ebook img

Kelvin Probe Force Microscopy PDF

530 Pages·2018·27.578 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kelvin Probe Force Microscopy

Springer Series in Surface Sciences 65 Sascha Sadewasser Editors Thilo Glatzel Kelvin Probe Force Microscopy From Single Charge Detection to Device Characterization Springer Series in Surface Sciences Volume 65 Series editors Roberto Car, Princeton University, Princeton, NJ, USA Gerhard Ertl, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany Hans-Joachim Freund, Fritz-Haber-Institut der Max-Planck-Gesellschaft, Berlin, Germany Hans Lüth, Peter Grünberg Institute, Forschungszentrum Jülich GmbH, Jülich, Germany Mario Agostino Rocca, Dipartimento di Fisica, Università degli Studi di Genova, Genova, Italy This series covers the whole spectrum of surface sciences, including structure and dynamicsofcleanandadsorbate-coveredsurfaces,thinfilms,basicsurfaceeffects, analytical methods and also the physics and chemistry of interfaces. Written by leading researchers in the field, the books are intended primarily for researchers in academia and industry and for graduate students. More information about this series at http://www.springer.com/series/409 Sascha Sadewasser Thilo Glatzel (cid:129) Editors Kelvin Probe Force Microscopy From Single Charge Detection to Device Characterization 123 Editors Sascha Sadewasser Thilo Glatzel International Iberian Department ofPhysics Nanotechnology Laboratory University of Basel Braga Basel Portugal Switzerland ISSN 0931-5195 ISSN 2198-4743 (electronic) SpringerSeries inSurface Sciences ISBN978-3-319-75686-8 ISBN978-3-319-75687-5 (eBook) https://doi.org/10.1007/978-3-319-75687-5 LibraryofCongressControlNumber:2018931494 ©SpringerInternationalPublishingAG2018 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpart of the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation, broadcasting, reproduction on microfilms or in any other physical way, and transmission orinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilar methodologynowknownorhereafterdeveloped. The use of general descriptive names, registered names, trademarks, service marks, etc. in this publicationdoesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfrom therelevantprotectivelawsandregulationsandthereforefreeforgeneraluse. The publisher, the authors and the editors are safe to assume that the advice and information in this book are believed to be true and accurate at the date of publication. Neither the publisher nor the authorsortheeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinor for any errors or omissions that may have been made. The publisher remains neutral with regard to jurisdictionalclaimsinpublishedmapsandinstitutionalaffiliations. Printedonacid-freepaper ThisSpringerimprintispublishedbytheregisteredcompanySpringerInternationalPublishingAG partofSpringerNature Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Foreword AtomicForceMicroscopyAFManditsOff-springs:TheUltimateToolkitsfor Nanoscience and Technology Nature is the best example of a system functioning on the nanometer scale, where the involved materials, energy consumption, and data handling are optimized. The emergence ofAtomic Force Microscopy (AFM)31 years ago inthe then-fledgling field of nanotechnology led to a shift of paradigm in the understanding and per- ception of matter at its most fundamental level. It undoubtedly has opened new avenues in physics, chemistry, biology, and medicine and still is inspiring researchersaroundtheworldtestifiedsofarbymorethan350’000scientificarticles inpeer-reviewedjournals(accordingtothewebofscience).Thehighflexibilityof AFMtoimage,probe,andmanipulatematerialswithunprecedentedresolutionand to be combined with other technologies made it the most powerful and versatile toolkit in nanoscience and technology of today. As a consequence, new revolu- tionary concepts stimulated a number of new technologies. Kelvin probe force microscopy emerged quite early in the history of AFM and showed the enormous potential of the method impacting surface science on the atomic scale to a great extent ever since. The new edition “Kelvin Probe Force Microscopy—FromSingleChargeDetectiontoDeviceCharacterization”givesthe reader an overview of the dramatic developments in the last decade taking the technique into diverse fields of applications and beyond. Basel, Switzerland Christoph Gerber July 2017 v Preface Seven years have passed since the first volume “Kelvin probe force microscopy— Measuring and compensating electrostatic forces” has been published in 2011. It presentedthefirstbookdedicatedsolelytoKelvinprobeforcemicroscopy(KPFM), about 20 years after the invention of KPFM in 1991 by Nonnenmacher et al. The book gave an overview and good starting point for newcomers to the field, providedin-depthdescriptionsoftheunderlyingtechniques,andpresentedavariety of examples for applications. Since then we have seen a strongly increased development of KPFM techniques, an improved understanding of the involved physical principles, and a multitude of new applications in numerous fields. Therefore,wefeelitisagoodtimetosummarizetherecentadvancesintoasecond volume of the book, which is entitled “Kelvin Probe Force Microscopy—From Single Charge Detection to Device Characterization”. The subtitle reflects the remarkable development that KPFM has seen in the recent 5 to 10 years. Several new techniques have been developed providing measurements of the surface potentialthatarefaster,freeofcapacitivecross-talk,andwithbetterresolutionand noiselevel.KPFMinliquidenvironments,improvedtheoreticalunderstanding,and time-resolved KPFM are other major steps that have given new impulses to the field. Another important development is the imaging of electrostatic forces at atomic and intramolecular scale, providing fundamental insights into organic and inorganicmatter.Alltheseadvanceshavepavedthegroundforthecharacterization and the progress of knowledge in material science and device applications. Motivated by these developments and opportunities, KPFM and electrostatic force microscopy (EFM) have received increasing attention in the scientific liter- ature and at scientific conferences and workshops. Large conferences on materials science (e.g., the annual spring and fall meetings of the (European) Materials ResearchSociety)havehostedseveraldedicatedsymposiawhereKPFMandEFM played a significant role. Conferences specialized to certain types of device con- cepts (e.g., solar cells, nanowires, nanoelectronis, etc.) typically have dedicated sessions for scanning probe microscopy where KPFM and EFM have a large impact. In addition, specialized conferences (e.g., the annual nc-AFM conference) vii viii Preface and numerous smaller workshops typically hold sessions devoted to these techniques. In view of these advances and interest in the local characterization of electrical surfacepropertiesbyKPFM,wefeelthatitisagoodtimetoprovideareviewofthe state-of-the-artofthefieldintheformofthepresentbook.Weaimatsummarizing and describing the advances and recent applications in this second volume, again providing a first contact for newcomers into the field and also an overview with in-depth discussions of specific techniques or applications for the specialist. Volume 2 contains 15 completely new chapters and starts with a fully revised chapter giving an introduction to the principles of the technique. The book is structured into four parts, covering “Experimental Methods and Technical Aspects”, “Data Interpretation and Theoretical Aspects”, “Application to Device Characterization”, and “Atomic Scale Experiments”. We could win the leading scientistsandresearcherstocontributetheirexpertiseinthevariouschaptersandwe thank them for their efforts and contributions. We hope that the reader finds the book a useful resource in the daily work, an inspirationtotryoutnewtechniquesandapplications,andtogobeyondthecurrent state-of-the-art in the field of electrostatic and Kelvin probe force microscopy. Braga, Portugal Sascha Sadewasser Basel, Switzerland Thilo Glatzel Contents Part I Experimental Methods and Technical Aspects 1 Experimental Technique and Working Modes . . . . . . . . . . . . . . . . 3 Sascha Sadewasser and Thilo Glatzel 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 Non-contact Atomic Force Microscopy . . . . . . . . . . . . . . . . . . 4 1.3 Electrostatic Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . 8 1.4 Kelvin Probe Force Microscopy. . . . . . . . . . . . . . . . . . . . . . . . 10 1.4.1 AM-KPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.4.2 FM-KPFM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.4.3 Technical Realization . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.4.4 Other Modes and Additional Experimental Options . . . 16 1.5 Additional Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2 Dissipation Modulated Kelvin Probe Force Microscopy Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23 Yoichi Miyahara and Peter Grütter 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 2.2 Theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.1 Review of Theory of Frequency Modulation Atomic Force Microscopy. . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.2.2 Analysis of Electrostatic Force with AC Bias Voltage . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28 2.3 Experimental . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34 2.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 2.4.1 Validation of D-KPFM Theory . . . . . . . . . . . . . . . . . . 35 2.4.2 Illustrative Example of D-KPFM Imaging . . . . . . . . . . 38 2.4.3 Comparison of Different KPFM Techniques. . . . . . . . . 40 2.4.4 Dynamic Response of D-KPFM . . . . . . . . . . . . . . . . . 44 ix x Contents 2.5 Conclusion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 3 Dynamic Modes in Kelvin Probe Force Microscopy: Band Excitation and G-Mode. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49 Stephen Jesse, Liam Collins, Sabine Neumayer, Suhas Somnath and Sergei V. Kalinin 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 3.2 Principles of EFM and KPFM. . . . . . . . . . . . . . . . . . . . . . . . . 51 3.3 Classic KPFM Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.4 Dynamic KPFM Without DC Bias Feedback . . . . . . . . . . . . . . 56 3.5 Band Excitation KPFM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59 3.5.1 Open Loop BE-KPFM . . . . . . . . . . . . . . . . . . . . . . . . 60 3.5.2 Half Harmonic BE-KPFM . . . . . . . . . . . . . . . . . . . . . 63 3.5.3 Photothermal BE-KPFM. . . . . . . . . . . . . . . . . . . . . . . 65 3.5.4 Force Volume BE-KPFM . . . . . . . . . . . . . . . . . . . . . . 67 3.6 Time Resolved KPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 3.7 G-Mode KPFM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 3.7.1 Classical Analysis Approach: Digital Heterodyne Detection. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 3.7.2 Physics Based Analysis: Recovery of Force-Voltage Dependence . . . . . . . . . . . . . . . . . . . 80 3.7.3 Information Based Analysis: Data Mining . . . . . . . . . . 81 3.7.4 General Dynamic Mode . . . . . . . . . . . . . . . . . . . . . . . 82 3.8 KPFM Spectroscopies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 3.8.1 Contact KPFM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 3.9 Outlook . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 4 Practical Aspects of Kelvin Probe Force Microscopy in Liquids . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 Kei Kobayashi and Hirofumi Yamada 4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 4.2 Electric Double Layer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 4.3 Capacitive Force. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105 4.4 Electrostatic Force . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108 4.5 Surface Charge Measurement by Force Mapping . . . . . . . . . . . 112 4.6 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 116 References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117 5 Time-Resolved Electrostatic and Kelvin Probe Force Microscopy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119 Sascha Sadewasser and Nicoleta Nicoara 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.