IInnttrroodduuccttiioonn ttoo EElleeccttrroollyyttee PPrroocceessss SSiimmuullaattiioonn UUssiinngg PPRROO//IIII wwiitthh PPRROOVVIISSIIOONN Dr. Jungho Cho, Professor Department of Chemical Engineering Dong Yang University IInnttrroodduuccttiioonn (cid:202) PRO/II Electrolytes has the full capabilities of SimSci's Conventional PRO/II. (cid:202) Electrolyte code from OLI Systems, Inc., (cid:121) Electrolyte Thermodynamic Methods (Rigorous) (cid:121) Electrolyte Models (Fixed set of components) (cid:121) Chemical and Phase Equilibrium Algorithm (cid:121) Pure Component + Species Interaction Data Banks Slide 2 IInnttrroodduuccttiioonn (cid:202) SIMSCI’s ELDIST algorithm for modeling distillation columns with electrolytes, (cid:202) ELECTROLYTE UTILITY PACKAGE (cid:121) User-added Electrolyte Model Generation Program (cid:121) Data Bank Management Program Slide 3 IImmpplleemmeennttaattiioonn SimSci SimSci/OLI OLI Systems SimSci/OLI PRO/II Interface Electrolytes Utility Package Set Up P Models R O II Built-In OLILIB w Thermo Model P Equations Data Bank R Perform (DBSFILE) Models O Flash V (cid:202)Equilibri Model I um Generation S Set Up (cid:202)Solver I ELDIST O OLI N Component Data Banks Slide 4 UUnniitt OOppeeaattiioonnss (cid:202) Unit Operation Modules built in PRO/II (cid:121) Flash (cid:121) Calculator (cid:121) Pump (cid:121) Controller (cid:121) Valve, Mixer, Splitter (cid:121) Optimizer (cid:121) Pipe (cid:121) ELDIST Column (cid:121) HEX, LNG HEX (cid:121) Conversion Reactor (cid:121) Stream Calculator (cid:121) Equilibrium Reactor (cid:121) HCURVE (cid:121) Batch Reactor Slide 5 TThheerrmmooddyynnaammiicc MMooddeellss (( II )) (cid:202) Pregenerated models for 40 systems: (cid:121) Amine systems (cid:121) Caustic systems (cid:121) Acid systems (cid:121) Benfield systems (cid:121) Mixed salt systems (cid:121) Scrubber systems (cid:121) Sour water systems (cid:121) LLE and Hydrate systems Slide 6 TThheerrmmooddyynnaammiicc MMooddeellss (( IIII )) (cid:202) User added model can be generated using Electrolyte Utility Package(EUP): (cid:121) Maximum of 60 built-in models allowed (cid:121) Maximum of 50 model components allowed, but 30 component maximum is recommended. Slide 7 AApppplliiccaattiioonn RRaannggee (cid:202) Aqueous Elelctrolyte (cid:121) Temperature: 0 ~ 200 C (cid:121) Pressure: 0 ~ 200 atm (cid:121) Dissolved Gases: 0 ~ 30 mole% (cid:121) Ionic Solutes: 0 ~ 30 ionic strength (cid:202) Amine System (cid:121) Pressure: 0 ~ 30 atm (cid:202) LLE System (cid:121) Organic Solutes: Max wt% = 10 Slide 8 PPRROO//IIII EElleeccttrroollyyttee && CCoonnvveennttiioonnaall PPRROOIIII (cid:202) PRO/II Electrolyte Module takes the followings into account: (cid:121) Chemical and Phase Equilibria (cid:121) Charge Balance (cid:121) Material Balance (cid:202) All Thermodynamic Method in Conventional PRO/II tank into account only Phase Equilibria except: (cid:121) SOUR (cid:121) GPSWATER (cid:121) AMINE Slide 9 CCoommppoonneenntt RReeccoonnssttiittuuttiioonn (cid:202) Phase and chemical equilibrium are solved for unknown concentrations of the true species (ionic, neutral) in the aqueous phase. (cid:202) A reconstitution procedure is used to calculate apparent concentrations of the model’s neutral components that are consistent with the true species concentrations. Slide 10 CCoommppoonneenntt RReeccoonnssttiittuuttiioonn (cid:202) Example: (cid:121) Models components: H2O, NAOH, HCL, NACL (cid:121) Feed components: 50mol H2O + 1mol NAOH + 1mol HCL (cid:121) Product as True Chemical Species: 51mol H2O+1mol NA+1+1mol CL-1+10-7mol OH-1+10-7mol H+1 (cid:202) Product as Reconsitituted Components: 51mol H2O + 1mol NACL (cid:202) Reconstitution is automatic. (cid:202) Output gives true and reconstituted values. Slide 11 SSiimmuullaattiioonn SStteeppss:: PPrreeddeeffiinneedd MMooddeess 1. Description of the simulation 2. Input Unit of Measurement 3. Select Electrolyte Thermodynamic Slide 12 SSiimmuullaattiioonn SStteeppss:: PPrreeddeeffiinneedd MMooddeess 4. Component Databank: OLILIB and SIMSCI Bank 5. Build PFD with Unit Operations and Streams 6. Run 7. Generate Output Slide 13 PPrroobblleemm ##11:: HHCCLL && HH22OO SSoolluuttiioonn (cid:202) Run a simple Flash model for H2O-HCL system using: (cid:121) NRTL Method (cid:121) HCL Electrolyte Method (cid:202) And then compare the results. Slide 14 PPrroobblleemm ##11:: HHCCLL && HH22OO SSoolluuttiioonn Stream Name HCL Stream Description VAPOR Phase Vapor Temperature 20.000 C Pressure 1.033 KG/CM2 Flowrate 50.000 KG-MOL/HR Composition H2O 0.000 FLASH HCL 1.000 DP=0.0, Duty=0.0 Stream Name H2O Stream Description Phase Liquid Temperature 20.000 C Pressure 1.033 KG/CM2 Flowrate 100.000 KG-MOL/HR Composition H2O 1.000 AQUEOUS HCL 0.000 Slide 15 PPrroobblleemm ##11:: HHCCLL && HH22OO SSoolluuttiioonn VLE LIQUID INTERACTION PARAMETERS FOR H2O-HCL PAIR NRTL BINARY COEFFICIENTS I J A(I,J) B(I,J) C(I,J) ALPHAC UNITS FROM A(J,I) B(J,I) C(J,I) ALPHAT ------ -------- ---------- ----------- ------- ------------- 1 2 0.000000 2222.9199 0.00 0.2007 DEG K SIMSCI VLEBANK 0.000000 -2037.3400 0.00 0.0000 X-Y Plot for HCL and H2O 1.0 x = y Equilibrium curve Mole Fraction HCL00..68 mposition, 0.4 Vapor Co0.2 0 0 0.2 0.4 0.6 0.8 1.0 Liquid Composition, Mole Fraction HCL Slide 16 PPrroobblleemm ##22:: NNaa22CCOO33 SSoolluubbiilliittyy iinn WWaatteerr (cid:202) Employ a Flash Solid model to determine the solubility of Na2CO3 in water. FWS1 TEMP = 25 C PRES = 1.0332 KG/CM2 CA1 LIQUID Stream Name FEED Fluid Rates KG-MOL/HR H2O 55.51 NA2CO3 5.00 Temperature 25.00 C Pressure 1.0197 KG/CM2 SOLID ELECTROLYTE SYSTEM = LLE AND HYDRATE ELECTROLYTE MODEL = TWL1 Slide 17 PPrroobblleemm ##22:: NNaa22CCOO33 SSoolluubbiilliittyy iinn WWaatteerr (cid:202) Employ Case Study option for the followings: - Temperature from 5 C to 100 C with step size = 5 C 5.0 Molality 4.0 3.0 Molality 2.0 1.0 0 0 20.0 40.0 60.0 80.0 100.0 TEMP, C Slide 18 PPrroobblleemm ##33:: SSooddiiuumm CChhlloorriiddee SSoolluuttiioonn VAPOR 55.1 kg-mol/sec HO 2 6.5 kg-mol/sec NaCl 0.1 kg-mol/sec CO Isothermal 2 Flash 25 C FEED 1 bar LIQUID Solids Separator LIQUID & SOLID SOLID Slide 19 PPrroobblleemm ##33:: SSooddiiuumm CChhlloorriiddee SSoolluuttiioonn (cid:202) Part 1: (cid:121) Is the CO2 absorbed in the solution and to what extent? (cid:121) Is the solution saturated with NaCl? (cid:121) Is there an excess of salt, and does it form a solid phase? (cid:121) What is the pH of the solution? (cid:202) Part 2: (cid:121) How does increasing the temperature of the flash change the pH and NaCl concentration of the outlet streams? Slide 20