ebook img

K-Theory for the Leaf Space of Foliations formed by the Generic K-Ornits of some indecomposable $MD_5$-Groups PDF

0.14 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview K-Theory for the Leaf Space of Foliations formed by the Generic K-Ornits of some indecomposable $MD_5$-Groups

K-THEORY OF THE LEAF SPACE OF FOLIATIONS FORMED BY THE GENERIC K-ORBITS OF SOME INDECOMPOSABLE MD -GROUPS 5 1 1 0 Le Anh Vu* and Duong Quang Hoa** 2 Department of Mathematics and Informatics n a University of Pedagogy, Ho Chi Minh City, Vietnam J E-mail: (*) [email protected] 1 1 (**) [email protected] ] T K Abstract . h t The paper is a continuation of the authors’ work [18]. In [18], we consider foliations a formed by the maximal dimensional K-orbits (MD -foliations) of connected MD - m 5 5 groups such that their Lie algebras have 4-dimensional commutative derived ideals and [ give a topological classification of the considered foliations. In this paper, we study K- 2 theory of the leaf space of some of these MD -foliations and characterize the Connes’ v 5 3 C*-algebras of the considered foliations by the method of K-functors. 1 3 5 . INTRODUCTION 3 0 0 1 In the decades 1970s 1980s, works of D.N. Diep [4], J. Rosenberg [10], G. G. Kasparov [7], − v: V. M. Son and H. H. Viet [12],... have seen that K-functors are well adapted to characterize i a large class of group C*-algebras. Kirillov’s method of orbits allows to find out the class X of Lie groups MD, for which the group C*-algebras can be characterized by means of suit- r a able K-functors (see [5]). In terms of D. N. Diep, an MD-group of dimension n (for short, an MD -group) is an n-dimensional solvable real Lie group whose orbits in the co-adjoint n representation (i.e., the K- representation) are the orbits of zero or maximal dimension. The Lie algebra of an MD -group is called an MD -algebra (see [5, Section 4.1]). n n In 1982, studying foliated manifolds, A. Connes [3] introduced the notion of C*-algebra associated to a measured foliation. In the case of Reeb foliations (see A. M. Torpe [14]), the method of K-functors has been proved to be very effective in describing the structure of Connes’ C*-algebras. For every MD-group G, the family of K-orbits of maximal dimension forms a measured foliation in terms of Connes [3]. This foliation is called MD-foliation associated to G. 0Key words: Lie group, Lie algebra, MD5-group, MD5-algebra, K-orbit, Foliation, Measured foliation, C*-algebra,Connes’ C*-algebra associated to a measured foliation. 2000AMS Mathematics Subject Classification: Primary 22E45,Secondary 46E25,20C20. 1 Combining methods of Kirillov (see [8, Section 15]) and Connes (see[3, Section 2, 5]), the first author had studied MD -foliations associated with all indecomposable connected 4 MD -groups and characterized Connes’ C*-algebras of these foliations in [16]. Recently, Vu 4 and Shum [17] have classified, up to isomorphism, all the MD -algebras having commutative 5 derived ideals. In [18], we have given a topological classification of MD -foliations associated to the 5 indecomposable connected and simply connected MD -groups, such that MD -algebras of 5 5 them have 4-dimensional commutative derived ideals. There are exactly 3 topological types of the considered MD -foliations, denoted by , , . All MD -foliations of type are 5 1 2 3 5 1 F F F F the trivial fibrations with connected fibre on 3-dimesional sphere S3, so Connes’ C*-algebras of them are isomorphic to the C*-algebra C(S3) following [3, Section 5], where denotes ⊗K K the C*-algebra of compact operators on an (infinite dimensional separable) Hilbert space. The purpose of this paper is to study K-theory of the leaf space and to characterize the structure of Connes’ C*-algebras C (V, ) of all MD -foliations (V, ) of type by the ∗ 5 2 F F F method of K-functors. Namely, we will express C (V, ) by two repeated extensions of the ∗ F form 0 //C (X ) // C (V, ) //B //0, 0 1 ∗ 1 ⊗K F 0 // C (X ) // B //C (Y ) // 0, 0 2 1 0 2 ⊗K ⊗K then we will compute the invariant system of C (V, ) with respect to these extensions. If ∗ F the given C*-algebras are isomorphic to the reduced crossed products of the form C (V)⋊H, 0 where Hisa Lie group, we canuse the Thom-Connes isomorphism to compute theconnecting map δ ,δ . 0 1 In another paper, we will study the similar problem for all MD -foliations of type . 5 3 F 1 THE FOLIATIONS OF TYPE MD 5 2 − F Originally, we will recall geometry of K-orbit of MD -groups which associate with MD - 5 5 foliations of type (see [18]). 2 F In this section, G will be always an connected and simply connected MD -group such 5 that its Lie algebras is an indecomposable MD -algebra generated by X ,X ,X ,X ,X 5 1 2 3 4 5 G { } with 1 := [ , ] = R.X R.X R.X R.X = R4, ad End( ) Mat (R). Namely, G G G 2⊕ 3⊕ 4⊕ 5 ∼ X1 ∈ G ≡ 4 will be one of the following Lie algebras which are studied in [17] and [18]. G 1. G5,4,11(λ1,λ1,ϕ) cosϕ sinϕ 0 0 −  sinϕ cosϕ 0 0  ad = ;λ ,λ R 0 ,λ = λ ,ϕ (0,π). X1 0 0 λ 0 1 2 ∈ \{ } 1 6 2 ∈ 1    0 0 0 λ  2   2 2. 5,4,12(λ,ϕ) G cosϕ sinϕ 0 0 −  sinϕ cosϕ 0 0  ad = ;λ R 0 ,ϕ (0,π). X1 0 0 λ 0 ∈ \{ } ∈    0 0 0 λ    3. 5,4,13(λ,ϕ) G cosϕ sinϕ 0 0 −  sinϕ cosϕ 0 0  ad = ;λ R 0 ,ϕ (0,π). X1 0 0 λ 1 ∈ \{ } ∈    0 0 0 λ    The connected and simply connected Lie groups corresponding to these algebras are denoted by G , G , G . All of these Lie groups are MD -groups 5,4,11(λ1,λ1,ϕ) 5,4,12(λ,ϕ) 5,4,13(λ,ϕ) 5 (see [17]) and G is one of them. We now recall the geometric description of the K-orbits of G in the dual space of . Let X ,X ,X ,X ,X be the basis in dual to the basis G∗ G { 1∗ 2∗ 3∗ 4∗ 5∗} G∗ X ,X ,X ,X ,X in . Denote by Ω the K-orbit of G including F = (α,β +iγ,δ,σ) in 1 2 3 4 5 F { } G = R5. ∗ ∼ G If β +iγ = δ = σ = 0 then Ω = F (the 0-dimensional orbit). F • { } If β +iγ 2 +δ2 +σ2 = 0 then Ω is the 2-dimensional orbit as follows F • | | 6 x,(β +iγ).e(a.e−iϕ),δ.eaλ1,σ.eaλ2 , x,a R ∈  n(cid:16) (cid:17) o when G = G , λ ,λ R , ϕ (0;π). 5,4,11(λ1,λ2,ϕ) 1 2 ∈ ∗ ∈  x,(β +iγ).e(a.e−iϕ),δ.eaλ,σ.eaλ , x,a R Ω =  ∈ F  n(cid:16) (cid:17) o  when G = G , λ R , ϕ (0;π). 5,4,12(λ,ϕ) ∗  ∈ ∈  x,(β +iγ).e(a.e−iϕ),δ.eaλ,δ.aeaλ +σ.eaλ , x,a R   n(cid:16) (cid:17) ∈ o  when G = G , λ R , ϕ (0;π). 5,4,13(λ,ϕ) ∗  ∈ ∈ In [18], we have shown that, the family of maximal-dimensional K-orbits of G forms F measured foliation in terms of Connes on the open submanifold V = (x,y,z,t,s) G∗ : y2+z2 +t2 +s2 = 0 ∼= R R4 ∗( ∗ R5) ∈ 6 × ⊂ G ≡ (cid:8) (cid:9) (cid:0) (cid:1) Furthermore, all foliations V, , V, , V, are topologically F4,11(λ1,λ2,ϕ) F4,12(λ,ϕ) F4,13(λ,ϕ) equivalent to each other (λ ,λ(cid:0),λ R 0 ,ϕ(cid:1) (cid:0)(0;π)). Th(cid:1)us(cid:0), we need on(cid:1)ly choose a envoy 1 2 ∈ \{ } ∈ among them to describe the structure of the C*-algebra. In this case, we choose the foliation V, . (cid:16) F4,12(1,π2)(cid:17) In [18], we have described the foliation V, by a suitable action of R2. Namely, (cid:16) F4,12(1,π2)(cid:17) we have the following proposition. 3 PROPOSITION 1. The foliation V, can be given by an action of the commu- (cid:16) F4,12(1,π2)(cid:17) tative Lie group R2 on the manifold V. Proof. One needs only to verify that the following action λ of R2 on V gives the foliation V, (cid:16) F4,12(1,π2)(cid:17) λ : R2 V V × → ((r,a),(x,y +iz,t,s)) (x+r,(y +iz).e ia,t.ea,s.ea) − 7→ where (r,a) R2, (x,y +iz,t,s) V ∼= R (C R2)∗ ∼= R (R4)∗. Hereafter, for ∈ ∈ × × × simplicity of notation, we write (V, ) instead of V, . F (cid:16) F4,12(1,π2)(cid:17) It is easy to see that the graph of (V, ) is indentical with V R2, so by [3, Section 5], F × it follows from Proposition 1 that: COROLLARY 1 (analytical description of C (V, )). The Connes C -algebra C (V, ) ∗ ∗ ∗ F F can be analytically described the reduced crossed of C (V) by R2 as follows 0 C (V, ) = C (V)⋊ R2. ∗ ∼ 0 λ F (cid:3) 2 AS TWO REPEATED EXTENSIONS C (V, ) ∗ F 2.1. Let V , W , V , W be the following submanifolds of V 1 1 2 2 V = (x,y,z,t,s) V : s = 0 = R R2 R R , 1 ∼ ∗ { ∈ 6 } × × × W1 = V V1 = (x,y,z,t,s) V : s = 0 ∼= R (R3)∗ 0 ∼= R (R3)∗, \ { ∈ } × ×{ } × V = (x,y,z,t,0) W : t = 0 = R R2 R , 2 1 ∼ ∗ { ∈ 6 } × × W2 = W1 V2 = (x,y,z,t,0) W1 : t = 0 ∼= R (R2)∗. \ { ∈ } × It is easy to see that the action λ in Proposition 1 preserves the subsets V ,W ,V ,W . 1 1 2 2 Let i ,i ,µ ,µ be the inclusions and the restrictions 1 2 1 2 i : C (V ) C (V), i : C (V ) C (W ), 1 0 1 0 2 0 2 0 1 → → µ : C (V) C (W ), µ : C (W ) C (W ) 1 0 0 1 2 0 1 0 2 → → where each function of C (V ) (resp. C (V )) is extented to the one of C (V) (resp. C (W )) 0 1 0 2 0 0 1 by taking the value of zero outside V (resp. V ). 1 2 It is known a fact that i ,i ,µ ,µ are λ-equivariant and the following sequences are 1 2 1 2 equivariantly exact: (2.1.1) 0 //C (V ) i1 // C (V) µ1 //C (W ) // 0 0 1 0 0 1 (2.1.2) 0 //C (V ) i2 // C (W ) µ2 // C (W ) // 0 . 0 2 0 1 0 2 4 2.2. Now we denote by (V , ),(W , ),(V , ),(W , ) the foliations-restrictions of 1 1 1 1 2 2 2 2 F F F F (V, ) on V ,W ,V ,W respectively. 1 1 2 2 F THEOREM 1. C (V, ) admits the following canonical repeated extensions ∗ F (γ ) 0 //J ib1 //C (V,F) µc1 //B // 0, 1 1 ∗ 1 (γ ) 0 //J ib2 //B µc2 // B //0, 2 2 1 2 where J = C (V , ) = C (V )⋊ R2 = C (R3 R3) K, 1 ∗ 1 1 ∼ 0 1 λ ∼ 0 F ∪ ⊗ J = C (V , ) = C (V )⋊ R2 = C (R2 R2) K, 2 ∗ 2 2 ∼ 0 2 λ ∼ 0 F ∪ ⊗ B = C (W , ) = C (W )⋊ R2 = C (R ) K, 2 ∗ 2 2 ∼ 0 2 λ ∼ 0 + F ⊗ B = C (W , ) = C (W )⋊ R2, and the homomorphismes i ,i ,µ ,µ are defined by 1 ∗ 1 1 ∼ 0 1 λ 1 2 1 2 F i f (r,s) = i f (r,s), k = 1,2 k k b b b b (cid:16) (cid:17) (µ f)(r,s) = µ f (r,s), k = 1,2 bk k Proocf. We note that the graph of (V , ) is indentical with V R2, so by [3, section 5], 1 1 1 F × J = C (V , ) = C (V )⋊ R2 . Similarly, we have 1 ∗ 1 1 ∼ 0 1 λ F B = C (W )⋊ R2, 1 ∼ 0 1 λ J = C (V )⋊ R2, 2 ∼ 0 2 λ B = C (W )⋊ R2, 2 ∼ 0 2 λ From the equivariantly exact sequences in 2.1 and by [2, Lemma 1.1] we obtain the repeated extensions (γ ) and (γ ). 1 2 Furthermore, the foliation (V , ) can be derived from the submersion 1 1 F p : V R R2 R R R3 R3 1 1 ∗ ≈ × × × → ∪ p (x,y,z,t,s) = (y,z,t,signs). 1 Hence, by a result of [3, p.562], we get J = C (R3 R3) K. The same argument shows 1 ∼ 0 ∪ ⊗ that J = C R2 R2 K, B = C (R ) K. 2 ∼ 0 2 ∼ 0 + ∪ ⊗ ⊗ (cid:0) (cid:1) 5 3 COMPUTING THE INVARIANT SYSTEM OF C (V, ) ∗ F DEFINITION. The set of elements γ ,γ corresponding to the repeated extensions (γ ), 1 2 1 { } (γ ) in the Kasparov groups Ext (B ,J ), i = 1,2 is called the system of invariants of 2 i i C (V, ) and denoted by Index C (V, ). ∗ ∗ F F REMARK. Index C (V, ) determines the so-called stable type of C (V, ) in the set of all ∗ ∗ F F repeated extensions 0 // J // E //B // 0 , 1 1 0 // J //B // B //0. 2 1 2 The main result of the paper is the following. THEOREM 2. Index C (V, ) = γ ,γ , where ∗ 1 2 F { } 0 1 γ = in the group Ext (B ,J ) = Hom(Z2,Z2); 1 (cid:18) 0 1 (cid:19) 1 1 γ = (1,1) in the group Ext (B ,J ) = Hom(Z,Z2). 2 2 2 To prove this theorem, we need some lemmas as follows. LEMMA 1. Set I2 = C0(R2 R∗) and A2 = C0 (R2)∗ × The following diagram is commutative (cid:0) (cid:1) ... //K (I ) //K C (R3) //K (A ) //K (I ) //... j 2 j 0 ∗ j 2 j+1 2 (cid:0) (cid:1) β1 β1 β1 β1 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) ... //K C (V ) //K C (W ) // K C (W ) // K C (V ) //... j+1 0 2 j+1 0 1 j+1 0 2 j 0 2 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) where β is the isomorphism defined in [13, Theorem 9.7] or in [2, corollary VI.3], j Z/2Z. 1 ∈ Proof. Let k2 : I2 = C0 R2 R∗ C0 R3 ∗ × −→ (cid:0) (cid:1) (cid:0)(cid:0) (cid:1) (cid:1) v : C R3 ∗ A = C R2 ∗ 2 0 2 0 −→ (cid:0)(cid:0) (cid:1) (cid:1) (cid:0)(cid:0) (cid:1) (cid:1) be the inclusion and restriction defined similarly as in 2.1. One gets the exact sequence 0 //I k2 // C (R3) v2 //A // 0 2 0 ∗ 2 (cid:0) (cid:1) Note that C (V ) = C R R2 R = C (R) I , 0 2 ∼ 0 ∗ ∼ 0 2 × × ⊗ (cid:0) (cid:1) C (W ) = C R R2 ∗ = C (R) A , 0 2 ∼ 0 ∼ 0 2 × ⊗ (cid:0) (cid:0) (cid:1) (cid:1) C (W ) = C R R3 ∗ = C (R) C R3 ∗. 0 1 ∼ 0 ∼ 0 0 × ⊗ (cid:0) (cid:0) (cid:1) (cid:1) (cid:0) (cid:1) 6 The extension (2.1.2) thus can be identified to the following one 0 //C0(R) I2 id⊗k2//C0(R) C0(R3)∗ id⊗v2//C0(R) A2 //0 . ⊗ ⊗ ⊗ Now, using [13, Theorem 9.7; Corollary 9.8] we obtain the assertion of Lemma 1. LEMMA 2. Set I = C (R2 R ) and A = C(S2) 1 0 ∗ 1 × The following diagram is commutative ... //K (I ) // K C(S3) // K (A ) //K (I ) // ... j 1 j j 1 j+1 1 (cid:0) (cid:1) β2 β2 β2 β2 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) ... //K (C (V )) // K (C (V)) //K (C (W )) // K (C (V )) // ... j 0 1 j 0 j 0 1 j+1 0 1 where β is the Bott isomorphism, j Z/2Z. 2 ∈ Proof. The proof is similar to that of lemma 1, by using the exact sequence (2.1.1) and diffeomorphisms: V ∼= R (R4)∗ ∼= R R+ S3, W1 ∼= R (R3)∗ ∼= R R+ S2. × × × × × × Before computing the K-groups, we need the following notations. Let u : R S1 be the → map u(z) = e2πi(z/√1+z2), z R ∈ Denote by u (resp. u ) the restriction of u on R (resp. R ). Note that the class [u ] + + + (resp. [u ]) is the canon−ical generator of K (C (R )) = Z (resp−. K (C (R )) = Z). Let us 1 0 + ∼ 1 0 ∼ consider−the matrix valued function p : (R2)∗ ∼= S1 R+ M2(C) (resp. p−: S2 ∼= D/S1 × → → M (C)) defined by: 2 1 cosπ x2 +y2 x+iy sinπ x2 +y2 1 − √x2+y2 p(x;y)(resp. p(x,y)) =  p p . 2 x iy sinπ x2 +y2 1+cosπ x2 +y2 − √x2+y2  p p  Then p (resp. p) is an idempotent of rank 1 for each (x;y) (R2)∗ (resp. (x;y) D/S1). ∈ ∈ Let [b] K (C (R2)) be the Bott element, [1] be the generator of K (C(S1)) = Z. 0 0 0 ∼ ∈ LEMMA 3 (See [15, p.234]). (i) K (B ) = Z2, K (B ) = 0, 0 1 ∼ 1 1 (ii) K (J ) = Z2 is generated by ϕ β [b]⊠[u ] and ϕ β [b]⊠[u ] ; K (J ) = 0, 0 2 ∼ 0 1 + 0 1 1 2 (iii) K (B ) = Z isgeneratedby ϕ β [(cid:0)1]⊠[u ] ;(cid:1)K (B ) = Z(cid:0) isgene−ra(cid:1)tedbyϕ β [p] [ε ] , 0 2 ∼ 0 1 + 1 2 ∼ 1 1 1 − where ϕ ,j Z/2Z, is the Thom-C(cid:0)onnes iso(cid:1)morphism (see[2]), β is the isomo(cid:0)rphism i(cid:1)n j 1 ∈ 1 0 Lemma 1, ε is the constant matrix and ⊠ is the external tensor product (see, for 1 (cid:18)0 0(cid:19) example, [2,VI.2]). LEMMA 4. (i) K C (V, ) = Z, K C (V, ) = Z, 0 ∗ ∼ 1 ∗ ∼ F F (cid:0) (cid:1) (cid:0) (cid:1) 7 (ii) K (J ) = 0; K (J ) = Z2 is generated by ϕ β [b]⊠[u ] and ϕ β [b]⊠[u ] , 0 1 1 1 ∼ 1 2 + 1 2 (iii) K (B ) = 0; K (B ) = Z2 is generated by ϕ β(cid:0)[¯1] and ϕ(cid:1)β [p¯] [ε(cid:0)] , − (cid:1) 1 1 0 1 ∼ 0 2 0 2 1 − where ¯1 is unit element in C(S2), ϕ is the Thom-Connes is(cid:0)omorphism(cid:1), β is the Bott 0 2 isomorphism. Proof. (i) K C (V, ) = K C(S3) = Z, i = 0,1. i ∗ ∼ i ∼ F (ii) Th(cid:0)e proof is(cid:1)similar(cid:0)to (ii)(cid:1)of lemma 3. (iii) By [9, p.206], we have K C(S2) = Z[¯1]+Z[q], where q P C(S2) . 0 2 ∈ (cid:0) (cid:1) (cid:0) (cid:1) Otherwise, in [9, p.48,53,56]; [13, p.162], one has shown that the map dim : K C(S2) Z 0 → (cid:0) (cid:1) is a surjective group homomorphism which satisfied dim[¯1] = 1, ker(dim) = Z and non- zero element q P C(S2) in the kernel of the map dim has the form [q] = [p¯] [ε ]. 2 1 ∈ − Hence, the result is(cid:0)derived(cid:1)straight away because β and ϕ are isomorphisms. 2 1 Proof of theorem 2 1. Computation of(γ ). Recall that theextension (γ )intheorem1 gives risetoasix-term 1 1 exact sequence 0 = K (J ) // K C (V,F) // K (B ) 0 1 0 ∗ 0 1 OO (cid:0) (cid:1) δ1 δ0 (cid:15)(cid:15) 0 = K1(B1)oo K1 C∗(V,F) oo K1(J1) (cid:0) (cid:1) By [11, Theorem 4.14], the isomorphisms Ext(B ,J ) = Hom (K (B ),K (J ) = Hom(Z2,Z2) 1 1 ∼ 0 1 1 1 ∼ (cid:0) (cid:1) associates the invariant γ Ext(B ,J ) to the connecting map δ : K (B ) K (J ). 1 1 1 0 0 1 1 1 ∈ → Since the Thom-Connes isomorphism commutes with K theoretical exact sequence − (see[14, Lemma 3.4.3]), we have the following commutative diagram (j Z/2Z): ∈ ... // K (J ) //K C (V,F) //K (B ) // K (J ) //... j 1 j ∗ j 1 j+1 1 OO OO OO OO (cid:0) (cid:1) ϕj ϕj ϕj ϕj+1 ... //K C (V ) // K C (V) //K C (W ) // K C (V ) // ... j 0 1 j 0 j 0 1 j+1 0 1 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) In view of Lemma 2, the following diagram is commutative ... //K C (V ) // K C (V) // K C (W ) //K C (V ) // ... j 0 1 1 0 j 0 1 j+1 1 1 OO OO OO OO (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) β2 β2 β2 β2 ... // K (I ) //K C(S3) // K (A ) //K (I ) //... j 1 j j 1 j+1 1 (cid:0) (cid:1) 8 Consequently, instead of computing δ : K (B ) K (J ), it is sufficient to compute 0 0 1 1 1 → δ : K (A ) K (I ). Thus, bythe proofof Lemma 4, we have todefine δ [p¯] [ε ] = 0 0 1 1 1 0 1 → − δ [p¯] (because δ [ε ] = (0;0) and δ [¯1] = (0;0)). By the usual defini(cid:0)tion (see[(cid:1)13, 0 0 1 0 p.1(cid:0)70](cid:1)), for [p¯] K(cid:0) (A(cid:1)), δ [p¯] = e2(cid:0)πip˜ (cid:1) K (I ) where p˜ is a preimage of p¯ in (a 0 1 0 1 1 ∈ ∈ matrix algebra over) C(S3), i(cid:0).e. (cid:1)v p˜=(cid:2) p¯. (cid:3) 1 z We can choose p˜(x,y,z) = p¯(x,y), (x,y,z) S3. √1+z2 ∈ Let p˜ (resp. p˜ ) be the restriction of p˜on R2 R (resp. R2 R ). Then we have + + − × × − δ [p¯] = e2πip˜ = e2πip˜+ + e2πip˜− K C R2 C R K C R2 0 1 0 0 + 1 0 ∈ ⊗ ⊕ ⊗ (cid:16) (cid:17) (cid:16) (cid:0) (cid:1) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) C R = K (I ) 0 1 1 − (cid:17) (cid:0) (cid:1) ^ By [13, Section 4], for each function f : R Q C R2 such that lim f(t) = n 0 ± → x 0 ^ ^ (cid:0) (cid:1) →± lim f(t),whereQ C R2 = a M C R2 ,e2πia = Id ,theclass[f] K C (R2) n 0 n 0 1 0 x n ∈ o ∈ ⊗ →±∞ (cid:0) (cid:1) (cid:0) (cid:1) 1 (cid:0) C (R ) canbedeterminedby[f] = W .[b]⊠[u ],whereW = Tr f (z)f 1(z) dz 0 f f ′ − ± ± 2πi ZR (cid:1) ± (cid:0) (cid:1) is the winding number of f. By simple computation, we get δ [p] = [b] ⊠ [u ] + [b] ⊠ [u ]. Thus γ = 0 1 0 + − 1 (cid:16)0 1(cid:17) ∈ HomZ(Z2,Z2). (cid:0) (cid:1) 2. Computation of (γ ). The extension (γ ) gives rise to a six-term exact sequence 2 2 K (J ) // K (B ) // K (B ) 0 2 0 1 0 2 OO δ1 δ0 (cid:15)(cid:15) K (B ) oo K (B ) oo K (J ) = 0 1 2 1 1 1 2 By [11, Theorem 4.14], γ2 = δ1 Hom K1(B2),K0(J2) = HomZ(Z,Z2). Similarly to ∈ part 1, taking account of Lemma 1 and(cid:0)3, we have the f(cid:1)ollowing commutative diagram (j Z/2Z) ∈ ... // K (J ) //K (B ) //K (B ) //K (J ) //... j 2 j 1 j 2 j+1 2 OO OO OO OO ϕj ϕj ϕj ϕj+1 ... //K C (V ) // K C (W ) // K C (W ) // K C (V ) //... j 0 2 j 0 1 j 0 2 j+1 0 2 OO OO OO OO (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) β1 β1 β1 β1 ... // Kj 1(I2) //Kj 1 C0(R3)∗ // Kj 1(A2) //Kj(I2) //... − − − (cid:0) (cid:1) Thus we can compute δ : K (A ) K (I ) instead of δ : K (B ) K (J ). By the 0 0 2 1 2 1 1 2 0 2 → → proof of Lemma 3, we have to define δ [p] [ǫ ] = δ [p] (because δ [ǫ ] = (0,0)). 0 1 0 0 1 − The same argument as above, we get δ (cid:0)[p] = [b](cid:1)⊠[u (cid:0)]+[(cid:1)b]⊠[u ]. Thu(cid:0)s γ(cid:1)= (1,1) 0 + 2 HomZ(Z,Z2) ∼= Z2. The proof is comple(cid:0)ted(cid:1). − (cid:3)∈ 9 REFERENCES 1. BROWN, L. G.; DOUGLAS, R. G.; FILLMORE, P. A., Extension of C*-algebra and K-homology, Ann. of Math, 105(1977), 265 - 324. 2. CONNES, A., An Analogue of the Thom Isomorphism for Crossed Products of a C*- algebra by an Action of R , Adv. In Math., 39(1981), 31 - 55. 3. CONNES, A., A Survey of Foliations and Operator Algebras, Proc. Sympos. Pure Mathematics, 38(1982), 521 - 628. 4. DIEP, D. N., Structure of the group C*-algebra of the group of affine transformations of the line (Russian), Funktsional. Anal. I Prilozhen, 9(1975), 63 - 64. 5. DIEP, D. N., Method of Noncommutative Geometry for Group C*-algebras. Reseach Notes in Mathematics Series, Vol.416. Cambridge: Chapman and Hall-CRC Press, 1999. 6. KAROUBI,M., K-theory: Anintroduction, Grund. derMath. Wiss. N0226,Springer- Verlag, Berlin-Heidelberg-New York, 1978. 7. KASPAROV, G. G., The operator K-functor and extensions of C*-algebras, Math. USSR Izvestija, 16 (1981), No 3, 513 - 572. 8. KIRILLOV, A.A., Elements oftheTheory ofRepresentations, Springer -Verlag, Berlin - Heidenberg - New York, (1976). 9. RORDAM, M., LARSEN, F., LAUSTSEN, N., An Introduction to K-Theory for C*- Algebras, Cambridge University Press, United Kingdom, (2000). 10. ROSENBERG, J., TheC*-algebrasofsomereal p-adicsolvablegroups, PacificJ.Math, 65 (1976), No 1, 175 - 192. 11. ROSENBERG, J., Homological invariants of extension of C*-algebras, Proc. Sympos. Pure Math., 38(1982), AMS Providence R.I., 35 - 75. 12. SON, V. M. ; VIET, H. H., Sur la structure des C*-algebres dune classe de groupes de Lie, J. Operator Theory, 11 (1984), 77 - 90. 13. TAYLOR, J. L., ”Banach Algebras and Topology”, in Algebras in Analysis, pp. 118- 186, Academic Press, New York, (1975). 14. TORPE, A. M., K-theoryforthe LeafSpace of FoliationsbyReeb Component, J. Func. Anal., 61 (1985), 15-71. 15. VU, L. A., ”On the structure of the C -Algebra of the Foliation formed by the Orbits ∗ of maximal dimendion of the Real Diamond Group”, Journal of Operator theory, pp. 227238 (1990). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.