Mon.Not.R.Astron.Soc.000,000–000(0000) Printed15December 2015 (MNLATEXstylefilev2.2) Jumping the Gap: The Formation Conditions and Mass Function of “Pebble-Pile” Planetesimals Philip F. Hopkins1,2∗ 1TAPIR,Mailcode350-17,CaliforniaInstituteofTechnology,Pasadena,CA91125,USA SubmittedtoMNRAS,January,2014 ABSTRACT Inaturbulentproto-planetarydisk,dustgrainsundergolargedensityfluctuationsandundertherightcircumstances, grain overdensities can collapse under self-gravity (forming a “pebble pile” planetesimal). Using a simple model for fluctuations predicted in simulations, we estimate the rate-of-formation and mass function of self-gravitating 5 1 planetesimal-massbodiesformedbythismechanism.Thisdependssensitivelyonthegrainsize,disksurfacedensity, 0 andturbulentMachnumbers.However,whenitoccurs,theresultingplanetesimalmassfunctionisbroadandquasi- 2 universal, with a slope dN/dM∝M−(1−2), spanning size/mass range ∼10−104km (∼10−9−5M ). Collapse to ⊕ planetesimalthroughsuper-Earthmassesispossible.Thekeyconditionisthatgraindensityfluctuationsreachlarge c e amplitudesonlargescales,wheregravitationalinstabilityproceedsmosteasily(collapseofsmallgrainsissuppressed D byturbulence).Thisleadstoanewcriterionfor“pebble-pile”formation:τ (cid:38)0.05ln(Q1/2/Z )/ln(1+10α1/4)∼ s d 0.3ψ(Q,Z,α) where τs =tsΩ is the dimensionless particle stopping time. In a MMSN, this requires grains larger 3 thana=(50, 1, 0.1)cmatr=(1, 30, 100)au.Thismayeasilyoccurbeyondtheiceline,butatsmallradiiwould 1 dependontheexistenceoflargeboulders.Becausedensityfluctuationsdependstronglyonτ (inverselyproportional s to disk surface density), lower-density disks are more unstable. Conditions for pebble-pile formation also become ] P morefavorablearoundlower-mass,coolerstars. E Keywords: planetsandsatellites:formation—protoplanetarydiscs—accretion,accretiondisks—hydrodynamics . h —instabilities—turbulence p - 1 INTRODUCTION ispossible,ifgrainsaresufficientlylarge,abundant,andthedisks o obeyotherconditionsone.g.theirgasdensitiesandsoundspeeds. r Itiswidelybelievedthatdustgrainsformthefundamentalbuilding Theconcentrationphenomenon(includingso-called“vortextraps”; st blocks of planetesimals. But famously, models which attempt to Barge&Sommeria1995;Zhu&Stone2014)canoccurviaself- a formplanetesimalsviathegrowthofdustgrainsinproto-planetary excitation of turbulent motions in the “streaming” instability (Jo- [ disksfacethe“meterbarrier”or“gap”:planetesimalsofsizes(cid:38)km hansen & Youdin 2007), or in externally driven turbulence, such arerequiredbeforegravityallowsthemtogrowfurtherviaaccre- 3 asthatexcitedbythemagneto-rotationalinstability(MRI),global v tion, but grains larger than ∼cm tend to shatter rather than stick gravitationalinstabilities,convection,orKelvin-Helmholtz/Rossby 8 whentheycollide,preventingfurthergraingrowth. instabilities(Dittrichetal.2013;Jalali2013;Hendrix&Keppens 5 Therefore, alternative pathways to planetesimal formation 2014).Thedirectnumericalexperimentshaveshownthatthemag- 4 havereceivedconsiderableattention.Ifadustgrains–evensmall nitude of these fluctuations depends on the parameter τ =t Ω, 2 ones–couldbestronglyenoughconcentratedat,say,thediskmid- s s theratioofthegas“stopping”time(friction/dragtimescale)t to 1. plane,theirdensitywouldbesufficienttocausetheregiontocol- the orbital time Ω−1, with the most dramatic fluctuations arousnd 0 lapsedirectlyunderitsownself-gravity,and“jumpthegap”todi- τ ∼1.Theseexperimentshavealsodemonstratedthatthemagni- 4 rectly form a km-sized planetesimal from much smaller grains – s tudeofclusteringdependsonthevolume-averagedratioofsolids- 1 whatwecalla“pebblepileplanetesimal”(Goldreich&Ward1973; to-gas (ρ˜≡ρ /ρ ), and basic properties of the turbulence (such : forreviewsseeChiang&Youdin2010;Johansenetal.2014).In d g v astheMachnumber).Thesehaveprovidedkeyinsightsandmoti- i general,though,turbulenceinthedisksetsa“lowerlimit”tothede- vatedconsiderableworkstudyingtheseinstabilities;however,the X greetowhichgrainscansettleintoarazor-thinsub-layer,andthis parameter space spanned by direct simulations is always limited. r hasgenerallybeenregardedasabarriertothe“pebblepile”sce- a Moreover, it is not possible to simulate the full dynamic range nariodescribedabove(butseeLyraetal.2009b;Leeetal.2010; ofturbulenceinthesesystems:the“topscales”ofthesystemare Chiang&Youdin2010,andreferencestherein). λ ∼AU, while the viscous/dissipation scales λ of the turbu- However,itisalsowell-establishedthatthenumberdensityof max η lenceareλ ∼m-km(ReynoldsnumbersRe∼106−109).Clearly, solid grains can fluctuate by multiple orders of magnitude when η someanalyticmodelsforthesefluctuations–evensimplisticones “stirred” by turbulence, even in media where the turbulence is –areneededformanycalculations. highlysub-sonicandthegasisnearlyincompressible–ithasthere- fore been proposed that in some “lucky” regions, this turbulent Fortunately, the question of “preferential concentration” of concentrationmightbesufficienttotrigger“pebblepile”formation aerodynamic particles is actually much more well-studied in the (seee.g.Braccoetal.1999;Cuzzietal.2001;Johansen&Youdin terrestrialturbulenceliterature.Therebothlaboratoryexperiments 2007; Carballido et al. 2008a; Lyra et al. 2008, 2009a,b; Bai & (Squires&Eaton1991;Fessleretal.1994;Rouson&Eaton2001; Stone2010b,a,c;Panetal.2011).Thesestudies–mostlydirectnu- Gualtieri et al. 2009; Monchaux et al. 2010) and numerical sim- mericalsimulations–haveun-ambiguouslydemonstratedthatthis ulations (Cuzzi et al. 2001; Yoshimoto & Goto 2007; Hogan & Cuzzi2007;Becetal.2009;Panetal.2011;Monchauxetal.2012) have long observed that very small grains, with stokes numbers ∗ E-mail:[email protected] St ≡ts/te(λη)∼1 (ratio of stopping time to eddy turnover time (cid:13)c 0000RAS 2 Hopkins at the viscous scale) can experience order-of-magnitude density fluctuations at small scales (at/below the viscous scale). Consid- 6 τs=0.001 τ =0.01 erableanalyticprogresshasbeenmadeunderstandingthisregime: τs=0.1 s demonstrating, for example, that even incompressible gas turbu- 5 τs=1.0 lenceisunstabletothegrowthofinhomogeneitiesingraindensity ) τs=10 fl (Elperinetal.1996;Elperinetal.1998),andpredictingthebehav- Z iorofthesmall-scalegrain-graincorrelationfunctionusingsimple /d4 Z modelsofgaussianrandom-fieldturbulence(Sigurgeirsson&Stu- ρ δ art2002;Becetal.2007). g( 3 Thesestudieshaverepeatedlyshownthatgraindensityfluc- lo tuations are tightly coupled to the local vorticity field: grains are “flungout”ofregionsofhighvorticitybycentrifugalforces,and 2 collect in the “interstices” (regions of high strain “between” vor- tices).1Studiesofthecorrelationfunctionsandscalingbehaviorof Q=60, α=10−4 1 higher Stokes-number particles suggest that, in the inertial range 3 2 1 0 1 log(λ/h ) (ignoring gravity and shear), the same dynamics apply, but with 6 d the scale-free replacement of a “local Stokes number” t/t , i.e. s e Q=60, α=10−6 whatmattersforthedynamicsonagivenscalearethevorticesof Q=60, α=10−4 thatscale,andsimilarconcentrationeffectscanoccurwheneverthe 5 Q=60, α=10−2 eddyturnovertimeiscomparabletothestoppingtime(e.g.Yoshi- Q=10, α=10−4 moto&Goto2007;Becetal.2008;Wilkinsonetal.2010;Gus- )fl Q=150, α=10−4 tavssonetal.2012).Severalauthorshavepointedoutthatthiscrit- Z 4 / icallylinksgraindensityfluctuationstothephenomenonofinter- Zd mittencyanddiscrete,time-coherentstructures(vortices)onscales ρ δ 3 largerthantheKolmogorovscaleinturbulence(seeBecetal.2009; g( o Olla2010,andreferencestherein).Inparticular,Cuzzietal.(2001) l demonstrateconvincinglythatgraindensityfluctuationsbehavein 2 a multi-fractal manner: multi-fractal scaling is a key signature of λ=h d well-tested, simple geometric models for intermittency (e.g. She λ=λ(t =t) e e s &Leveque1994).Inthesemodels,thestatisticsofturbulenceare 1 3 2 1 0 1 approximatedbyregardingtheturbulentfieldasahierarchicalcol- log(τ ) lection of “stretched” singular, coherent structures (e.g. vortices) s ondifferentscales(Dubrulle1994;She&Waymire1995;Chainais Figure1.Criticalgrainoverdensityδρ≡ρd(λ)/(cid:104)ρd(cid:105)fordynamicalcol- 2006). lapseunderself-gravity(Eq.18).WeplotδρZd/Z(cid:12),sinceitisthecombina- Suchstatisticalmodelshavebeenwell-testedasadescription tionδρZdthatmustexceedsomecriticalvalueasafunctionofscale(λ/hd), ToomreQ,stoppingtimeτs=tsΩ,andturbulencestrengthα.Top:Criti- ofthegasturbulencestatistics(includinggasdensityfluctuations; caldensityvs.scale,fordifferentgrainsizes(τs)inadiskwith“standard” seee.g.Burlaga1992;Sorriso-Valvoetal.1999;Budaev2008;She MMSNpropertiesat∼1au(Q=60,α=10−4).Onmostscales,larger & Zhang 2009; Hopkins 2013b). More recently, first steps have grainsrequiresmallerfluctuationstocollapse,becausetheinitialdustdisk been taken to link them to grain density fluctuations: for exam- isthinner(higher-density)andresistancefromgaspressureisweaker.Bot- ple, in the cascade model of Hogan & Cuzzi (2007), and the hi- tom:Criticaldensityvs.τs,evaluatedeitheratthediskscaleheight(hd,near erarchicalmodelofHopkins(2013c).Thesemodels“bridge”be- wherethecollapseoverdensityδρ(λ)isminimized;solid)orthecharacter- tween the well-studied regime of small-scale turbulence and that isticscalewheredensityfluctuationsaremaximized(λe(te=ts);dotted). oflarge,astrophysicalparticlesinshearing,gravitatingdisks.The Bothgenerallydecreasewithτs untilτs∼1.Forsmallgrains(τs(cid:28)1), key concepts are based on the work above: we first assume that thecriticaloverdensitynearλe(te=ts)(cid:28)hdislargebecauseofturbulent support.WevaryQandα;thecriticaloverdensitiesincreasewithQ,asex- grain density fluctuations are driven by coherent velocity “struc- pected,andwithα(sinceturbulentsupportvs.gravityislarger),thoughthe tures,”forwhichwecansolveanalyticallytheperturbationowing lattereffectisweak. toasinglestructureofagivenscale.BuildingonCuzzietal.(2001) andothers,wethenattachthiscalculationtoawell-tested,simple, cascade model for the statistics of velocity structures. In Hogan underwhich“pebblepile”planetesimalformationmayoccur,and et al. (1999); Cuzzi et al. (2001); Hogan & Cuzzi (2007); Teitler inthatcase,toestimatethemassfunctionofplanetesimalsformed. etal.(2009)andHopkins(2013c),thesemodelsareshowntogive agoodmatchtobothdirectnumericalsimulationsandlaboratory 2 THEMODEL experiments. 2.1 OverviewandBasicParameters Inthispaper,wecombinetheseanalyticapproximationswith simplecriteriaforgravitationalcollapse,tocalculatetheconditions Consider a grain-gas mixture in a Keplerian disk, at some (mid- plane)distancer fromthecentralstarofmassM .Assumethat ∗ ∗ thegrainsareinadiskwithsurfacedensityΣ andexponentialver- d tical scale-height h ((cid:104)ρ (z)(cid:105)∝exp(−|z|/h )), so the mid-plane 1 Itissometimessaidthatanti-cyclonic,large-scalevortices“collect”dust d d d density (cid:104)ρ (cid:105) ≡(cid:104)ρ (z=0)(cid:105)=Σ /(2h ). This is embedded in a grains.Butitismoreaccuratetosaythatgrainspreferentiallyavoidregions d 0 d d d withhighmagnitudeofvorticity|ω|.Ifsufficientlylargevorticesareanti- gasdiskwithcorrespondingΣg,Hg,(cid:104)ρg(cid:105)0,andsoundspeedcsand cyclonicandalignedwiththediskplane,theyrepresentalocalminimumin theglobalgrain-to-gasmassratioisdefinedbyZd≡Σd/Σg.Being |ω|,sograinsconcentratebybeingdispersedoutofhigher-|ω|regions. Keplerian, the disk has orbital frequency Ω≡(GM∗/r∗3)1/2 and (cid:13)c 0000RAS,MNRAS000,000–000 JumpingtheGap:Pebble-PilePlanetesimals 3 2001),massfractionZ .Themid-planestoppingtimeis d 6 τ =0.001 τs=0.01 (cid:40) τs=0.1 t = ρ¯dRd × 1 (Rd≤9λσ/4) (1) ) 5 τss=1.0 s (cid:104)ρg(cid:105)0cs (4Rd)/(9λσ) (Rd>9λσ/4) fl τ =10 Z s whereλ =1/(n σ(H ))=µm /((cid:104)ρ (cid:105) σ(H ))isthemean-free / 4 σ g 2 p g 0 2 Zd pathinthegas(ngisthegasnumberdensity,mptheprotonmass,µ δρ themeanmolecularweight,andσ(H2)thecrosssectionformolec- log( 3 uthlaerdcuosltlissicoanles)h.Weigehcta,nhdth=en(cid:112)deαfi/n(eατs+≡τst)sΩ≈.T(cid:112)hαis/aτnsdHαg,daetgeermneirnael resultthatholdsforbothlargeandsmallτ (Carballidoetal.2006). 2 s Nowallowafluctuationρ (k)=δ (cid:104)ρ (cid:105)(δ (cid:54)=1)ofthemean d ρ d ρ β=0 graindensityaveragedonthescalekcenterednearthemidplane, 1 where k ≡ 1/λ is the wavenumber (λ the wavelength) of the 3 2 1 0 1 log(λ/h ) fluctuation. For the incompressible (Kolmogorov) turbulent cas- d cade,weexpectanrmsturbulentvelocityoneachscale(cid:104)v2(k)(cid:105)≡ g αc2f(λ/λ )with f ∼(λ/λ )2/3whereλ isthetop/driving 6 s t max t max max scaleofthecascade(wetakeλ ≈H ).3 Wecandefinethecor- max g respondingeddyturnovertimet (k)=λ/(cid:104)v2(k)(cid:105)1/2.Notethatby e g 5 assumingaKolmogorovspectrum,weareimplicitlyassumingthat ) fl grainsdonotmodifythegasvelocitystructures.Thisistruewhen Z / 4 thedensityfluctuationsareweak,butlessclearwhentheyarelarge d Z (so that the local grain density becomes large compared to the δρ gasdensity).However,preliminarysimulationresultssuggestthe ( 3 g powerspectraofthegasturbulencearenotmuchdifferentinthis o l limit(seee.g.Johansen&Youdin2007;Panetal.2011;Hendrix 2 &Keppens2014). The grains will also have a scale-dependent velocity disper- β=1 sion following the turbulent cascade, for which we can define 1 3 2 1 0 1 (cid:104)v2(k)(cid:105)≡αc2g(λ/λ ). However, grains are partially-coupled d s t max log(λ/hd) togas,sogt isingeneralanon-trivialfunctionwhichwederivein AppendixA. Onlarge scales(for smallgrains)wheret (cid:28)t (k), s e Figure2.AsFig.1(top),butsimplyforcingβ=0(nogaspressure)or thegrainsarewell-entrainedbythegas,soweexpectg ≈ f,but β =1 (treating the gas as perfectly-coupled). For β =1, the predicted t t on small scales wheret (cid:29)t (k), the grains are effectively colli- thresholdsarenotdramaticallydifferentfromourfullcalculationexceptat s e sionless,sohaveaconstant(scale-independent)minimumvelocity intermediatescalesorforlargegrainsonsmallscales.Takingβ=0,how- dispersion. ever,wouldleadonetoinfermuchsmallercollapsedensities(byanorder ofmagnitudeormore)onmanyscales.Onemustaccountforgaspressure Inordertocalculatethemassfunctionof“pebblepiles”–the resistingthecollapseofgrainsonlargescales.Note,though,thatevenne- numberdensityorprobabilityofforming“interesting”fluctuations glectinggaspressureentirely,collapseonsmallscales(cid:46)10−3hdrequires –werequirefourthings: enormousdensityfluctuationsδρ(cid:38)104. • (1)Amodelfortheproto-planetarydisk.Thisisgivenbythe descriptionaboveand§2.2 • (2)Amodelforthestatisticsofgraindensityfluctuations.This epicyclicfrequencyκ≈Ω(KepleriancircularvelocityV =ΩR). K isoutlinedin§2.4,andisbasedonthedirectnumericalsimulations In the regime of interest in this paper, the Mach numbers of gas andexperimentsdescribedin§1. turbulencewithinthemid-planedustlayeraresmall((cid:28)1;Voelk etal.1980;Laughlin&Bodenheimer1994;Gammie2001;Hughes et al. 2011), so the gas density fluctuations are much smaller than the grain density fluctuations (Passot et al. 1988; Vazquez- 3 Moreaccurately,wecancorrectlyincludetheenergy-containingrange Semadeni 1994; Scalo et al. 1998) and we can treat the gas as (λ > λmax) by taking the isotropic turbulent power spectrum E(k) ∝ approximately incompressible ρ ≈(cid:104)ρ (z)(cid:105). This also gives the k−5/3(1+|kλmax|−2)−(2−[−5/3])/2(Bowman1996).Thisgives g g gas scale height Hg =cs/Ω, and the usual Toomre Q parameter (cid:104)v2g(λ)(cid:105)=αc2s ft(λ/λmax) (2) Q≡csκ/(πGΣg)=Ω2/(2πG(cid:104)ρg(cid:105)0).Wecandefinetheusualtur- 4Γ[11/6] (cid:90) x bulentα≡(cid:104)v2(cid:105)/c2,where(cid:104)v2(cid:105)isthermsturbulentvelocityofthe ft(x)≡ √ t−1/3(1+t2)−11/6dt (3) gasaveragedognthselargestscgalesofthesystem.2 πΓ[1/3] 0 ≈1.189x2/3(1+1.831x7/3)−2/7 (4) WewillfocusonamonolithicgrainpopulationwithsizeR = d R cm, internal density ρ¯ ≈2gcm−3 (Weingartner & Draine We use this (the approximate form is accurate to ∼1% at all k) in our d,cm d fullnumericalcalculations.Somecutoffisnecessaryatlargescalesorelse apower-lawcascadecontainsadivergentkineticenergy(andwedonot expectλmax(cid:29)Hg).However,wedonotincludeanexplicitmodelforthe 2 Westressthatα=(cid:104)v2g(cid:105)/c2s isherepurelytofunctionasausefulparam- dissipationrange(scalesbelowKolmogorovλη)–i.e.weassumeinfinite eterdefiningtheturbulentvelocities.Wearenotspecificallyassuminga Reynoldsnumber–sinceallquantitiesinthispaperareconvergedalready Shakura&Sunyaev(1973)-typeviscous“α-disk”noraGammie(2001)- onmuchlargerscales.Fortheconditionsofinterest,λη∼0.1km(Cuzzi typegravito-turbulentdisk. etal.2008). (cid:13)c 0000RAS,MNRAS000,000–000 4 Hopkins • (3)Acriterionforan“interesting”fluctuation.Wetakethisto andre-radiatedemission(inwhichcasetheexternalradiationpro- beafluctuationwhichissufficientlylargethatitcanundergody- ducesahotsurfacedustlayerwhichre-radiates∼1/2theabsorbed namicalcollapseunderself-gravity(overcomingresistancetocol- lightbackintothedisk,maintainingT4 ≈T4 /2;seeChiang mid,∗ eff,∗ lapse from gas drag and pressure, turbulent kinetic energy, shear &Goldreich1997).5 andangularmomentum).Wederivethiscriterionin§2.3andAp- 2.3 CriteriaforDynamicalGravitationalCollapse pendicesB-C. • (4) A mathematical method to “count” the interesting fluc- Now,todefinethemassfunctionof“interesting”graindensityfluc- tuations, given the assumptions above. This is provided by the tuations. Here, we will define “interesting” as those fluctuations excursion-setformalism,assummarizedin§2.5 whichexceedsomecriticaldensityρcrit,abovewhichtheycancol- lapseunderself-gravityonadynamicaltimescale.Thisisnotthe 2.2 PhysicalDiskModels onlychannelbywhichdustoverdensitiescanformplanetesimals! Therearesecularinstabilities(e.g.Youdin2011;Shariff&Cuzzi In order to attach physical values to the dimensionless quantities 2011), and grain overdensities could promote grain growth; but above,werequireadiskmodel.Wewilladoptthefollowing,mo- theserequiredifferentconsiderations(see§6),andareoutsidethe tivatedbytheminimum-masssolarnebula(MMSN),foradiskof scopeofourcalculationhere. arbitrarysurfacedensityaroundasolar-typestar:4 For an grain overdensity or mode with size/wavelength λ= Ω=(cid:114)GrM∗3∗ ≈6.3ra−u3/2yr−1 (5) 1ρ/crkit,=thρecrcitr(iλtic=alkd−e1n)s.itIytiρsccriotnwvielnlibeentatofudnecfitinoenthoeftlhoactalwgaavse-tloen-dguthst, massratioaveragedonascaleλaroundapointx(e.g.averagedin Σ =Σ 1000r−3/2gcm−2 (6) g 0 au asphereofradiusλaboutthepointx) Teff,∗=(cid:16)(0.054rra2u∗2/7)R2∗(cid:17)1/4T∗≈140ra−u3/7K (7) ρ˜=ρ˜(x,k)≡1+ρd(ρxg,k) (15) whereTeff,∗istheeffectivetemperatureofthedisk(Chiang&Gol- Ifweconsidergrainswhicharepurelycollisionless(nograin- dreich1997);R∗ andT∗ aretheeffectivesizeandtemperatureof gas interaction), then a Toomre analysis gives the following cri- thestar. terion for gravitational instability of a mid-plane perturbation of FollowingChiang&Youdin(2010),Eqs.3-15,thesechoices wavenumberk: determinetheparameters |kh | (cid:115)k T 0>ω2=κ2+(cid:104)v2d(k)(cid:105)k2−4πGρgρ˜1+|kdhd| (16) c = B mid ≈0.64r−3/14kms−1 (8) s µm au Theω hereisthefrequencyoftheassumed(linear)perturbations p (∝exp(−ıωt);seeAppendixB);forω2<0,themodeisunsta- H c g = s ≈0.022r2/7 (9) ble.Notethatthisisidenticaltothecriterionforastellargalactic r V au ∗ K disk (Binney & Tremaine 1987). We show in Appendix B that a Σ (cid:104)ρ (cid:105) = g ≈1.5×10−9Σ r−39/14gcm−3 (10) systematicdustsettling/driftvelocitydoesnotchangethiscriterion g 0 2H 0 au g significantly,solongasthedriftvelocityv ∼τ ηV (cid:28)V .Here drift s K K Q= csΩ ≈61Σ−1r−3/14 (11) theκtermrepresentsthecontributionofangularmomentumresist- πGΣg 0 au ingcollapse,and(cid:104)v2d(k)(cid:105)isthermsturbulentvelocityofgrainson 1 ∂((cid:104)ρ (cid:105) c2) the scale k; for a derivation of the turbulent term here see Chan- Π= 2(cid:104)ρ (cid:105) V c ∂gln0r s ≈0.035ra2u/7 (12) drasekhar(1951);Chavanis(2000).6ThenegativeterminGrepre- g 0 K s sentsself-gravity,andde-stabilizestheperturbationatsufficiently 1 1.2Σ−1r39/14 λ = ≈ 0 au cm (13) σ n σ(H ) 1+(r /3.2)3/7 g 2 au (cid:40) 5 Moreaccurately,wecantaketheeffectivetemperaturefromillumina- τs≈MAX 00..0000414ΣR−0d12,crma3u/r2a−uR9/d,7c(m1+(rau/3.2)3/7) (14) tainogn&tobGeo:lTder4fef,i∗ch=19T9∗47α).TSRin2∗c/e(4wre∗2)alwloiwthnαoTn-≈ze0ro.0α05,rtha−uis1+im0p.l0ie5sra2au/n7e(fCfehci-- wanidthwµe≈tak2e.3th(eapmporolepcruialtaerfcorrosas-ssoeclatiromniσx(tuHre)o≈f m2×ole1c0u−la1r5(g1a+s) t1i9v7e3v)i,swcohsiictyhapnroddaucccersetainonefrfaetcetMiv˙e≈tem3πpαeract2suΣregTΩe4f−f,1ac(cS≈ha3kuM˙raΩ&2/S(u8nπyσaBev) (T/70K)−1)(Chapman&Cowling1970).He2reTmid,∗ isthedisk ((cid:112)σBkBiTsmtihd/e(µBomltpz)m.Aanmnocroenasctacnutr)a.teNeostteimtahtiesodfeTpmeinddisstohnenthgeivetenrmbycs2solv=- mgaisd-cpilracnuelatremvpeeloractiutyre,ananddtΠhedeKfienpelesrtihaenocffirsceutlbaertwveeleoncitthyemVea−n ingtheimplicitequationTm4id=(3/4)[τV+4/3+2/(3τV)]Te4ff,acc+[1+ (cid:104)V (cid:105)≡ηV ,whereΠ≡ηV /c;thisisrelatedtothegraindriftKve- τV−1]Te4ff,∗,whereτV =τV(Tmid)=κR(Tmid)Σg/2istheverticaloptical locgiatsyv ≡K 2ηV τ [(1+ρK˜)2+s τ2/4]1/2[τ2+(1+ρ˜)2]−1(Nak- depthfromthemidplane.HereκR istheRosselandmeanopacity,which drift K s s s wecantakefromthetabulatedvaluesinSemenovetal.(2003)(crudely, agawaetal.1986). κR∼5cm2g−1atTmid>160KandκR∼2.4×10−4T2cm2g−1K−2at The expression we use for Tmid,∗ is the approximate expres- lowerTmid.Weusethismoredetailedestimateforourfullnumericalcal- sion for the case of a passive flared disk irradiated by a central culation,howeveritmakesalmostnodifferencefortheparameterspacewe solar-typestar,assumingthediskisopticallythicktotheincident consider,comparedtothesimplescalingsabove. 6 More exactly, for grains on small scales – where they are locally col- lisionless–weshouldcombinetheturbulentvelocityanddensityterms, 4 WeassumeastellarmassM∗≈M(cid:12);usingasizeR∗≈1.8R(cid:12)andeffec- takinginsteadρd→ρdF(ω/κ,k2(cid:104)v2d(k)(cid:105)/κ2)whereF isthereduction tivetemperatureT∗≈4500Kforayoungstar,orR∗≈R(cid:12),T∗≈6000K factordeterminedbyintegrationoverthephase-spacedistribution.How- foramorematurestargiveidenticalresultsinourcalculations.Variations ever,therelevantstabilitythresholdcomesfromevaluatingF nearω≈0; intheassumedstellarageleadtopercent-levelcorrectionstothemodel, inthisregimewecanTaylorexpandF (assumingaMaxwellianvelocity muchsmallerthanourotheruncertainties. distribution),andtoleadingorderwerecoverthesolutioninEq.18.The (cid:13)c 0000RAS,MNRAS000,000–000 JumpingtheGap:Pebble-PilePlanetesimals 5 largeρ˜.Thetermsin|kh |ontherightaretheexactsolutionforan paperwemakethesimpleapproximation7 d exponentialverticaldiskandsimplyinterpolatebetweenthetwo- (cid:114) dcaimseenosniosncaalle(tshi(cid:46)n-dhisk()seceasEelmonegscreaelens1(cid:38)98h7d;aKndimthreete-adl.im2e0n0s2i,onfoarl β≈ ts+tgrtagvrav =(1+ts/tgrav)−1=(cid:16)1+4πτs 3ρ˜Q(cid:17)−1 (19) d derivations). where we assume t ≈(3π/32Gρ)1/2, for regions which meet grav In the opposite, perfectly-coupled (t →0) limit, we have a s our dynamical collapse criterion (i.e. this does not apply to singlefluid,sothedispersionrelationisidenticaltothatofapure, secularly-sedimentingregions,orregionswhereself-gravityisnot singlecollisionalfluid,inwhichwesimplydefine“dust”and“gas” strongerthanallotherforcesincludingthesupportfromgasdrag). sub-components Alternativederivationsofthesescalingsfromthelinearequa- tions for coupled gas-dust fluid, and including the non-linear 1 0>ω2=κ2+ρ˜(c2s+(cid:104)v2g(k)(cid:105))k2 (17) stochastic effects of turbulence, are presented in Appendices B- C, respectively. If anything, we have chosen to err on the side of ρ˜−1 |kh | + (cid:104)v2(k)(cid:105)k2−4πGρ ρ˜ d cautionanddefineastrictcriterionforcollapse–almostallhigher- ρ˜ d g 1+|kh | d order effects make collapse slightly easier, not harder. This crite- =κ2+c2sk2+(cid:104)v2(k)(cid:105)k2−4πGρ ρ˜ |khd| rionissufficienttoensurethat(atleastintheinitialcollapsephase) ρ˜ g 1+|kh | apebblepileisgravitationallybound(includingthethermalpres- d sure of gas being dragged with dust and turbulent kinetic energy Here cs and (cid:104)v2g(k)(cid:105) represent gas pressure and turbulent support ofgasanddust),andgravitationalcollapseissufficientlystrongto (and we used (cid:104)v2g(k)(cid:105)=(cid:104)v2d(k)(cid:105) for the perfectly-coupled case). overcomegaspressureforces,tidalforces/angularmomentum/non- Notethatthetermsdescribingthegaspressure/kineticenergyden- linearshearingoftheoverdensity,turbulentvorticityand“pump- sity have a pre-factor 1/ρ˜ =ρg/(ρg+ρd), since what we need ing”oftheenergyandmomentumintheregion,andram-pressure forthemixed-grain-gasperturbationistheenergydensityperunit forcesfromthe“headwind”owingtoradialdrift.Similarly,when mass in the perturbation. Likewise, the grain kinetic energy den- this criterion is met, the gravitational collapse timescale is faster sity term has a pre-factor (ρ˜−1)/ρ˜=ρd/(ρg+ρd). Since both thantheorbitaltime,thegraindrifttimescale,theeffectivesound- sitinthesameexternalpotentialandself-gravitateidentically,the crossingtimeoftheclump,andtheeddyturnovertime. κ and G terms need no pre-factor. In this limit we can think of Usingthedefinitionsin§2.1,Eq.18canbere-written: the 1/ρ˜ factor as simply an enhanced “mean molecular weight” fromtheperfectly-draggedgasgrains(sotheeffectivesoundspeed 0>1+(cid:16)Hg(cid:17)2 1 (cid:104)β(cid:16)1+αf(cid:2) λ (cid:3)(cid:17) (20) of the gas ceff →c/(cid:112)1+ρ /ρ =c/ρ˜1/2). In other words, in hd λ˜2ρ˜ t λmax s s d g s theperfectly-coupledlimit,thesystembehavesasgaswhichmust (cid:2) λ (cid:3)(cid:105) 2Q−1 +α(ρ˜−1)g − ρ˜ “carry”someextraweightindust(seealsoYoudin2011;Shariff& t λmax 1+λ˜ Cuzzi2011,2014). τ (cid:104) (cid:16) (cid:17) (cid:105) 2Q−1 Wecaninterpolatebetweenthesecasesbywriting =1+λ˜2sρ˜ β α−1+ft +(ρ˜−1)gt − 1+λ˜ ρ˜ (21) 0>ω2≡κ2+βρ˜(c2s+(cid:104)v2g(k)(cid:105))k2 whereλ˜ ≡λ/hd andweabbreviate ft = ft(λ/λmax).Thishasthe solution ρ˜−1 |kh | + ρ˜ (cid:104)v2d(k)(cid:105)k2−4πGρgρ˜1+|kdh | (18) ρ˜>ρ˜crit(λ)≡ψ0(1+(cid:112)1+ψ1/ψ0) (22) d Q (cid:104) (cid:105) Theonlyimportantambiguityintheaboveisthetermβ,whichwe ψ0≡ 4 (1+λ˜) 1+τsλ˜−2gt (23) introduce(inaheuristicandadmittedlyad-hocmanner)torepre- 2τ (cid:104) (cid:105)(cid:104) (cid:105)−1 sentthestrengthofcouplingbetweengrainsandgas(β=0isun- ψ1≡ λ˜2s β(α−1+ft)−gt 1+τsλ˜−2gt (24) coupled/collisionless;β=1isperfectly-coupled).Ingeneral,βis (Note, if β itself is a function of ρ˜, then this is an implicit equa- someunknown,presumablycomplicatedfunctionofalltheparam- tion for ρ˜ which must be solved numerically). Recall the di- etersabove,whichcanonlybeapproximatedinthefullynon-linear crit mensionless grain density fluctuation δ =ρ /(cid:104)ρ (cid:105) , so ρ˜=1+ casebynumericalsimulations(andtheexactcriterionforinterme- ρ d d 0 (cid:112) δ ((cid:104)ρ (cid:105) /(cid:104)ρ (cid:105) )=1+δ (Σ /Σ )(H /h )=1+δ Z τ/α.So diate cases between these limits may require terms beyond those ρ d 0 g 0 ρ d g g d ρ d s intermsofδ ,thecriterionbecomes whichcanbeapproximatedbytheβhere).However,thelimitsare ρ straightforward:ifaperturbationcollapsesonafree-falltimetgrav, (cid:114)α(cid:16) (cid:17) andtgrav(cid:28)ts,weexpectβ→0(sincethereisnotimeforgasto δρZd> τ ρ˜crit(λ)−1 (25) s decelerategrains).Converselyift (cid:29)t,β→1.Thereforeinthis grav s 2.4 ASimpleRepresentationofGrainDensityFluctuations inIncompressibleGas Hopkins(2013c)presentsomesimple,analyticexpressionsforthe exact solution can be determined for the purely collisional limit (identi- caltoEq.18)orthepurelycollisionlesslimit(identicaltoastellardisk, statisticsofgraindensityfluctuationsinaturbulentproto-planetary wheretheminimumdensityforcollapseρ˜issmallerbyafactor=0.935. Giventheotheruncertaintiesinourcalculation,thisdifferenceisnegligible. Moreover,inAppendixC,weshowthattheformoftheturbulenttermsin 7 ThisapproximationismotivatedbytheMaxey(1987)linearexpansion Eq.16accountsforthenon-linear,time-dependentandstochasticbehavior ofthesolutionforthede-celerationofdustgrainsbymolecularcollisions oftheturbulence(i.e.accountsforfluctuationsinthevelocitydispersions, fortimest(cid:28)tsinasymmetric,homogeneoussphere.Theratioofthedust andrepresentsthecriterionforaregionwheretheprobabilityofsuccessful de-celerationtermtothetermfromgaspressureifthespherewerepuregas collapseislarge). (ρ−1∇P)inthislimitisthesameasβinEq.19. (cid:13)c 0000RAS,MNRAS000,000–000 6 Hopkins disk.Forourpurposeshere,whatisimportantisthattheseexpres- 2.5 Counting“Interesting”DensityFluctuations sionsprovideareasonable“fittingfunction”totheresultsofdirect For any model for the statistics of grain density fluctuations, and numerical simulations and laboratory experiments studying grain any threshold criterion for an “interesting” fluctuation (both as a density fluctuations resulting from a variety of underlying mech- functionofscale),thereisawell-definedmathematicalframework anisms (e.g. driven turbulence, zonal flows, streaming-instability forcalculatingthepredictedmassfunction,sizedistribution,cor- andKelvin-Helmholtzinstabilities;Johansen&Youdin2007;Bai relationfunction,andrelatedstatisticsoftheobjects/regionswhich &Stone2010c;Dittrichetal.2013;Jalali2013;Hendrix&Kep- exceedthethreshold.Thisisthe“excursionsetformalism,”well- pens2014).Weshouldnotethatthisdirectlybuildsonseveralpre- known in cosmology as the “extended Press Schechter” method viousanalyticmodelsforgrainclusteringaroundtheKolmogorov bywhichdarkmatterhalomassfunctions,clustering,andmerger (turbulentdissipation)scaleandintheinertialrange(e.g.Elperin histories can be analytically calculated (there, the statistics are et al. 1996; Elperin et al. 1998; Hogan & Cuzzi 2007; Bec et al. givenbytheinitialGaussianrandomfieldandcosmologicalpower 2008;Wilkinsonetal.2010;Gustavssonetal.2012).Wehaveex- spectrum, and “interesting” regions are those which turn around perimented with some of these models and find, for small grains from the Hubble flow; see Bond et al. 1991). Recently, the same wheretheclusteringoccursonsmallscales(wheret (cid:28)Ω−1,and e frameworkhasbeenappliedtopredictthemassfunctionofstruc- shear/rotationcanbeneglected),theygivequalitativelysimilarre- tures (e.g. giant molecular clouds and voids) formed on galactic sults;wediscussthisfurtherin§5.Howeverthesepreviousmodels scalesbysuper-sonicinterstellarturbulence(Hopkins2012a);the didnotconsiderthecaseofarotatingdiskwithlargegrainswhere initial mass function (Hennebelle & Chabrier 2008, 2009; Hop- t ∼Ω−1,inwhichcasethebehaviorcandifferdramatically(see s kins2012b,2013d)andcorrelationfunctions/clustering(Hopkins e.g.Lyraetal.2008). 2013e)ofcoresandyoungstarsinsidemolecularclouds;andthe massspectrumofplanetswhichcanformviadirectcollapseintur- bulent,low-Qdisks(Hopkins&Christiansen2013).Forreviews, We briefly describe the model in Hopkins (2013c) here, but seeZentner(2007);Hopkins(2013a);Offneretal.(2013). interestedreadersshouldseethatpaper.Fundamentally,itfollows Therearemanywaystoapplythismethodology.Probablythe Hogan & Cuzzi (2007) in assuming grain density fluctuations on simplest,andwhatweusehere,isaMonteCarloapproach.Con- different scales can – like gas density fluctuations in supersonic sidersomeannulusinthediskatradiusr .Selectsomearbitrarily ∗ turbulence (Hopkins 2013b) – be represented by a multiplicative largenumberofMonteCarlo“samplingpoints”;eachoftheserep- randomcascade.Atanyinstant,agroupofgrains“sees”agasvor- resentsadifferentrandomlocationxwithintheannulus(i.e.they ticityfieldwhichcanberepresentedasasuperpositionofcoherent randomlysamplethevolume)–really,eachisadifferentrandom velocitystructuresor“eddies”withawiderangeofcharacteristic realizationofthefield,givenitsstatistics.Now,wecanaskwhat spatial scales λ and timescales t . If we consider a single, ideal- e thedensityofdustgrainsis,averagedinspheresofsizeλ,around izededdyorvortex,wecananalyticallysolvefortheeffectithas eachofthesepoints(ρ (x,λ)).Ifthis“initial”λ=λ issufficiently d 0 onthegraindensitydistributioninandarounditself(assumingthe large: vortex survives for some finite timescale ∼t ). When t is much e s smallerthante,thegrainsaretightly-coupledtothegas,sothevor- λ=λ0(cid:29)Hg (26) texhasnoeffectontheaveragegraindensitydistribution(sincethe ρ (x,λ )→(cid:104)ρ (x,λ )(cid:105) (27) d 0 d 0 gasisincompressible);whent ismuchlargerthant ,thevortexis s e forallx,i.e.allpointshavethesamemeandensityaroundthemon unabletoperturbthegrains.Butwhent ∼t ,thevorteximprints s e sufficientlylargescales(thisisjustthedefinitionofthemeanden- large(order-unity)changesinthedensityfield.Thesechangesare sity,afterall).Now,takeadifferentialstep“down”inscale–this multiplicative,sototheextentthatthevorticityfieldcanberepre- correspondstoshrinkingthesmoothingspherebysomeincrement sentedbyhierarchicalcascademodels,thegraindensitydistribu- ∆λ,andaskwhatthemeandensityinsideeachsphereis.Forthe tiononvariousscalesbehavesasamultiplicativerandomcascade. spherearoundeachpointx,thisisgivenbytheappropriatecondi- AssumingtheturbulenceobeysaKolmogorovpowerspectrum,and tionalprobabilitydistributionfunctionP(δ ,λ −∆λ|δ [λ ],λ ) assumingsome“fillingfactor”ofstructureswhicheachbehaveas ρ 0 ρ 0 0 (essentially the probability of a given change in the mean den- scaledversionsoftheidealvortex(constrainedtomatchthatpower sity,betweentwovolumesseparatedbysomedifferentiallysmall spectrum),witheachgrainencounteringarandomGaussianfield smoothingsize),or: ofvortexstructuresovertime,andadoptingasimpleheuristiccor- rectionforthe“back-reaction”ofgrainsongas,thisleadstoapre- λ→λ −∆λ (28) 0 dictionforalognormal-like(randommultiplicative)distributionof δ (x,λ )→δ (x,λ −∆λ)=δ (x,λ )+∆δ (x) (29) ρ 0 ρ 0 ρ 0 ρ localgraindensities. P(∆δ )=P[∆δ |δ (λ ),λ ,∆λ] (30) ρ ρ ρ 0 0 The conditional probability distribution function Quantitatively,foragivensetofglobal,dimensionlessprop- P[∆δρ|δρ(λ0),λ0,∆λ] is directly related to the power spec- erties of the turbulent disk: τ, α, and Π, the model predicts the trumofdensityfluctuations(seeHopkins2013a,Eq.2-12),andis s distribution of grain density fluctuations (relative to the mean), determinedbythemodelforP(δρ,λ)describedin§2.4.Knowing δρ(x,λ)=ρd(x,λ)/(cid:104)ρd(cid:105)0.Recall,thisisthegraindensityaveraged thatdistribution,wedrawarandomvalueof∆δρ foreachMonte within a radius λ (as ρd(x,λ)=Md(|x(cid:48)−x|<λ)/(4πλ3/3)= Carlo point x, determining δρ(x,λ0−∆λ). We then repeat this δ(λ)(cid:104)ρ (cid:105))aroundarandompointinspacex.Usingtheseparame- untilwereachλ→0(makingsuretotakesmallenoughsteps∆λ d ters,weobtainP(δ ,λ),theprobabilitythatanypointinspacelives sothatthestatisticsareconverged). ρ withinaregion,averagedonsizescaleλ,withgrainover-density Foreachrandompointx,wenowhavethevalueoftheden- betweenδρ andδρ+dδρ.Thisisapproximatelylog-normal,with sity field smoothed on all scales, δρ(x,λ) – in the excursion-set avariancethatdependsonscale(wheremostofthepower,orcon- language, this is referred to as its “trajectory.” We can now sim- tribution to the variance, comes from scales where the “resonant plycomparethistothepredictedcollapsethresholdoneachscale condition”t ∼t issatisfied). s e (cid:13)c 0000RAS,MNRAS000,000–000 JumpingtheGap:Pebble-PilePlanetesimals 7 ρ˜ (λ) (Eq. 25), to ask whether the region is “interesting” (ex- Reynolds-number flow, the fluctuations are approximately self- crit ceeds the critical density for dynamical collapse). To avoid the similar,becauseallgrains“see”alarge,scale-free(power-law)tur- ambiguityof“double-counting”or“cloudsinclouds”(i.e.trajec- bulent cascade at both larger scales (t (cid:29)t) and smaller scales e s tories which exceed ρ˜ (λ ) but also have some λ >λ where (t (cid:28)t). As shown in many studies (Cuzzi et al. 2001; Yoshi- crit 1 2 1 e s theyexceedρ˜ (λ ),whichrepresentssmallerscalesthatareinde- moto&Goto2007;Hogan&Cuzzi2007;Panetal.2011;Hop- crit 2 pendently self-gravitating/collapsing embedded in larger collaps- kins 2013c), the maximum local density fluctuations in this limit ing regions), we specifically consider the “first crossing distribu- saturateatvaluesδmax∼300−1000. ρ tion” (see Bond et al. 1991; Hopkins 2012b,a). Namely, if a tra- Since t (λ < λ ) ∝ λ2/3, this “resonance” will occur at e max jectoryexceedsρcrit(λ)anywhere,weuniquelyidentifythelargest scales λ≈λmaxτs3/2α3/4(Hg/λmax)3/2 (cid:28)λmax (so λ˜ ∼α1/4τs2). size/mass scale λ=λfirst on which ρ˜(x,λ)>ρ˜crit(λ) as the “to- Wecan,onthesescales,alsoapproximate ft≈gt≈(λ/λmax)2/3≈ tal” collapsing object. Since the trajectory δρ(x,λ) is continuous α1/2τs,anddrophigher-ordertermsinλ/λmaxorλ˜.Ifwetakeei- in λ, ρ˜(x,λfirst)=ρ˜crit(λfirst), and there is actually a one-to-one therthetightlycoupled(β=1)orun-coupled(β=0)limits,we mapping between the first-crossing scale and mass enclosed in a obtain first-crossing,givenbytheintegralovervolumeinanexponential disk(sincethatistheverticalprofileweassumed): (cid:16) Q (cid:17)1/2 M(λ )≡4πρ˜ (λ )(cid:104)ρ (cid:105) h3 2α3/2τs3 (β=1) first crit first g 0 d ρ˜ ∼ (33) crit ×(cid:104)λ2first+(cid:16)1+λfirst(cid:17)exp(cid:16)−λfirst(cid:17)−1(cid:105) (31) Q(cid:16)1+τ−2(cid:17) (β=0) 2h2 h h 2 s d d d (Hopkins2012a).Itiseasytoseethatonscalesλ <h ,thisis or first d justM=(4π/3)ρ λ3 ,onscalesλ >h ,justM=πΣ λ2 (whereΣ =2hcρrit fi)r.st first d crit first Z−1τ−2α−1/4(Q/2)1/2 (β=1) crit d crit d s Finally, we can use our ensemble of trajectories to define δ (cid:38) (34) ρ thefunction f = f(λfirst),where f isthefractionofMonteCarlo Z−1τ−5/2α1/2(Q/2) (β=0) “trajectories” that have a first-crossing on scales λ>λ . Since d s first M(λ ) is a function of λ , we can just as well write this first first This requires extremely large density fluctuations: for as a function of mass, f = f(M), where M ≡ M(λ ). Now, first Z ∼ Z , and Q ∼ 60 (MMSN at r ∼ 1au), this gives since each Monte Carlo trajectory represents the probability that d (cid:12) ∗ minimum δ of ∼ 3 × 105(τ/0.1)−2(α/10−4)−1/4 and a random point in space – i.e. a random differential volume el- ρ s ∼5000(τ/0.1)−5/2(α/10−4)1/2,respectively. ement – is embedded in such a region, the differential value s Physically, even if we ignore gas pressure, and the density |df(M)/dlnM|dlnM represents the differential volume fraction fluctuationissmall-scale(soshearcanbeneglected),grainsmust embeddedinsideofregionsofwithmassesM=M(λ )between first still overcome their turbulent velocity dispersion in order to col- lnMandlnM+dlnM.Sincethesefirst-crossingregionshavemean lapse.AsimpleenergyargumentrequiresGM2(<λ)/λ(cid:38)M (< internalmassdensity(bydefinition)ρ=ρ (λ ),thenumberof d d crit first λ)(cid:104)v2(λ)(cid:105) (where M is the dust mass inside the region of size independent“regions”or“objects”(perunitvolume)mustbe d d λ); using M (< λ) ∼ ρ λ3 and (cid:104)v2(λ)(cid:105) ∼ (λ/td)2, this is just d d d e dn (M) ρ (λ [M])(cid:12)df(M)(cid:12) Gρ (cid:38)(td)−2.Inotherwords,thecollapsetimet ∼(Gρ )−1/2 first ≡ crit first (cid:12) (cid:12) (32) d e grav d dlnM M (cid:12) dlnM (cid:12) mustbeshorterthantheeddyturnovertime(withinthegrains)ted on the same scale. But recall, the clustering occurs characteristi- Andthisisthedesiredmassfunctionofcollapsingobjects.Toturn callyonascalewhereforthegas,t ∼t.Thus,thegrainsareat thisintoanabsolutenumber(insteadofanumberdensity),wesim- e s leastmarginallycoupled,andthegraintd ∼t ∼t –thesameed- plyneedtointegrateoverthe“effective”volume(differentialvol- e e s dies that induce strong grain clustering necessarily induce turbu- umeinaradialannulusdRisjust(2h )(2πRdR));orwecandi- d lentgrainmotionswitheddyturnovertimeonthesamescale∼t rectlyconvertfromvolumefractiontoabsolutenumberbasedon s (see Bec et al. 2009). So collapse of even a “collisionless” grain theargumentabove,foranassumeddisksize. Forourcalculationshere,wetypicallyuse∼109MonteCarlo populationrequirestgrav(cid:46)ts.UsingQ∼Ω2/(Gρg)andρd∼ρgρ˜ (forρ˜(cid:29)1),weseethisisequivalenttotheβ=0criterionabove. “trajectories”tosamplethestatistics,andsamplethosetrajectories Since,inthislimit,t <t,takingβ=0isinfactagoodapproxi- inlogarithmically-spacedsteps∆λ≈0.001λ.Mostoftheresults grav s mation(andsincetheβ=1criterionrequiresastillhigherdensity, hereconvergeatmuchcoarsersampling,butthemassfunctionat sot (cid:28)t,itisnottherelevantcaselimithere). thelowestmassesrequiresalargenumberoftrajectoriestobeprop- grav s Thus even with no gas pressure effects erlyrepresented. (β = 0), collapse (δmax (cid:38) δcollapse) requires τ (cid:38) ρ ρ s 0.2(α/10−4)1/5(δmaxZ /1000Z )−2/5(Q/60)2/5 – unless 3 APPROXIMATEEXPECTATIONS ρ d (cid:12) the disks are extremely quiescent (α(cid:28)10−7), we are forced to Wenowhaveeverythingneededtocalculatethedetailedstatistics considerlargegrains(whereτ (cid:28)1isnottrue). s ofcollapsingregions.Beforewedoso,however,wecangaincon- Beforegoingon,however,notethattheargumentswemake siderableintuitionusingthesomesimpleapproximations. above apply only to dynamical collapse of small grains. Secular collapse of small grains, through the slow, nearly incompressible 3.1 SmallGrains “sedimentation” mode described in e.g. (Youdin 2011; Shariff & Forsmallgrains(τ (cid:28)1),densityfluctuationsonscales∼h are Cuzzi2011)maystillbepossibleinthisregime.Asnotedabove, s d weak (since the grains are well-coupled to gas on these scales). thisrequiresadifferenttreatmententirelyandisoutsidethescope Large density fluctuations are, however, still possible on small of this paper; however, it may present an alternative channel for scales,wheret ∼t.Considerthislimit.Inthisregime,inalarge planetesimalformationifonlysmallgrainsarepresent. e s (cid:13)c 0000RAS,MNRAS000,000–000 8 Hopkins Figure3.Predictedmassfunctionofcollapsing(self-gravitating)pebble-pileplanetesimalsformedbyturbulentgraindensityconcentrations.Weplotthe cumulativenumberformedatvariousradialdistancesfromthestar(perunitorbitaldistance:dN/dlnrau),asafunctionofmass(inEarthmasses).Thediskis ourstandardMMSNmodel(Z=Z(cid:12),Σ0=1;see§2.2),withα=10−4.Differentlinetypesassumethegrainmassisconcentratedingrainsofdifferentsizes (aslabeled).Ifthegrainsarelarge(10cm),thenpebblepilescancollapsedirectlytomassesfrom∼10−8−1M⊕overarangeoforbitalradii∼0.1−20au. Ifgrainsonlyreach1cm,thelowerτssuper-exponentiallysuppressesthisprocessatsmallerradii,anditcanonlyoccuratlargeradii(cid:38)20−30au,where τs(cid:38)0.1(howevertherangeofmassesattheseradiiislarge,from∼10−4−10M⊕).Formaximumgrainsizes=1mm,thisispushedoutto(cid:38)100au. √ 3.2 LargeGrains thatthe“effective”soundspeedofthecoupledfluidis∼ceff/ ρ˜ s (Safronov&Zvjagina1969;Marble1970;Sekiya1983),andthat Forlargegrains,fluctuationsarepossibleonlargescales.Foraflat τ/α=(H /h )2,c ∼ΩH ,andQ∼Ω2/Gρ .Thenweseethis perturbationspectrum,themostunstablescaleisλ∼h (Goldreich s g d s g g d criterion is equivalent to t (cid:46)t ≡h /ceff, i.e. that the col- &Lynden-Bell1965;Toomre1977;Lau&Bertin1978;Laughlin grav cross d s lapsetimeisshorterthantheeffectivesound-crossingtimeonthe &Bodenheimer1994),sotakethislimitnow.Inthiscase f ≈g ≈ t t scaleh .Forτ (cid:46)1,thesegenerallydoallowt (cid:38)t,soβ∼1 (α/τ)1/3andλ˜ ≈1,giving d s grav s s is the more relevant limit – but importantly, collapse of the two- (cid:16)Qατs(cid:17)1/2 (β=1) oflvueidrdmenesdiituymcaenvefnoromntoinmessucfafilceisen(cid:29)tlytsliasrgaelloswcaelde,sp(rio.ev.idceodllaaplsaergies ρ˜ ∼ (35) crit “slow”comparedtothestoppingtime,but“fast”comparedtothe Q(1+τ2/3α1/3) (β=0) dynamicalandeffectivesound-crossingtimes).Inotherwords,the s importantcriterionisthe“effective”Jeansnumberofthecoupled or dust-gasfluid, Z−1Q1/2 (β=1) δ (cid:38) d (36) J≡ ρG = (ρd+ρg)2G ∼ ρ˜2(cid:104)ρg(cid:105)0Gλ2 ∼ tcerfofss (cid:46)1 (37) ρ c2 k2 ρ c2k2 c2 t Zd−1Q(cid:112)α/τs (β=0) ρ˜s,ef(fλ)∼ gcss ∼Q1/2 css grav (38) EvenatZd∼Z(cid:12) andQ∼60,thisgivesaminimumδρ of∼400 crit λ(cid:112)G(cid:104)ρg(cid:105)0 λΩ a“neadsi∼er”10w0h(eτns/g0r.a1i)n−s1c/a2n(αin/d1u0c−e4fl)u1/c2t,uaretisopnesctoivnellayr.gCeoslclaalpesse. isfar ρ˜crit(λ∼hd)∼Q1/2(cid:112)α/cτsH Ω ∼(cid:18)Qατs(cid:19)1/2 (39) Inthislimit,theβ=0criterionisjusttheaRochecriterion, s g t (cid:46)Ω−1(theturbulenceissub-sonic,soitssupportisnotdom- (wherewehavedroppedtheorder-unityprefactors).Thiswasfirst grav inant on large scales). The β =1 criterion is more subtle: recall proposedasakeyrevisiontotheGoldreich&Ward(1973)mid- (cid:13)c 0000RAS,MNRAS000,000–000 JumpingtheGap:Pebble-PilePlanetesimals 9 planedensitybySafronov&Zvjagina(1969)andMarble(1970), and appreciated by Sekiya (1983) (see also Youdin 2011; Shariff & Cuzzi 2011); recently, direct numerical simulations by Shariff & Cuzzi (2014) following the full non-linear collapse of a dusty sphere (no angular momentum or turbulent terms) in the perfect- coupling(τ →0)limithaveexplictlyconfirmedthatforJ(cid:38)0.4, s collapsewilloccurandproceedsonthedynamical(free-fall)time, whileforsmallerJonlythe“secular”sedimentationmodesurvives (seealsoWahlbergJansson&Johansen2014,whoobtainconsis- tentresultsintheperfectlyun-coupledlimit).Thisagreeswellwith ourcriterion,ifwetaketheappropriatelimits(andkeeptherelevant pre-factors). In Hopkins (2013c), approximate expressions are given for the maximum density fluctuations seen in simulations of large grains on large scales (Table 2 therein), which pro- vide a good fit to the results of numerical simulations of MHD (zonal-flow), streaming-instability, and driven turbu- lence (Hogan & Cuzzi 2007; Bai & Stone 2010b; Dittrich et al. 2013; Hendrix & Keppens 2014). These are lnδmax ∼ ρ 6δ (1+δ )−1ln[1+b (1+δ )+b3/2((cid:112)1+δ2−1)]whereδ ≈ 0 0 d 0 d 0 0 3.2τ/(1+τ2)andb ∼1dependsontheratioofdrifttoturbulent s s d velocities.Forτ (cid:46)1,thisbecomesδmax∼exp[20ln(1+b )τ]; s ρ d s comparing this to the above (β = 1) criterion requires τ (cid:38) s 0.05ln(Q1/2/Z )/ln(1+b ) ∼ 0.3. So sufficiently large grains d d canindeedachievethesefluctuations. 4 NUMERICALRESULTS Nowweshowtheresultsofthefullnumericalmodeldescribedin §2,forspecificchoicesofthediskparameters. 4.1 TheCollapseThreshold Figure4.Predictedpebblepilemassfunction,asFig.3,forvariedα= 4.1.1 DependenceonSpatialScale:LargeScalesareFavored 10−6−10−2(topandbottom).Atlargemasses,αhaslittleeffectonthe InFig.1weillustratehowthethresholdforself-gravityderivedin MF.Atlowmasses,increasingαmeanslargerturbulentsupportonsmall scales,suppressinglow-masspebblepileformation.Forhigh-α,thisflattens §2.3scalesasafunctionofvariousproperties.Recall,thecombi- theMFslopeandeliminatespebblepileformationatsomesmallerradii nationδ Z mustexceedsomevalue(Eq.25)whichisafunction ρ d even for large grains. However, most of our conclusions about the radii onlyof(τ,Q,α)inorderforanover-densitytocollapseonady- s wherepebblepileformationcanoccur,asafunctionofgrainsize,arenot namicaltimescale.Sothecollapsethresholdindimensionlessunits changed. of grain-density fluctuations (δ ) scales inversely with the dust- ρ to-gas mass ratio Z . We see that, as is generic for Jeans/Toomre d collapse and expected from the arguments in § 3, higher over- scalingδ ∝τ−5/2withweakresidualdependenceonα(andalso densitiesarerequiredforcollapseonsmallscales,withaminimum ρ s ∝Q),asexpectedfromourderivationabove. inδ aroundλ∼h .Onsmallscalesthethermalpressuretermin ρ d Eq.18(∝λ−2/ρ˜)dominatesthesupportvs.gravity(∝ρ˜),giving 4.1.3 ImportanceofGasPressure ρ˜ ∝λ−1.Onlargescalesλ(cid:29)h angularmomentumdominates crit d Eq.18and,justasintheToomreproblem,ρ˜ ∝λ. InFig.2werepeatthisexercisebutsimplyforceβ=1orβ=0. crit Wecanseethateitherapproximationfailstomatchourusual“hy- 4.1.2 DependenceonGrainProperties brid”interpolatedmodel,atsomerangeofscales,byaboutanorder We also see that, generically, larger grains (larger τ) require ofmagnitude.Thisindicatesthatitisclearlynecessarytounder- s smallerδ forcollapse.Thisisbecause(withotherdiskproperties standthenon-linearbehaviorofcollapsingobjects,whenτ ∼t . ρ s grav fixed)theinitialdustdisksettlestoasmallerscaleheight(larger However, assuming β =1 does not much change the criteria for density),andbecausetheresistancebygaspressureisweaker.The large-scalecollapse,andwhilethechangeatsmallscalesislarge changeinthisbehaviorforlargegrainsτ (cid:38)1onsmallscalesowes werequiresuchlargevaluesofδ thatdynamicalcollapseisun- s ρ to the fact that the velocity dispersions of large grains de-couple likely in any any case. But assuming β =0 gives lower collapse fromthegasandbecomescale-independent(donotdecreasewith thresholdsbyanorder-of-magnitudeormoreonlargescales(the λ)onsmallscales. mostinterestingrangeforourcalculation).Inthisregimethecol- If we focus on δ around scales λ∼h or λ∼λ (t =t), lapsethresholdsaresuchthatthecollapsetimeislongerthanthe ρ d e e s asin§3,weconfirmourapproximatescalingsabove.Near∼h , stoppingtime,soitisprobablynotagoodapproximationtoneglect d collapserequiresmodestover-densities∼100−1000,weaklyde- gaspressure.Thecollapsingdustwilldraggaswithit,increasing pendentonτ orα(forsmallα(cid:46)10−3)and∝Q1/2,confirming thegaspressure(Youdin2011;Shariff&Cuzzi2011,2014),hence s our approximate scaling for β =1 (since in this limit, t (cid:38)t, our assumption of β =1, but the full non-linear behavior in this grav s β ∼1). Around λ∼λ (t =t), we see, as expected, a strong regimeremainspoorlyunderstood. e e s (cid:13)c 0000RAS,MNRAS000,000–000 10 Hopkins Figure5.Predictedpebblepilemassfunction,asFig.3,forvariedprotoplanetarydiskproperties.Herewefixα=10−4,butvarythediskmass/surface density(proportionaltoΣ0≡Σ/ΣMMSN)andmetallicityZd.Left:Verylow-density(buthigh-Zddisk);thiscorrespondstoaMMSNwhichhaslost∼99% ofitsgasbutonly∼90%ofitslargegrains.Suchadiskisexpectedtoformcollapsingpebblepilesat∼1−10auevenwith∼mm-cmsizedgrains!Middle: Lowdensitydisk(MMSNafterlosing∼90%ofitsgasand∼50%ofitslargegrains).IntermediategrainsRight:High-densitydisk(∼10×MMSN),with solarabundances.Onlylargegrainscanformpebblepiles.Althoughthemassandmeandensityincrease,andToomreQdecreases,withincreasingΣ0,the parameterτs∝Σ−01(atfixedgrainsize)decreases.Sincethemaximumamplitudeofgraindensityfluctuationsscalessuper-exponentiallywithτs(whilethe thresholdforcollapseisonlylinearinQ),thismeanssmallergrainscanpreferentiallyformpebblepilesinlowerdensitydisks(whereτs∼1). 4.2 TheMassFunctionofResultingPebble-Pile Lin2013):alargein-planevortexinadiskperturbingarazor-thin Planetesimals (two-dimensional)dustdistributioninthemidplane;forwhichthe same scalings apply as the three-dimensional case. It simply be- Givenourassumptions,wecannowestimatethemassfunctionof comesdustsurfacedensityfluctuationsthataredrivenbythelarge collapsingdustdensityfluctuations.Fig.3showstheresultsforour vortices trapping or expelling dust, rather than three-dimensional “default”MMSNmodel(Σ =1,Z =Z ,α=10−4),atvarious 0 d (cid:12) densityfluctuations.Sosurfacedensityfluctuationscan,inprinci- radii,assumingdifferentgrainsizes. ple, form over a wide range of scales; for a large structure with 4.2.1 DependenceonOrbitalDistanceandGrainSize λe(cid:38)hd,theenclosedgrainmassintheperturbationbecomesM≈ πΣ λ2=2π(cid:104)ρ (cid:105) ρ˜ h3λ˜2.Basedontheargumentsin§3,we Asexpected,ifthegrainsaresufficientlylarge(τs∼1),themodel expecrcittt (cid:38)t (sogβ0∼cr1it)odnthesescales,soρ˜ ∼(Qτ/2αλ˜)1/2. grav s crit s predicts that self-gravitating pebble piles will form over a range Ifweassumeτ ∼1,andthatthelargestpossiblestructuresreach s of orbital radii, with a wide range of self-gravitating masses. For ∼H ,thenweobtain g R ∼10cm, all radii r ∼0.1−10 have τ ∼1 and form peb- d au s blepiles.Atstillsmallerradii,largeQvaluesimplysoundspeeds Mmax (τ ∼1)∼√2πα1/4Q1/2(cid:104)ρ (cid:105) H3 (40) sufficienttosuppresscollapse;atlargerradii,τs(cid:29)1,andsograin- collapse s τs1/4 g 0 g densityfluctuationsareactuallysuppressedbecausethegrainsare (cid:16) α (cid:17)1/4 approximately collisionless (large density fluctuations cannot be ∼0.03 10−4 Σ10/2ra2u7/28M⊕ (41) generatedbythegas,forτ (cid:38)3−5).Forsmallergrains,wemust s So the maximum mass is only weakly-dependent on α, while it gotolargerradiibeforeτ ∼1,andcollapsebecomespossible.For s increases with disk surface density and is nearly proportional to R ∼1cm, pebble pile formation at (cid:28)10au is completely sup- d radius(becausethediskmassincreaseswithr ).9Notethatthisis pressed – we stress that because the density fluctuations depend au notthe“typical”objectorstructure–wedonotexpectthedriving exponentiallyonτ,thepredictednumberdensityis<10−10here! s scaleforturbulence,forexample,toreachH .Ratheritiswhere Weseethisrapidthresholdbehaviorsetinbetweenτ ∼0.1−0.3, g s we expect a very sleep cutoff in the largest possible object sizes aparameterspaceweexplorefurtherbelow. (inFig.3,notethatthiscorrespondstoanumberofsuchobjects 4.2.2 TheMinimumandMaximumMasses afactorof∼107 lowerthanthe“typical”objects).Ifwewantto estimateamoretypicalmass,where,say,themassfunctionbegins Wherepossible,thesecollapseeventsformobjectswitharangeof toturnovermoresteeply,weshouldtakeasizescaleof∼h or masses∼10−8−10M⊕. ofthevelocitystructureswithturnovertimes∼Ω−1(whichshoduld The maximum mass is given by the behavior of the largest havesizes∼α1/2H ).Forτ ∼1,thesearethesame,andthisgives g s velocity structures. Recall, in this model, grains are essentially usacharacteristicmass passive, so if structures of non-zero vorticity exist with λe (cid:38)hd √ (with the appropriate te ∼ts), they still drive grain density fluc- Mcinotlelarmpseediate(τs∼1)∼ 2παQ1/2(cid:104)ρg(cid:105)0Hg3 (42) tuations in the midplane dust layer (so long as the eddy inter- (cid:16) α (cid:17) ∼3×10−4 Σ1/2r27/28M sects the midplane somewhere) on scales ∼λe, even if we take 10−4 0 au ⊕ thedustlayertobeinfinitelythin.8 Indeed,thisisjustoneofthe Thelowermasslimitisalsopredictedbecauseonsufficiently toy-model cases considered in Hopkins (2013c) (see also Lyra & small scales,t =λ /v (cid:28)t (so grains do not have time to cross e drift e 8 Notethat,evenifthegrainsthemselvesdrivetheturbulence,asinthe 9 Interestingly,ifwehadverylarge-scalefluctuations,λ(cid:38)Hg,thenthe streaminginstabilitycase,suchlargevelocitystructuresformviatheshear- shear/angularmomentumtermwouldbethedominanttermresistingcol- ingofsmallerstructures,albeitwithrelativelylimitedpowerintheirasso- lapseandwewouldobtainMcmoallxapse∼πQ(cid:104)ρg(cid:105)0Hg3,i.e.justthestandard ciatedvelocityfluctuations(seee.g.Johansen&Youdin2007). Hillmass. (cid:13)c 0000RAS,MNRAS000,000–000