ebook img

Kauffman-Jones polynomial of a curve on a surface PDF

0.17 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Kauffman-Jones polynomial of a curve on a surface

KAUFFMAN-JONESPOLYNOMIAL OF A CURVE ON A SURFACE 7 SHINJIFUKUHARAANDYUSUKEKUNO 1 0 2 ABSTRACT. WeintroduceaKauffman-JonestypepolynomialLγ(A)foracurveγ on anorientedsurface,whoseendpointsareontheboundaryofthesurface. Thepolynomial n Lγ(A)isaLaurent polynomial inonevariable Aandisaninvariant ofthehomotopy a classofγ. Asanapplication, weobtainanestimateintermsofthespanofLγ(A)for J theminimumself-intersectionnumberofacurvewithinitshomotopyclass.Wethengive 9 achorddiagrammaticdescriptionofLγ(A)andshowsomecomputationalresultsonthe 2 spanofLγ(A). ] T G . 1. INTRODUCTION h t LetS beanorientedC∞-surfacewithnon-emptyboundary∂S. ByacurveonS, we a m meanaC∞-immersionγ fromtheunitintervalI =[0,1]toS,whichhasonlytransverse doublepointsasitssingularitiesandsatisfiesγ−1(∂S)={0,1}withγ(0)6=γ(1). [ In this article, we consider curves on S from the view point of virtual knots [6] or 1 equivalently, abstract link diagrams [4], with emphasis on their invariants coming from v theKauffmanbracket[5]. Moreconcretely,weintroduceLaurentpolynomialshD iand γ 8 L (A) in one variable A. We show that the span of these polynomials can be used for 1 γ estimating the number of double points of γ. In fact, the polynomialshD i and L (A) 4 γ γ 8 dependonlyoncombinatoricsoftheimageofthecurveγinitsregularneighborhoodinS. 0 Based on this fact, we then givea chorddiagrammaticdescriptionof these polynomials. 1. AnadvantageofbeingfreefromtheambientsurfaceS isthatitbecomeseasytoprovide 0 andcomputeexamples. In§4, weshowsome computationalresultsonthespanofhD i γ 7 fromthispointofview. 1 Intherestofthissection,wedescribemainconstructionsandresults. Someproofswill : v bepostponedto§2. i We beginwithterminology. LetX beacompact1-manifold. Namely,X isadisjoint X unionoffinitelymanyI’sandcircles: r a X =I ⊔···⊔I ⊔S1⊔···⊔S1. AC∞-immersionf : X → S iscalledgenericifithasonlytranseversedoublepointsas itssingularities,f−1(∂S) = ∂X,andf| isinjective. AgeneralizedlinkdiagramonS ∂X isasubsetofS oftheformD =f(X)forsomegenericimmersionf :X →S,endowed withachoiceofcrossingtoeachdoublepointofD. SeeFigures1and2. TwogeneralizedlinkdiagramsDandD′ arecalledequivalent(resp. regularlyequiva- lent)ifDistransformedintoD′ byafinitesequenceofambientisotopiesofS relativeto ∂S,andthethreeReidemeistermovesR ,R ,andR (resp. R andR )showninFigure 1 2 3 2 3 3. WewriteD ∼D′(resp.D ∼ D′)whenDisequivalent(resp.regularlyequivalent)to r D′. 2010MathematicsSubjectClassification. Primary57M25;Secondary57N05. Keywordsandphrases. Kauffman-Jonespolynomial,curvesonsurfaces,linearchorddiagrams. 1 2 SHINJIFUKUHARAANDYUSUKEKUNO (cid:81)(cid:84) FIGURE 1. a choice FIGURE 2. an exam- of under- and over- ple of a generalized crossing linkdiagram (cid:52) (cid:52) (cid:52) (cid:19) (cid:19) (cid:21) (cid:52) (cid:52) (cid:21) (cid:20) FIGURE 3. Reidemeistermoves (cid:44) (cid:44) (cid:19) (cid:20) (cid:44) (cid:44) (cid:20) (cid:19) FIGURE 4. replacingdoublepointswithcrossings Let γ be a curveon S. For each doublepointp of γ, there is a neighborhoodU of p such that U ∩γ(I) consists of two arcs J and J intersecting at p, and J is traversed 1 2 1 first when we go along γ from γ(0). Then we replace p with a crossing with J being 1 overcrossing(seeFigure4). LetD denotethegeneralizedlinkdiagramonS obtainedin γ thisway.Inotherwords,D istheprojectiondiagramintheusualsenseoftheembedding γ I →S×I,t7→(γ(t),1−t)bytheprojectionS×I →S×{0}∼=S,(x,t)7→x. Thefollowingfactiscrucialinourargument: Theorem 1.1. Suppose that two curves γ and γ′ on S are homotopic (resp. regularly homotopic)relativeto∂S. ThenDγ ∼Dγ′ (resp. Dγ ∼r Dγ′). TheKauffmanbracket[5]isextendedtolinkdiagramsonsurfaces[2]. Thisextension isstraightforwardandappliestoourgeneralizedlinkdiagramsalso. Forthesakeofdefi- niteness,letusrecalltheconstruction. LetDbeageneralizedlinkdiagramonS. Wecan splitDateachcrossingintwoways. WewilldistinguishthesesplittingsasatypeAsplit- tingandatypeBsplitting,respectively(seeFigures5and6,accordingtotheorientation ofS). A state of D is a choiceof splitting typefor eachcrossing of D. Fora state s of KAUFFMAN-JONESPOLYNOMIALOFACURVE 3 (cid:36) (cid:35) (cid:35) (cid:36) FIGURE 6. splitting FIGURE 5. splitting withtheotherorienta- withanorientation tion (cid:38) (cid:38) (cid:38) (cid:38) (cid:38) (cid:38) (cid:35) (cid:35)(cid:15)(cid:19) (cid:35)(cid:15)(cid:19) (cid:35) FIGURE 7. threediagrams D,letD(s)bethecompact1-submanifoldofS obtainedbysplittingD bys. IfD hasn crossings,thereare2nstatesofD. ToeachstatesofD,weassignthefollowingthreenumbers: α(s):=thenumberoftypeAsplittings, β(s):=thenumberoftypeBsplittings, µ(s):=thenumberofconnectedcomponentsofD(s). ThenwedefinethebracketpolynomialofDby hDi:= Aα(s)−β(s)(−A2−A−2)µ(s)−1, s X wheresrunsoverallstatesofD. Abasicpropertyofthebracketpolynomialisthefollowingskeinrelation,whoseproof isthesameasthatoftheclassicalcase[5]. Lemma1.2. LetDbeageneralizedlinkdiagramonS. (1) Pick a crossing of D and consider the two splittings of it as shown in Figure 7. Then hDi=AhDAi+A−1hDA−1i. (2) LetT beageneralizedlinkdiagramwhichisconnectedandhasnocrossing. (a) WehavehTi=1. (b) IfDandT aredisjoint,thenhD⊔Ti=(−A2−A−2)hDi. AssumethatageneralizedlinkdiagramD = f(X)isoriented. Thatis,X isoriented andDinheritsthisorientation. Forinstance,ifγ isacurveonS,thenD canbeoriented γ fromthenaturalorientationofI. Letw(D)denotethewrithenumberofD. Thatis, w(D):= ε , p p X 4 SHINJIFUKUHARAANDYUSUKEKUNO (cid:493)(cid:31)(cid:19) (cid:493)(cid:31)(cid:15)(cid:19) (cid:493)(cid:31)(cid:15)(cid:19) (cid:493)(cid:31)(cid:19) (cid:50) (cid:50) (cid:50) (cid:50) FIGURE 8. signsofcrossings wherep runsoverallcrossingsofD andε ∈ {±1}isthesignofthecrossingatp (see p Figure8). ThenwedefinetheKauffman-JonespolynomialofDby L (A):=(−A)−3w(D)hDi. D The following result is an analogy of the result for ordinary link diagrams given by Kauffman[5],whereLemma1.2playedacentralrole. Hisargumentcanalsobeapplied tothecaseofgeneralizedlinkdiagrams,soweomittheproof. Theorem1.3. LetDandD′begeneralizedlinkdiagramsonS. (1) IfDandD′areregularlyequivalent,hDi=hD′i. (2) AssumefurtherthatDandD′areoriented.IfDandD′areequivalent,L (A)= D LD′(A). Tosimplifynotation,wedenoteL (A):=L (A)foracurveγ.CombiningTheorems γ Dγ 1.1and1.3,weobtain Theorem1.4. Letγ andγ′becurvesonS. (1) Ifγ andγ′areregularlyhomotopicrelativeto∂S,thenhDγi=hDγ′i. (2) Ifγ andγ′arehomotopicrelativeto∂S,thenLγ(A)=Lγ′(A). For a Laurent polynomial f(A) ∈ Z[A,A−1], the span of f, denoted by spanf, is defined to be the difference of the maximal and the minimal degrees of f. Note that spanhD i = spanL (A) for any curve γ. We denote by d(γ) the number of double γ γ pointsofacurveγ. Thenwehavethefollowingestimateford(γ),whichisanalogousto [8]and[9]. Theorem1.5. Foracurveγ onS,itholdsthat (1.1) spanhD i≤4d(γ). γ Wedefinetheminimumself-intersectionnumberc(γ)ofacurveγ by c(γ):=min{d(γ′)|γ′isacurveonS homotopictoγ relativeto∂S}. Corollary1.6. Foranycurveγ onS,itholdsthat spanhD i γ ≤c(γ). 4 WegiveexamplesofusingCorollary1.6forestimatingc(γ). Example1.7. Letγ bethecurveshowninFigure9. Thebracketpolynomialofγ is 1 1 hD i=A−A−3−A−5. γ1 WeseethatspanhD i=6and6/4≤c(γ ). Henceweobtain2≤c(γ )≤3. γ1 1 1 Example1.8. Letγ bethecurveshowninFigure10. Thebracketpolynomialofγ is 2 2 hD i=−A5+A+A−1−A−3−A−5. γ2 SincespanhD i=10,wehave10/4≤c(γ ). Therefore,c(γ )=3. γ2 2 2 KAUFFMAN-JONESPOLYNOMIALOFACURVE 5 FIGURE 10. a curve FIGURE 9. acurveγ1 γ on a punctured onapuncturedtorus 2 torus (cid:513) (cid:513) (cid:513) (cid:19) (cid:20) (cid:21) FIGURE 11. Reidemeistermovesofacurveγ (cid:21) (cid:22) (cid:22) (cid:560) (cid:560) (cid:560) (cid:20) (cid:20) (cid:21) (cid:22) (cid:20) (cid:21) (cid:20) (cid:21) (cid:20) (cid:21) (cid:53) (cid:53) (cid:53) (cid:20) (cid:21) (cid:22) FIGURE 12. Reidemeistermovesofγ andDγ 2. PROOFS OFTHEOREMS 1.1AND 1.5 Inthissection,weproveTheorems1.1and1.5. ProofofTheorem1.1. Iftwocurvesγandγ′arehomotopicrelativeto∂S,thenγistrans- formedintoγ′ byusingafinitesequenceofambientisotopiesofS relativeto∂S andthe threelocalmovesω ,ω ,ω ,showninFigure11. Seee.g.,[1]Lemma5.6. 1 2 3 It is easily seen that if γ is transformed into γ′ by ω (i = 1,2,3), then D can be i γ transformedintoDγ′ byRi (i = 1,2,3)respectively(seeFigure12). Thiscompletesthe proof. (cid:3) Next, we proveTheorem 1.5. Recall that a generalized link diagram D has the form D = f(X) for a generic immersionf : X → S, endowedwith a choice of crossing to eachdoublepoint.WesaythatDisconnectedifitisconnectedasasubsetofS. Letd(D) bethenumberofcrossingsofD. LetusconsiderthefollowingconditionforageneralizedlinkdiagramD =f(X): (2.1) thenumberofconnectedcomponentsofX homeomorphictoI isatmostone. SinceD isconnectedforanycurveγ,Theorem1.5isaspecialcaseofthefollowing: γ 6 SHINJIFUKUHARAANDYUSUKEKUNO Proposition2.1. LetDbeaconnectedgeneralizedlinkdiagramsatisfyingcondition(2.1). Thenitholdsthat spanhDi≤4d(D). Proof. ThebracketpolynomialofDiswrittenas hDi= hD|siδµ(s)−1, s X wheresrunsoverallstatesofDandwesethD|si:=Aα(s)−β(s),δ :=−A2−A−2. LetsbeastateofDhavingatypeAsplitting,andlets′denotethestateofDobtained fromsbyreplacingthetypeAsplittingwithatypeBsplitting. Thenwehave hD|s′i=hD|siA−2, µ(s′)≤µ(s)+1, µ(s)≤µ(s′)+1. Hencewehave max deghD|s′iδµ(s′)−1 ≤max deghD|siδµ(s)−1, min deghD|s′iδµ(s′)−1 ≤min deghD|siδµ(s)−1. Lets (resp.s )denotethestateofDwhosesplittingateachcrossingisoftypeA(resp. A B oftypeB).Thenwehave max deghDi≤max deghD|s iδµ(sA)−1 =d(D)+2(µ(s )−1), A A min deghDi≥min deghD|s iδµ(sB)−1 =−d(D)−2(µ(s )−1). B B Fromtheseinequalities,wehave spanhDi≤2d(D)+2(µ(s )+µ(s )−2). A B Lemma2.2. Wehaveµ(s )+µ(s )≤d(D)+2. A B Proof. Ifd(D) = 0,theinequalityisobvious. Letd(D) > 0andchooseacrossingofD and consider the two splittings of it as shown in Figure 7. Then, at least one of them is connectedandsatisfiescondition(2.1)byvirtueoftheassumption(2.1)onD. LetD′ be suchageneralizedlinkdiagramandassumethatD′ isobtainedfromthetypeAsplitting (theothercaseistreatedsimilarly).Lets′ ands′ bethestatesofD′definedbythesame A B way as we introduces and s to D. Then µ(s ) = µ(s′ ) and µ(s ) ≤ µ(s′ )+1, A B A A B B henceµ(s )+µ(s )≤µ(s′ )+µ(s′ )+1.Thentheassertionisprovedbyinductionon A B A B d(D). (cid:3) ByLemma2.2weconclude spanhDi≤2d(D)+2(µ(s )+µ(s )−2)≤4d(D). A B ThiscompletestheproofofProposition2.1. (cid:3) 3. CHORD DIAGRAMMATIC DESCRIPTION For a curve γ on S, the bracketpolynomialhD i is actually determinedby a regular γ neighborhoodofγ(I)inS. Inthissection,westudyhD ifromthispointofview. γ Let d be a positive integer. An oriented linear chord diagram of d chords is a set C = {(i ,j ),...,(i ,j )} of d ordered pairs of integers such that {i } ∪ {j } = 1 1 d d k k k k {1,...,2d}. EachelementofC iscalledachordofC. Achord(i,j)iscalledpositiveif i < j, andnegativeotherwise. Finally, a state ofC is a maps: C → {A,B}, whereA andB arefixedsymbols. KAUFFMAN-JONESPOLYNOMIALOFACURVE 7 Letγ beacurvewithd(γ) = d. Thentheinverseimageofthedoublepointsofγ are 2dpointsonI. Wenamethem{p } sothat0< p <p < ··· <p <1. Theoriented i i 1 2 2d linearchorddiagramC is definedbytheconditionthatan orderedpair (i,j)isa chord γ ofC ifandonlyifγ(p )=γ(p )andthepair(dγ/dt(p ),dγ/dt(p ))oftangentvectors γ i j i j matchestheorientationofS. Remark3.1. Conversely,foranyorientedlinearchorddiagramC, thereisa curveγ on someorientedsurfaceS suchthatC =C . γ Let C be an oriented linear chord diagram of d chords and s a state of C. For each chordc = (i,j) ∈ C, wedefinea subsetR ⊂ S ofpermutationsof2d+1letters c 2d+1 {0,1,...,2d}inthefollowingway. • If s(c) = A andc is positive, or s(c) = B and c is negative, thenwe set R = c {(i,j−1),(i−1,j)}. • If s(c) = A andc is negative,or s(c) = B and c is positive, thenwe set R = c {(i,j),(i−1,j−1)}. ConsiderthesubgroupofS generatedby R ,andletΓ bethenumberoforbits 2d+1 c∈C c s oftheactionofthisgroupon{0,...,2d}. S Weset hC|si:=A|s−1(A)|−|s−1(B)|(−A2−A−2)Γs−1, where|s−1(A)|denotesthecardinalityofthesets−1(A),andwedefine hCi:= hC|si, s X wherethesumrunsoverallstatesofC. Wealsodefine L (A):=(−A)−3w(C)hCi, C wherew(C)isthenumberofpositivechordsminusthenumberofnegativechordsofC. Proposition3.2. Letγ beacurveonS. ThenhD i=hC iandL (A)=L (A). γ γ γ Cγ Proof. Firstofall,thesecondformulafollowsfromthefirst,sincew(D )=w(C ). γ γ Now introduce 2d+ 1 points q , 0 ≤ i ≤ 2d. With respect to the parametrization i of γ, these points have the following interpretation: q = 0, q = (p + p )/2 for 0 i i i+1 1 ≤ i ≤ 2d−1, andq = 1. Fora state s of γ, let Γ(C ,s)be the graphwith the set 2d γ ofverticesbeing{q } ,andthesetofedgesdeterminedbytheconditionthatq andq are i i k l connectedbyanedgeifandonlyif(k,l) ∈ R . ThenΓ(C ,s)ishomeomorphic c∈Cγ c γ tothespliceofD bys. SeeFigure13.(Hereandinwhatfollows,weassumethecounter- γ clockwiseorientationinanyfigure.)ThefirstSformulafollowsfromthisobservation. (cid:3) Inthebelow,werecordelementarypropertiesofhD iintermsofchorddiagrams. γ LetC = {(i ,j ),...,(i ,j )}beanorientedlinearchorddiagram. Fix0 ≤ ℓ ≤ 2d. 1 1 d d Fori∈{1,...,2d},weset i ifi≤ℓ, i′ := (i+2 ifi>ℓ. Wedefine Cℓ :={(i′,j′)} ∪{(ℓ,ℓ+1)}, + k k k Cℓ :={(i′,j′)} ∪{(ℓ+1,ℓ)}. − k k k 8 SHINJIFUKUHARAANDYUSUKEKUNO s(c)=A,cpositive s(c)=B,cpositive qj qi qj qi qj qi qj qi qi−1 qj−1 qi−1 qj−1 qi−1 qj−1 qi−1 qj−1 s(c)=A,cnegative s(c)=B,cnegative qi qj qi qj qi qj qi qj qj−1 qi−1 qj−1 qi−1 qj−1 qi−1 qj−1 qi−1 FIGURE 13. proofofProposition3.2 Also,wedefine C∧ :={(i +1,j +1)} ∪{(1,2d+2)}, + k k k C∧ :={(i +1,j +1)} ∪{(2d+2,1)}. − k k k Proposition3.3(Birth/deathofmonogons). Wehave hCℓi=hC∧i=(−A3)hCi, + + hCℓi=hC∧i=(−A−3)hCi. − − Proof. If C = C for some curve γ, then Cℓ corresponds to a suitable insertion of a γ + negative monogon to γ. Therefore, from the behavior of the bracket polynomial under the Reidemeister move R , we obtain hCℓi = (−A3)hCi. The other cases are treated 1 + similarly. (cid:3) Let C ={(i ,j ),...,(i ,j )} and D ={(k ,ℓ ),...,(k ,ℓ )} 1 1 d d 1 1 e e beorientedlinearchorddiagrams.WedefinethestackingofC andDby C♯D :={(i ,j )} ∪{(k +2d,ℓ +2d)} . a a a b b b Proposition3.4(Stackingformula). WehavehC♯Di=hCihDi. Inparticular,spanhC♯Di= spanhCi+spanhDi. Proof. SincethechordsofC♯D areinone-to-onecorrespondencewiththedisjointunion of the chords of C and D, any state of C♯D is of the form s♯t, where s is a state of C and t is a state of D. The assertion follows from the observation that |Γ(C♯D,s♯t)| = |Γ(C,s)|+|Γ(D,t)|−1. (cid:3) Proposition3.5. LetC beanorientedlinearchorddiagramofdchords. • Ifdiseven,thenhCihasonlytermsofevendegree. • Ifdisodd,thenhCihasonlytermsofodddegree. Proof. Bydefinition,hC|sihasthisproperty,sodoeshCi. (cid:3) Proposition3.6(Reversingallthechords). LetC ={(i ,j ),...,(i ,j )}beanoriented 1 1 d d linearchorddiagramandsetC :={(j1,i1),...,(jd,id)}. ThenhCi=hCi|A7→A−1. KAUFFMAN-JONESPOLYNOMIALOFACURVE 9 ··· 1 2 3 d FIGURE 14. thecurveγd inExample4.1 Proof. There is a natural bijection ι from the set of chords of C to that of C given by (i ,j )7→(j ,i ). Thismapspositive(resp. negative)chordstonegative(resp. positive) k k k k chords. Moreover, it induces a bijection from the set of states of C to that of C given by s 7→ s, determined by the condition that {s(c),s(ι(c))} = {A,B} for any chord c of C. Then, it holds that hC|si = hC|si|A7→A−1 for any state s of C. This proves the formula. (cid:3) 4. THERANGE OF THESPAN Inthissection,westudytherangeofspanhCi. ByTheorem1.5,spanhCi ≤ 4difC hasdchords. Also, byProposition3.5, spanhCiisalwaysaneveninteger. Fixingd, let usconsiderwhichevenintegersnotgreaterthan4darerealizedasspanhCi forsomeC withdchords. We say that an even integer l is d-realizable if there exists an oriented linear chord diagramC ofdchordssuchthatspanhCi=l. Ifd=1,C =C :={(1,2)}orC =C . ThushCi=−A±3andspanhCi=0. 1 1 Ifd = 2,byadirectcomputation,weseethat0and6are2-realizable,while2,4,and 8 are not. For example, C = {(1,3),(2,4)} satisfies hC i = A2 +1−A−4, so that 2 2 spanhC i=6. 2 If d = 3, we see that0, 6, 10, and 12 are 3-realizable, while 2, 4, and8 are not. For example, the stacking C ♯C satisfies spanhC ♯C i = 6; C = {(1,5),(2,4),(6,3)} 1 2 1 2 3 satisfieshC i=−A5−A3+A+A−1−A−5,sothatspanhC i=10;thechorddiagram 3 3 C(3)inExample4.1belowsatisfiesspanhC(3)i=12. Toseethecased≥4,weconsiderthefollowingtwoexamples. Example4.1. Letd≥1beanoddinteger,andsetC(d):={(i,i+d)}d .Then i=1 d−1 hC(d)i= (−1)i−1A−3d−2+4i−Ad+2. i=1 X Inparticular,ifd≥3,thenspanhCi=(d+2)−(−3d+2)=4d. 10 SHINJIFUKUHARAANDYUSUKEKUNO ··· 1 2 3 4 d−1 FIGURE 15. thecurveγd inExample4.2 Proof. WehaveC(d) = C ,whereγ isthecurveasshowninFigure14. Letd ≥ 1be γd d anoddinteger.Then ··· 1 2 3 d+2 hγ i= d+2 ··· 2 3 d+2 =A ··· 2 3 d+2 +A−1 ··· 3 d+2 =A2 ··· 3 d+2 + +A−1·(−A−3)d+1 =A2hγ i+(−A−3)d+A−3d−4. d Now it is easy to see that hγ i = −A3, and the formula is proved by an inductive 1 argument. (cid:3) Example4.2. Letd≥4beaneveninteger,andset C(d):={(1,d),(d+1,2d)}∪{(2d−i,i+1)}d−2. i=1 Then d−4 hC(d)i=A−3d+4−A−3d+8+2 (−1)i−1A−3d+8+4i +Ad−4−Ad+Ad+4. ! i=1 X Inparticular,spanhC(d)i=(d+4)−(−3d+4)=4d.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.