 25 3.1 KeplerianMotion ........R.................................. 25 3.2 SatelliteMotionintheOrbitalPlane........................... 28 3.3 KeplerianEquation ......................................... 30 R 3.4 StateVectoroftheSatellite .................................. 33 4 PerturbationsontheOrbits ..................................... 37 O 4.1 PerturbedEquationofSatelliteMotion......................... 37 4.1.1 LagrangianPerturbedEquationofSatelliteMotion ........ 38 4.1.2 GaussiaCnPerturbedEquationofSatelliteMotion.......... 40 4.2 PerturbationForcesofSatelliteMotion ........................ 44 4.2.1 PerturbationoftheEarth’sGravitationalField ............ 44 N 4.2.2 PerturbationoftheSunandtheMoonaswellasPlanets.... 48 4.2.3 EarthTideandOceanTidePerturbations ................ 49 4.2.4 USolarRadiationPressure .............................. 53 4.2.5 AtmosphericDrag ................................... 57 4.2.6 AdditionalPerturbations .............................. 60 4.2.7 OrderEstimationsofPerturbations ..................... 62 xi xii Contents 5 SolutionsofC Perturbation.................................... 63 20 5.1 C PerturbedEquationsofMotion............................ 63 20 5.2 SolutionsofC PerturbedOrbit.............................F. 65 20 5.3 PropertiesoftheSolutionsofC Perturbations ................. 78 20 5.4 OrbitCorrection ........................................O... 79 6 SolutionsofGeopotentialPerturbations .......................... 83 6.1 PrincipleoftheDerivations ...........................O....... 83 6.2 SolutionsofC Perturbation................................. 87 30 6.3 SolutionsofD Perturbations................................110 21 R 6.4 SolutionsofD Perturbations................................125 22 6.5 PropertiesoftheSolutionsofGeopotentialPerturbations .........139 6.6 SolutionsofGeopotentialPerturbationsof6×6OrPderandDegrees140 6.7 SolutionsofGeopotentialPerturbationsofl×mOrderandDegrees141 7 SolutionsofExtraterrestrialDisturbances ........................143 D 7.1 KeyNotestotheProblems...................................143 7.2 SolutionsofDisturbanceofSolarRadiationPressure.............144 7.2.1 SolutionsviaGaussianPerturbedEEquations..............146 7.3 SolutionsofDisturbanceofAtmosphericDrag ..................156 7.3.1 SolutionsviaGaussianPerturbedEquations..............157 T 7.4 SolutionsofDisturbanceoftheSun ...........................159 7.4.1 SolutionsviaGaussianPerturbedEquations..............162 C 7.5 SolutionsofDisturbanceoftheMoon .........................162 7.6 SolutionsofDisturbanceofPlanets............................164 7.7 Summary ..................E...............................165 7.8 EphemerisoftheMoon,theSunandPlanets....................165 R 8 NumericalOrbitDetermination .................................171 8.1 PrincipleofGPSPreciseOrbitDetermination...................171 8.1.1 AlgebraicSolutiRonoftheVariationEquation .............173 8.2 NumericalIntegrationandInterpolationAlgorithms..............174 8.2.1 Runge-KuttaAlgorithms ..............................175 O 8.2.2 AdamsAlgorithms...................................179 8.2.3 CowellAlgorithms...................................182 8.2.4 MixedAClgorithmsandDiscussions .....................183 8.2.5 InterpolationAlgorithms ..............................184 8.3 Orbit-RelatedPartialDerivatives..............................186 N 9 AnalyticOrbitDetermination ...................................197 9.1 PrincipleofAnalyticOrbitDetermination ......................197 U 9.2 RealTimeAbility ..........................................199 9.3 PropertiesofAnalyticOrbitDetermination .....................200 Contents xiii 10 Singularity-FreeTheoryandDiscussions .........................203 10.1 Singularity-FreeOrbitTheory ................................203 10.1.1 ProblemofSingularityoftheSolutions.................F.203 10.1.2 DisturbedEquationsintheCaseofCircularOrbit .........204 10.1.3 DisturbedEquationsintheCaseofEquatorialOrbit ....O...204 10.1.4 Disturbed Equations in the Case of Circular andEquatorialOrbit..................................205 O 10.1.5 Singularity-FreeDisturbedEquationsofmotion ..........206 10.1.6 SimplifiedSingularity-FreeDisturbedEquationsofmotion .206 10.2 EquationsofMotioninNon-InertialFrame.....................207 R 10.3 Discussions ...............................................208 Appendix1 P IAU1980TheoryofNutation....................................211 References.........................................................215 D E T C E R R O C N U F O O R P D E T C E R R O C N U

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.