ebook img

Kelvin-Helmholtz instability in solar atmospheric jets PDF

255 Pages·2021·50.525 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kelvin-Helmholtz instability in solar atmospheric jets

1111992200__99778899881111222233774477__ttpp..iinndddd 11 77//1111//2200 88::5555 AAMM b2530 International Strategic Relations and China’s National Security: World at the Crossroads TTTThhhhiiiissss ppppaaaaggggeeee iiiinnnntttteeeennnnttttiiiioooonnnnaaaallllllllyyyy lllleeeefffftttt bbbbllllaaaannnnkkkk b2530_FM.indd 6 01-Sep-16 11:03:06 AM 1111992200__99778899881111222233774477__ttpp..iinndddd 22 77//1111//2200 88::5555 AAMM Published by World Scientific Publishing Co. Pte. Ltd. 5 Toh Tuck Link, Singapore 596224 USA office: 27 Warren Street, Suite 401-402, Hackensack, NJ 07601 UK office: 57 Shelton Street, Covent Garden, London WC2H 9HE British Library Cataloguing-in-Publication Data A catalogue record for this book is available from the British Library. KELVIN–HELMHOLTZ INSTABILITY IN SOLAR ATMOSPHERIC JETS Copyright © 2021 by World Scientific Publishing Co. Pte. Ltd. All rights reserved. This book, or parts thereof, may not be reproduced in any form or by any means, electronic or mechanical, including photocopying, recording or any information storage and retrieval system now known or to be invented, without written permission from the publisher. For photocopying of material in this volume, please pay a copying fee through the Copyright Clearance Center, Inc., 222 Rosewood Drive, Danvers, MA 01923, USA. In this case permission to photocopy is not required from the publisher. ISBN 978-981-122-374-7 (hardcover) ISBN 978-981-122-375-4 (ebook for institutions) ISBN 978-981-122-376-1 (ebook for individuals) For any available supplementary material, please visit https://www.worldscientific.com/worldscibooks/10.1142/11920#t=suppl Typeset by Stallion Press Email: [email protected] Printed in Singapore CChheerryyll -- 1111992200 -- KKeellvviinn––HHeellmmhhoollttzz IInnssttaabbiilliittyy iinn SSoollaarr AAttmmoosspphheerriicc JJeettss..iinndddd 11 2277//1100//22002200 33::1155::3355 ppmm October27,202018:2 Kelvin–HelmholtzInstabilityinSolarAtmosphericJets-9inx6in b4047-fm pagev Preface ThestudyoftheSunprovidesusanopportunitytounderstandthephysicsofother stars. One of the lively problems in solar physics is heating of the solar corona. Currentlythereisacompetitionbetweentwomechanismsforitsheating,i.e.,dissi- pationofenergybywavesandsmall-scalefrequentcoronalmagneticreconnection. However, some studies indicate this may be a joint effect of these two possible mechanisms. Kelvin–Helmholtzinstability(KHI)ofpropagatingmagnetohydro- dynamicmodesinsolarflowingstructuresisconsideredtoplayanimportantrole inthesolaratmosphere. Itcantriggertheonsetofwaveturbulenceleadingtoan effective plasma heating and particle acceleration. Kelvin–Helmholtz instability is a multifaceted phenomenon and the purpose of this book is to illuminate its (instability)manifestationinvarioussolarjetslikespicules,darkmottles,surges, macrospicules, Extreme Ultraviolet (EUV) and X-ray jets, as well as rotating, tornado-like,jets,solarwind,andcoronalmassejections. ThemodelingofKHI isperformedintheframeworkofidealmagnetohydrodynamics(andalsoinHall magnetohydrodynamics for the solar wind). The book consists of 12 chapters andisintendedprimarilyforadvancedundergraduateandpostgraduatestudents, early carrier researchers. Our one-dimensional approach cannot compete, with respecttocomprehensivenessofjets’topology,withthesophisticated2.5-and3D numerical codes, but nonetheless yields reasonable instability characteristics in goodagreementwithobservations. Moreover,ourapproachhasakeyadvantage: everyplotinthisbookcanberecoveredbythereaderbecause,afterall,theproblem comesdowntofindingthesolutionstothederivedinclosedformwavedispersion relations in complex variables. That task, in general, is not easy one, but never- thelesssolvable. WewouldliketoencouragethereadertomakemodelingofKHI inanyjet-likeeruptionstudiedinthecurrentliterature,orbetter,totakeitsbasic parameters directly from the data set of the Atmospheric Imaging Assembly on v October27,202018:2 Kelvin–HelmholtzInstabilityinSolarAtmosphericJets-9inx6in b4047-fm pagevi vi Kelvin–HelmholtzInstabilityinSolarAtmosphericJets boardSolarDynamicsObservatory(SDO)orfromtheInterfaceRegionImaging Spectrograph(IRIS). Acknowlegdments We will be grateful to readers to notify us of typographical or other errors they find: [email protected][email protected]. We are indebted to Professors Teimuraz Zaqarashvili, Leon Ofman, and AbhishekSrivastavafortheirconstructivecriticismandusefulcommentsduring thepreparationofmanyarticlesonthissubject. WewishalsotothankNASAfor using snapshots of various solar atmospheric events as illustrations in the book, andDr.SnezhanaYordanovaforplottingacoupleoffigures. I.Zhelyazkov,R.Chandra October28,202013:44 Kelvin–HelmholtzInstabilityinSolarAtmosphericJets-9inx6in b4047-fm pagevii Contents Preface v 1. TheSun: GeneralIntroduction 1 1.1 Internalstructure. . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.1 Core . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.1.2 Radiativezone . . . . . . . . . . . . . . . . . . . . . . 4 1.1.3 Convectivezone . . . . . . . . . . . . . . . . . . . . . 4 1.2 Externalstructure . . . . . . . . . . . . . . . . . . . . . . . . . 4 1.2.1 Photosphere . . . . . . . . . . . . . . . . . . . . . . . 5 1.2.2 Chromosphere . . . . . . . . . . . . . . . . . . . . . . 5 1.2.3 Corona . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.3 QuietandactiveSun . . . . . . . . . . . . . . . . . . . . . . . . 8 1.3.1 Prominences/filaments . . . . . . . . . . . . . . . . . . 8 1.3.2 Solarflares . . . . . . . . . . . . . . . . . . . . . . . . 9 1.3.3 Solarjets . . . . . . . . . . . . . . . . . . . . . . . . . 10 1.3.4 Coronalmassejections. . . . . . . . . . . . . . . . . . 11 1.4 Solarcycle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 1.5 Solareruptionmechanisms . . . . . . . . . . . . . . . . . . . . 12 2. SolarJets: Origin,ClassificationandBasicPhysicalParameters 15 2.1 Classification . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 2.2 Basicphysicalparameters . . . . . . . . . . . . . . . . . . . . . 21 3. MagnetohydrodynamicWavesandInstabilities 25 3.1 Magnetohydrodynamicsbasicequations . . . . . . . . . . . . . 25 3.2 Magnetohydrodynamicequilibrium . . . . . . . . . . . . . . . . 30 3.3 Magneticreconnection . . . . . . . . . . . . . . . . . . . . . . 31 vii October27,202018:2 Kelvin–HelmholtzInstabilityinSolarAtmosphericJets-9inx6in b4047-fm pageviii viii Kelvin–HelmholtzInstabilityinSolarAtmosphericJets 3.4 Magnetohydrodynamicwaves . . . . . . . . . . . . . . . . . . . 36 3.4.1 MHDmodesinmagneticfluxtubes . . . . . . . . . . . 41 3.5 Magnetohydrodynamicinstabilities . . . . . . . . . . . . . . . . 44 3.5.1 Rayleigh–Taylorinstability . . . . . . . . . . . . . . . 44 3.5.2 Kelvin–Helmholtzinstability . . . . . . . . . . . . . . 45 3.5.3 Sausageandkinkinstabilities . . . . . . . . . . . . . . 48 4. NormalMagnetohydrodynamicModesinSolarJets 51 4.1 Jetgeometry,basicMHDequations,andwave dispersionrelation . . . . . . . . . . . . . . . . . . . . . . . . . 51 4.1.1 Derivationofwavedispersionrelationonusing theoperatorcoefficienttechniques. . . . . . . . . . . . 57 4.2 Anexampleforfindingunstablesolutionstothewave dispersionrelation . . . . . . . . . . . . . . . . . . . . . . . . . 60 5. Kelvin–HelmholtzInstabilityinSolarSpicules 65 5.1 Geometryandthewavedispersionrelations . . . . . . . . . . . 68 5.1.1 Dispersiondiagramsofkinkwaves . . . . . . . . . . . 71 5.1.2 Dispersiondiagramsofsausagewaves . . . . . . . . . 79 6. Kelvin–HelmholtzInstabilityinSolarPhotospheric TwistedFluxTubes 83 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 6.2 Geometry,thebasicMHDequations,andthewave dispersionrelation . . . . . . . . . . . . . . . . . . . . . . . . . 85 6.3 Numericalsolutionsandwavedispersiondiagrams. . . . . . . . 89 7. Kelvin–HelmholtzInstabilityinSolarSurgesandDarkMottles 99 7.1 Kelvin–Helmholtzinstabilityinsolarsurges . . . . . . . . . . . 99 7.1.1 Surgemodels,basicparameters,andgoverning equations . . . . . . . . . . . . . . . . . . . . . . . . . 101 7.1.2 Wavedispersionrelations . . . . . . . . . . . . . . . . 104 7.1.3 Numericalcalculationsandresults. . . . . . . . . . . . 107 7.2 Kelvin–Helmholtzinstabilityindarkmottles . . . . . . . . . . . 114 7.2.1 Mottlesmodels,basicparameters,andgoverning equations . . . . . . . . . . . . . . . . . . . . . . . . . 115 7.2.2 Numericalcalculationsandresults. . . . . . . . . . . . 117 7.2.3 Discussionandconclusion . . . . . . . . . . . . . . . . 121 October27,202018:2 Kelvin–HelmholtzInstabilityinSolarAtmosphericJets-9inx6in b4047-fm pageix Contents ix 8. Kelvin–HelmholtzInstabilityinEUVSolarJets 125 8.1 Observations,nature,andphysicalparametersofEUVjets . . . 125 8.2 Jetsgeometryandthegoverningmagnetohydrodynamic equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127 8.3 Kelvin–HelmholtzinstabilityinanEUVjet observedbyHinode . . . . . . . . . . . . . . . . . . . . . . . . 136 8.3.1 Kelvin–Helmholtzinstabilityofthekink (m =1)mode . . . . . . . . . . . . . . . . . . . . . . 137 8.3.2 Kelvin–Helmholtzinstabilityofthem =2,3, and4modes . . . . . . . . . . . . . . . . . . . . . . . 142 8.4 Kelvin–HelmholtzinstabilityinanEUVjetobserved bySDO/AIA . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 9. Kelvin–HelmholtzInstabilityinX-raySolarJets 153 9.1 ObservationsandnatureoftheX-rayjets . . . . . . . . . . . . . 153 9.2 Magneticfieldtopology,physicalparameters,andMHDwave dispersionrelations . . . . . . . . . . . . . . . . . . . . . . . . 157 9.2.1 Kelvin–HelmholtzinstabilityofMHDmodes inuntwistedfluxtubes . . . . . . . . . . . . . . . . . . 159 9.2.2 Kelvin–HelmholtzinstabilityofMHDmodes intwistedfluxtubes . . . . . . . . . . . . . . . . . . . 165 9.3 Concludingremarks . . . . . . . . . . . . . . . . . . . . . . . . 170 10. Kelvin–HelmholtzInstabilityinRotatingSolarJets 173 10.1 Observationsandnatureoftherotatingsolarjets . . . . . . . . . 173 10.2 Thegeometry,magneticfield,andphysicalparameters inajetmodel . . . . . . . . . . . . . . . . . . . . . . . . . . . 175 10.3 Wavedispersionrelation. . . . . . . . . . . . . . . . . . . . . . 178 10.4 Numericalsolutions,wavedispersion,andgrowth ratediagrams . . . . . . . . . . . . . . . . . . . . . . . . . . . 181 10.4.1 Kelvin–Helmholtzinstabilityinastandardpolar coronalholejet . . . . . . . . . . . . . . . . . . . . . . 183 10.4.2 Kelvin–Helmholtzinstabilityinablowoutpolar coronalholejet . . . . . . . . . . . . . . . . . . . . . . 186 10.4.3 Kelvin–Helmholtzinstabilityinajetemerging fromafilamenteruption . . . . . . . . . . . . . . . . . 188

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.