K-THEORY OF THE LEAF SPACE OF FOLIATIONS FORMED BY THE GENERIC K-ORBITS OF SOME INDECOMPOSABLE MD -GROUPS 5 1 1 0 Le Anh Vu* and Duong Quang Hoa** 2 Department of Mathematics and Informatics n a University of Pedagogy, Ho Chi Minh City, Vietnam J E-mail: (*) [email protected] 1 1 (**) [email protected] ] T K Abstract . h t The paper is a continuation of the authors’ work [18]. In [18], we consider foliations a formed by the maximal dimensional K-orbits (MD -foliations) of connected MD - m 5 5 groups such that their Lie algebras have 4-dimensional commutative derived ideals and [ give a topological classification of the considered foliations. In this paper, we study K- 2 theory of the leaf space of some of these MD -foliations and characterize the Connes’ v 5 3 C*-algebras of the considered foliations by the method of K-functors. 1 3 5 . INTRODUCTION 3 0 0 1 In the decades 1970s 1980s, works of D.N. Diep [4], J. Rosenberg [10], G. G. Kasparov [7], − v: V. M. Son and H. H. Viet [12],... have seen that K-functors are well adapted to characterize i a large class of group C*-algebras. Kirillov’s method of orbits allows to find out the class X of Lie groups MD, for which the group C*-algebras can be characterized by means of suit- r a able K-functors (see [5]). In terms of D. N. Diep, an MD-group of dimension n (for short, an MD -group) is an n-dimensional solvable real Lie group whose orbits in the co-adjoint n representation (i.e., the K- representation) are the orbits of zero or maximal dimension. The Lie algebra of an MD -group is called an MD -algebra (see [5, Section 4.1]). n n In 1982, studying foliated manifolds, A. Connes [3] introduced the notion of C*-algebra associated to a measured foliation. In the case of Reeb foliations (see A. M. Torpe [14]), the method of K-functors has been proved to be very effective in describing the structure of Connes’ C*-algebras. For every MD-group G, the family of K-orbits of maximal dimension forms a measured foliation in terms of Connes [3]. This foliation is called MD-foliation associated to G. 0Key words: Lie group, Lie algebra, MD5-group, MD5-algebra, K-orbit, Foliation, Measured foliation, C*-algebra,Connes’ C*-algebra associated to a measured foliation. 2000AMS Mathematics Subject Classification: Primary 22E45,Secondary 46E25,20C20. 1 Combining methods of Kirillov (see [8, Section 15]) and Connes (see[3, Section 2, 5]), the first author had studied MD -foliations associated with all indecomposable connected 4 MD -groups and characterized Connes’ C*-algebras of these foliations in [16]. Recently, Vu 4 and Shum [17] have classified, up to isomorphism, all the MD -algebras having commutative 5 derived ideals. In [18], we have given a topological classification of MD -foliations associated to the 5 indecomposable connected and simply connected MD -groups, such that MD -algebras of 5 5 them have 4-dimensional commutative derived ideals. There are exactly 3 topological types of the considered MD -foliations, denoted by , , . All MD -foliations of type are 5 1 2 3 5 1 F F F F the trivial fibrations with connected fibre on 3-dimesional sphere S3, so Connes’ C*-algebras of them are isomorphic to the C*-algebra C(S3) following [3, Section 5], where denotes ⊗K K the C*-algebra of compact operators on an (infinite dimensional separable) Hilbert space. The purpose of this paper is to study K-theory of the leaf space and to characterize the structure of Connes’ C*-algebras C (V, ) of all MD -foliations (V, ) of type by the ∗ 5 2 F F F method of K-functors. Namely, we will express C (V, ) by two repeated extensions of the ∗ F form 0 //C (X ) // C (V, ) //B //0, 0 1 ∗ 1 ⊗K F 0 // C (X ) // B //C (Y ) // 0, 0 2 1 0 2 ⊗K ⊗K then we will compute the invariant system of C (V, ) with respect to these extensions. If ∗ F the given C*-algebras are isomorphic to the reduced crossed products of the form C (V)⋊H, 0 where Hisa Lie group, we canuse the Thom-Connes isomorphism to compute theconnecting map δ ,δ . 0 1 In another paper, we will study the similar problem for all MD -foliations of type . 5 3 F 1 THE FOLIATIONS OF TYPE MD 5 2 − F Originally, we will recall geometry of K-orbit of MD -groups which associate with MD - 5 5 foliations of type (see [18]). 2 F In this section, G will be always an connected and simply connected MD -group such 5 that its Lie algebras is an indecomposable MD -algebra generated by X ,X ,X ,X ,X 5 1 2 3 4 5 G { } with 1 := [ , ] = R.X R.X R.X R.X = R4, ad End( ) Mat (R). Namely, G G G 2⊕ 3⊕ 4⊕ 5 ∼ X1 ∈ G ≡ 4 will be one of the following Lie algebras which are studied in [17] and [18]. G 1. G5,4,11(λ1,λ1,ϕ) cosϕ sinϕ 0 0 − sinϕ cosϕ 0 0 ad = ;λ ,λ R 0 ,λ = λ ,ϕ (0,π). X1 0 0 λ 0 1 2 ∈ \{ } 1 6 2 ∈ 1 0 0 0 λ 2 2 2. 5,4,12(λ,ϕ) G cosϕ sinϕ 0 0 − sinϕ cosϕ 0 0 ad = ;λ R 0 ,ϕ (0,π). X1 0 0 λ 0 ∈ \{ } ∈ 0 0 0 λ 3. 5,4,13(λ,ϕ) G cosϕ sinϕ 0 0 − sinϕ cosϕ 0 0 ad = ;λ R 0 ,ϕ (0,π). X1 0 0 λ 1 ∈ \{ } ∈ 0 0 0 λ The connected and simply connected Lie groups corresponding to these algebras are denoted by G , G , G . All of these Lie groups are MD -groups 5,4,11(λ1,λ1,ϕ) 5,4,12(λ,ϕ) 5,4,13(λ,ϕ) 5 (see [17]) and G is one of them. We now recall the geometric description of the K-orbits of G in the dual space of . Let X ,X ,X ,X ,X be the basis in dual to the basis G∗ G { 1∗ 2∗ 3∗ 4∗ 5∗} G∗ X ,X ,X ,X ,X in . Denote by Ω the K-orbit of G including F = (α,β +iγ,δ,σ) in 1 2 3 4 5 F { } G = R5. ∗ ∼ G If β +iγ = δ = σ = 0 then Ω = F (the 0-dimensional orbit). F • { } If β +iγ 2 +δ2 +σ2 = 0 then Ω is the 2-dimensional orbit as follows F • | | 6 x,(β +iγ).e(a.e−iϕ),δ.eaλ1,σ.eaλ2 , x,a R ∈ n(cid:16) (cid:17) o when G = G , λ ,λ R , ϕ (0;π). 5,4,11(λ1,λ2,ϕ) 1 2 ∈ ∗ ∈ x,(β +iγ).e(a.e−iϕ),δ.eaλ,σ.eaλ , x,a R Ω = ∈ F n(cid:16) (cid:17) o when G = G , λ R , ϕ (0;π). 5,4,12(λ,ϕ) ∗ ∈ ∈ x,(β +iγ).e(a.e−iϕ),δ.eaλ,δ.aeaλ +σ.eaλ , x,a R n(cid:16) (cid:17) ∈ o when G = G , λ R , ϕ (0;π). 5,4,13(λ,ϕ) ∗ ∈ ∈ In [18], we have shown that, the family of maximal-dimensional K-orbits of G forms F measured foliation in terms of Connes on the open submanifold V = (x,y,z,t,s) G∗ : y2+z2 +t2 +s2 = 0 ∼= R R4 ∗( ∗ R5) ∈ 6 × ⊂ G ≡ (cid:8) (cid:9) (cid:0) (cid:1) Furthermore, all foliations V, , V, , V, are topologically F4,11(λ1,λ2,ϕ) F4,12(λ,ϕ) F4,13(λ,ϕ) equivalent to each other (λ ,λ(cid:0),λ R 0 ,ϕ(cid:1) (cid:0)(0;π)). Th(cid:1)us(cid:0), we need on(cid:1)ly choose a envoy 1 2 ∈ \{ } ∈ among them to describe the structure of the C*-algebra. In this case, we choose the foliation V, . (cid:16) F4,12(1,π2)(cid:17) In [18], we have described the foliation V, by a suitable action of R2. Namely, (cid:16) F4,12(1,π2)(cid:17) we have the following proposition. 3 PROPOSITION 1. The foliation V, can be given by an action of the commu- (cid:16) F4,12(1,π2)(cid:17) tative Lie group R2 on the manifold V. Proof. One needs only to verify that the following action λ of R2 on V gives the foliation V, (cid:16) F4,12(1,π2)(cid:17) λ : R2 V V × → ((r,a),(x,y +iz,t,s)) (x+r,(y +iz).e ia,t.ea,s.ea) − 7→ where (r,a) R2, (x,y +iz,t,s) V ∼= R (C R2)∗ ∼= R (R4)∗. Hereafter, for ∈ ∈ × × × simplicity of notation, we write (V, ) instead of V, . F (cid:16) F4,12(1,π2)(cid:17) It is easy to see that the graph of (V, ) is indentical with V R2, so by [3, Section 5], F × it follows from Proposition 1 that: COROLLARY 1 (analytical description of C (V, )). The Connes C -algebra C (V, ) ∗ ∗ ∗ F F can be analytically described the reduced crossed of C (V) by R2 as follows 0 C (V, ) = C (V)⋊ R2. ∗ ∼ 0 λ F (cid:3) 2 AS TWO REPEATED EXTENSIONS C (V, ) ∗ F 2.1. Let V , W , V , W be the following submanifolds of V 1 1 2 2 V = (x,y,z,t,s) V : s = 0 = R R2 R R , 1 ∼ ∗ { ∈ 6 } × × × W1 = V V1 = (x,y,z,t,s) V : s = 0 ∼= R (R3)∗ 0 ∼= R (R3)∗, \ { ∈ } × ×{ } × V = (x,y,z,t,0) W : t = 0 = R R2 R , 2 1 ∼ ∗ { ∈ 6 } × × W2 = W1 V2 = (x,y,z,t,0) W1 : t = 0 ∼= R (R2)∗. \ { ∈ } × It is easy to see that the action λ in Proposition 1 preserves the subsets V ,W ,V ,W . 1 1 2 2 Let i ,i ,µ ,µ be the inclusions and the restrictions 1 2 1 2 i : C (V ) C (V), i : C (V ) C (W ), 1 0 1 0 2 0 2 0 1 → → µ : C (V) C (W ), µ : C (W ) C (W ) 1 0 0 1 2 0 1 0 2 → → where each function of C (V ) (resp. C (V )) is extented to the one of C (V) (resp. C (W )) 0 1 0 2 0 0 1 by taking the value of zero outside V (resp. V ). 1 2 It is known a fact that i ,i ,µ ,µ are λ-equivariant and the following sequences are 1 2 1 2 equivariantly exact: (2.1.1) 0 //C (V ) i1 // C (V) µ1 //C (W ) // 0 0 1 0 0 1 (2.1.2) 0 //C (V ) i2 // C (W ) µ2 // C (W ) // 0 . 0 2 0 1 0 2 4 2.2. Now we denote by (V , ),(W , ),(V , ),(W , ) the foliations-restrictions of 1 1 1 1 2 2 2 2 F F F F (V, ) on V ,W ,V ,W respectively. 1 1 2 2 F THEOREM 1. C (V, ) admits the following canonical repeated extensions ∗ F (γ ) 0 //J ib1 //C (V,F) µc1 //B // 0, 1 1 ∗ 1 (γ ) 0 //J ib2 //B µc2 // B //0, 2 2 1 2 where J = C (V , ) = C (V )⋊ R2 = C (R3 R3) K, 1 ∗ 1 1 ∼ 0 1 λ ∼ 0 F ∪ ⊗ J = C (V , ) = C (V )⋊ R2 = C (R2 R2) K, 2 ∗ 2 2 ∼ 0 2 λ ∼ 0 F ∪ ⊗ B = C (W , ) = C (W )⋊ R2 = C (R ) K, 2 ∗ 2 2 ∼ 0 2 λ ∼ 0 + F ⊗ B = C (W , ) = C (W )⋊ R2, and the homomorphismes i ,i ,µ ,µ are defined by 1 ∗ 1 1 ∼ 0 1 λ 1 2 1 2 F i f (r,s) = i f (r,s), k = 1,2 k k b b b b (cid:16) (cid:17) (µ f)(r,s) = µ f (r,s), k = 1,2 bk k Proocf. We note that the graph of (V , ) is indentical with V R2, so by [3, section 5], 1 1 1 F × J = C (V , ) = C (V )⋊ R2 . Similarly, we have 1 ∗ 1 1 ∼ 0 1 λ F B = C (W )⋊ R2, 1 ∼ 0 1 λ J = C (V )⋊ R2, 2 ∼ 0 2 λ B = C (W )⋊ R2, 2 ∼ 0 2 λ From the equivariantly exact sequences in 2.1 and by [2, Lemma 1.1] we obtain the repeated extensions (γ ) and (γ ). 1 2 Furthermore, the foliation (V , ) can be derived from the submersion 1 1 F p : V R R2 R R R3 R3 1 1 ∗ ≈ × × × → ∪ p (x,y,z,t,s) = (y,z,t,signs). 1 Hence, by a result of [3, p.562], we get J = C (R3 R3) K. The same argument shows 1 ∼ 0 ∪ ⊗ that J = C R2 R2 K, B = C (R ) K. 2 ∼ 0 2 ∼ 0 + ∪ ⊗ ⊗ (cid:0) (cid:1) 5 3 COMPUTING THE INVARIANT SYSTEM OF C (V, ) ∗ F DEFINITION. The set of elements γ ,γ corresponding to the repeated extensions (γ ), 1 2 1 { } (γ ) in the Kasparov groups Ext (B ,J ), i = 1,2 is called the system of invariants of 2 i i C (V, ) and denoted by Index C (V, ). ∗ ∗ F F REMARK. Index C (V, ) determines the so-called stable type of C (V, ) in the set of all ∗ ∗ F F repeated extensions 0 // J // E //B // 0 , 1 1 0 // J //B // B //0. 2 1 2 The main result of the paper is the following. THEOREM 2. Index C (V, ) = γ ,γ , where ∗ 1 2 F { } 0 1 γ = in the group Ext (B ,J ) = Hom(Z2,Z2); 1 (cid:18) 0 1 (cid:19) 1 1 γ = (1,1) in the group Ext (B ,J ) = Hom(Z,Z2). 2 2 2 To prove this theorem, we need some lemmas as follows. LEMMA 1. Set I2 = C0(R2 R∗) and A2 = C0 (R2)∗ × The following diagram is commutative (cid:0) (cid:1) ... //K (I ) //K C (R3) //K (A ) //K (I ) //... j 2 j 0 ∗ j 2 j+1 2 (cid:0) (cid:1) β1 β1 β1 β1 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) ... //K C (V ) //K C (W ) // K C (W ) // K C (V ) //... j+1 0 2 j+1 0 1 j+1 0 2 j 0 2 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) where β is the isomorphism defined in [13, Theorem 9.7] or in [2, corollary VI.3], j Z/2Z. 1 ∈ Proof. Let k2 : I2 = C0 R2 R∗ C0 R3 ∗ × −→ (cid:0) (cid:1) (cid:0)(cid:0) (cid:1) (cid:1) v : C R3 ∗ A = C R2 ∗ 2 0 2 0 −→ (cid:0)(cid:0) (cid:1) (cid:1) (cid:0)(cid:0) (cid:1) (cid:1) be the inclusion and restriction defined similarly as in 2.1. One gets the exact sequence 0 //I k2 // C (R3) v2 //A // 0 2 0 ∗ 2 (cid:0) (cid:1) Note that C (V ) = C R R2 R = C (R) I , 0 2 ∼ 0 ∗ ∼ 0 2 × × ⊗ (cid:0) (cid:1) C (W ) = C R R2 ∗ = C (R) A , 0 2 ∼ 0 ∼ 0 2 × ⊗ (cid:0) (cid:0) (cid:1) (cid:1) C (W ) = C R R3 ∗ = C (R) C R3 ∗. 0 1 ∼ 0 ∼ 0 0 × ⊗ (cid:0) (cid:0) (cid:1) (cid:1) (cid:0) (cid:1) 6 The extension (2.1.2) thus can be identified to the following one 0 //C0(R) I2 id⊗k2//C0(R) C0(R3)∗ id⊗v2//C0(R) A2 //0 . ⊗ ⊗ ⊗ Now, using [13, Theorem 9.7; Corollary 9.8] we obtain the assertion of Lemma 1. LEMMA 2. Set I = C (R2 R ) and A = C(S2) 1 0 ∗ 1 × The following diagram is commutative ... //K (I ) // K C(S3) // K (A ) //K (I ) // ... j 1 j j 1 j+1 1 (cid:0) (cid:1) β2 β2 β2 β2 (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) (cid:15)(cid:15) ... //K (C (V )) // K (C (V)) //K (C (W )) // K (C (V )) // ... j 0 1 j 0 j 0 1 j+1 0 1 where β is the Bott isomorphism, j Z/2Z. 2 ∈ Proof. The proof is similar to that of lemma 1, by using the exact sequence (2.1.1) and diffeomorphisms: V ∼= R (R4)∗ ∼= R R+ S3, W1 ∼= R (R3)∗ ∼= R R+ S2. × × × × × × Before computing the K-groups, we need the following notations. Let u : R S1 be the → map u(z) = e2πi(z/√1+z2), z R ∈ Denote by u (resp. u ) the restriction of u on R (resp. R ). Note that the class [u ] + + + (resp. [u ]) is the canon−ical generator of K (C (R )) = Z (resp−. K (C (R )) = Z). Let us 1 0 + ∼ 1 0 ∼ consider−the matrix valued function p : (R2)∗ ∼= S1 R+ M2(C) (resp. p−: S2 ∼= D/S1 × → → M (C)) defined by: 2 1 cosπ x2 +y2 x+iy sinπ x2 +y2 1 − √x2+y2 p(x;y)(resp. p(x,y)) = p p . 2 x iy sinπ x2 +y2 1+cosπ x2 +y2 − √x2+y2 p p Then p (resp. p) is an idempotent of rank 1 for each (x;y) (R2)∗ (resp. (x;y) D/S1). ∈ ∈ Let [b] K (C (R2)) be the Bott element, [1] be the generator of K (C(S1)) = Z. 0 0 0 ∼ ∈ LEMMA 3 (See [15, p.234]). (i) K (B ) = Z2, K (B ) = 0, 0 1 ∼ 1 1 (ii) K (J ) = Z2 is generated by ϕ β [b]⊠[u ] and ϕ β [b]⊠[u ] ; K (J ) = 0, 0 2 ∼ 0 1 + 0 1 1 2 (iii) K (B ) = Z isgeneratedby ϕ β [(cid:0)1]⊠[u ] ;(cid:1)K (B ) = Z(cid:0) isgene−ra(cid:1)tedbyϕ β [p] [ε ] , 0 2 ∼ 0 1 + 1 2 ∼ 1 1 1 − where ϕ ,j Z/2Z, is the Thom-C(cid:0)onnes iso(cid:1)morphism (see[2]), β is the isomo(cid:0)rphism i(cid:1)n j 1 ∈ 1 0 Lemma 1, ε is the constant matrix and ⊠ is the external tensor product (see, for 1 (cid:18)0 0(cid:19) example, [2,VI.2]). LEMMA 4. (i) K C (V, ) = Z, K C (V, ) = Z, 0 ∗ ∼ 1 ∗ ∼ F F (cid:0) (cid:1) (cid:0) (cid:1) 7 (ii) K (J ) = 0; K (J ) = Z2 is generated by ϕ β [b]⊠[u ] and ϕ β [b]⊠[u ] , 0 1 1 1 ∼ 1 2 + 1 2 (iii) K (B ) = 0; K (B ) = Z2 is generated by ϕ β(cid:0)[¯1] and ϕ(cid:1)β [p¯] [ε(cid:0)] , − (cid:1) 1 1 0 1 ∼ 0 2 0 2 1 − where ¯1 is unit element in C(S2), ϕ is the Thom-Connes is(cid:0)omorphism(cid:1), β is the Bott 0 2 isomorphism. Proof. (i) K C (V, ) = K C(S3) = Z, i = 0,1. i ∗ ∼ i ∼ F (ii) Th(cid:0)e proof is(cid:1)similar(cid:0)to (ii)(cid:1)of lemma 3. (iii) By [9, p.206], we have K C(S2) = Z[¯1]+Z[q], where q P C(S2) . 0 2 ∈ (cid:0) (cid:1) (cid:0) (cid:1) Otherwise, in [9, p.48,53,56]; [13, p.162], one has shown that the map dim : K C(S2) Z 0 → (cid:0) (cid:1) is a surjective group homomorphism which satisfied dim[¯1] = 1, ker(dim) = Z and non- zero element q P C(S2) in the kernel of the map dim has the form [q] = [p¯] [ε ]. 2 1 ∈ − Hence, the result is(cid:0)derived(cid:1)straight away because β and ϕ are isomorphisms. 2 1 Proof of theorem 2 1. Computation of(γ ). Recall that theextension (γ )intheorem1 gives risetoasix-term 1 1 exact sequence 0 = K (J ) // K C (V,F) // K (B ) 0 1 0 ∗ 0 1 OO (cid:0) (cid:1) δ1 δ0 (cid:15)(cid:15) 0 = K1(B1)oo K1 C∗(V,F) oo K1(J1) (cid:0) (cid:1) By [11, Theorem 4.14], the isomorphisms Ext(B ,J ) = Hom (K (B ),K (J ) = Hom(Z2,Z2) 1 1 ∼ 0 1 1 1 ∼ (cid:0) (cid:1) associates the invariant γ Ext(B ,J ) to the connecting map δ : K (B ) K (J ). 1 1 1 0 0 1 1 1 ∈ → Since the Thom-Connes isomorphism commutes with K theoretical exact sequence − (see[14, Lemma 3.4.3]), we have the following commutative diagram (j Z/2Z): ∈ ... // K (J ) //K C (V,F) //K (B ) // K (J ) //... j 1 j ∗ j 1 j+1 1 OO OO OO OO (cid:0) (cid:1) ϕj ϕj ϕj ϕj+1 ... //K C (V ) // K C (V) //K C (W ) // K C (V ) // ... j 0 1 j 0 j 0 1 j+1 0 1 (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) In view of Lemma 2, the following diagram is commutative ... //K C (V ) // K C (V) // K C (W ) //K C (V ) // ... j 0 1 1 0 j 0 1 j+1 1 1 OO OO OO OO (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) β2 β2 β2 β2 ... // K (I ) //K C(S3) // K (A ) //K (I ) //... j 1 j j 1 j+1 1 (cid:0) (cid:1) 8 Consequently, instead of computing δ : K (B ) K (J ), it is sufficient to compute 0 0 1 1 1 → δ : K (A ) K (I ). Thus, bythe proofof Lemma 4, we have todefine δ [p¯] [ε ] = 0 0 1 1 1 0 1 → − δ [p¯] (because δ [ε ] = (0;0) and δ [¯1] = (0;0)). By the usual defini(cid:0)tion (see[(cid:1)13, 0 0 1 0 p.1(cid:0)70](cid:1)), for [p¯] K(cid:0) (A(cid:1)), δ [p¯] = e2(cid:0)πip˜ (cid:1) K (I ) where p˜ is a preimage of p¯ in (a 0 1 0 1 1 ∈ ∈ matrix algebra over) C(S3), i(cid:0).e. (cid:1)v p˜=(cid:2) p¯. (cid:3) 1 z We can choose p˜(x,y,z) = p¯(x,y), (x,y,z) S3. √1+z2 ∈ Let p˜ (resp. p˜ ) be the restriction of p˜on R2 R (resp. R2 R ). Then we have + + − × × − δ [p¯] = e2πip˜ = e2πip˜+ + e2πip˜− K C R2 C R K C R2 0 1 0 0 + 1 0 ∈ ⊗ ⊕ ⊗ (cid:16) (cid:17) (cid:16) (cid:0) (cid:1) (cid:2) (cid:3) (cid:2) (cid:3) (cid:2) (cid:3) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) C R = K (I ) 0 1 1 − (cid:17) (cid:0) (cid:1) ^ By [13, Section 4], for each function f : R Q C R2 such that lim f(t) = n 0 ± → x 0 ^ ^ (cid:0) (cid:1) →± lim f(t),whereQ C R2 = a M C R2 ,e2πia = Id ,theclass[f] K C (R2) n 0 n 0 1 0 x n ∈ o ∈ ⊗ →±∞ (cid:0) (cid:1) (cid:0) (cid:1) 1 (cid:0) C (R ) canbedeterminedby[f] = W .[b]⊠[u ],whereW = Tr f (z)f 1(z) dz 0 f f ′ − ± ± 2πi ZR (cid:1) ± (cid:0) (cid:1) is the winding number of f. By simple computation, we get δ [p] = [b] ⊠ [u ] + [b] ⊠ [u ]. Thus γ = 0 1 0 + − 1 (cid:16)0 1(cid:17) ∈ HomZ(Z2,Z2). (cid:0) (cid:1) 2. Computation of (γ ). The extension (γ ) gives rise to a six-term exact sequence 2 2 K (J ) // K (B ) // K (B ) 0 2 0 1 0 2 OO δ1 δ0 (cid:15)(cid:15) K (B ) oo K (B ) oo K (J ) = 0 1 2 1 1 1 2 By [11, Theorem 4.14], γ2 = δ1 Hom K1(B2),K0(J2) = HomZ(Z,Z2). Similarly to ∈ part 1, taking account of Lemma 1 and(cid:0)3, we have the f(cid:1)ollowing commutative diagram (j Z/2Z) ∈ ... // K (J ) //K (B ) //K (B ) //K (J ) //... j 2 j 1 j 2 j+1 2 OO OO OO OO ϕj ϕj ϕj ϕj+1 ... //K C (V ) // K C (W ) // K C (W ) // K C (V ) //... j 0 2 j 0 1 j 0 2 j+1 0 2 OO OO OO OO (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) (cid:0) (cid:1) β1 β1 β1 β1 ... // Kj 1(I2) //Kj 1 C0(R3)∗ // Kj 1(A2) //Kj(I2) //... − − − (cid:0) (cid:1) Thus we can compute δ : K (A ) K (I ) instead of δ : K (B ) K (J ). By the 0 0 2 1 2 1 1 2 0 2 → → proof of Lemma 3, we have to define δ [p] [ǫ ] = δ [p] (because δ [ǫ ] = (0,0)). 0 1 0 0 1 − The same argument as above, we get δ (cid:0)[p] = [b](cid:1)⊠[u (cid:0)]+[(cid:1)b]⊠[u ]. Thu(cid:0)s γ(cid:1)= (1,1) 0 + 2 HomZ(Z,Z2) ∼= Z2. The proof is comple(cid:0)ted(cid:1). − (cid:3)∈ 9 REFERENCES 1. BROWN, L. G.; DOUGLAS, R. G.; FILLMORE, P. A., Extension of C*-algebra and K-homology, Ann. of Math, 105(1977), 265 - 324. 2. CONNES, A., An Analogue of the Thom Isomorphism for Crossed Products of a C*- algebra by an Action of R , Adv. In Math., 39(1981), 31 - 55. 3. CONNES, A., A Survey of Foliations and Operator Algebras, Proc. Sympos. Pure Mathematics, 38(1982), 521 - 628. 4. DIEP, D. N., Structure of the group C*-algebra of the group of affine transformations of the line (Russian), Funktsional. Anal. I Prilozhen, 9(1975), 63 - 64. 5. DIEP, D. N., Method of Noncommutative Geometry for Group C*-algebras. Reseach Notes in Mathematics Series, Vol.416. Cambridge: Chapman and Hall-CRC Press, 1999. 6. KAROUBI,M., K-theory: Anintroduction, Grund. derMath. Wiss. N0226,Springer- Verlag, Berlin-Heidelberg-New York, 1978. 7. KASPAROV, G. G., The operator K-functor and extensions of C*-algebras, Math. USSR Izvestija, 16 (1981), No 3, 513 - 572. 8. KIRILLOV, A.A., Elements oftheTheory ofRepresentations, Springer -Verlag, Berlin - Heidenberg - New York, (1976). 9. RORDAM, M., LARSEN, F., LAUSTSEN, N., An Introduction to K-Theory for C*- Algebras, Cambridge University Press, United Kingdom, (2000). 10. ROSENBERG, J., TheC*-algebrasofsomereal p-adicsolvablegroups, PacificJ.Math, 65 (1976), No 1, 175 - 192. 11. ROSENBERG, J., Homological invariants of extension of C*-algebras, Proc. Sympos. Pure Math., 38(1982), AMS Providence R.I., 35 - 75. 12. SON, V. M. ; VIET, H. H., Sur la structure des C*-algebres dune classe de groupes de Lie, J. Operator Theory, 11 (1984), 77 - 90. 13. TAYLOR, J. L., ”Banach Algebras and Topology”, in Algebras in Analysis, pp. 118- 186, Academic Press, New York, (1975). 14. TORPE, A. M., K-theoryforthe LeafSpace of FoliationsbyReeb Component, J. Func. Anal., 61 (1985), 15-71. 15. VU, L. A., ”On the structure of the C -Algebra of the Foliation formed by the Orbits ∗ of maximal dimendion of the Real Diamond Group”, Journal of Operator theory, pp. 227238 (1990). 10