ebook img

Journal of Statistical Planning and Inference 1996: Vol 52 Index PDF

3 Pages·1996·0.59 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Journal of Statistical Planning and Inference 1996: Vol 52 Index

i Mr Bes Journal of Statistical Planning ELSEVIER Inference 52 (1996) 395-396 Author Index Volume 52 (1996)* Arasu, K.T. and S. Harris, New constructions of group divisible designs (2) 241-253 Bagchi, S., Two infinite series of E-optimal nested row—column designs (3) 353-357 Balasubramanian, K. and A. Dey, D-optimal designs with minimal and nearly minimal number of units (2) 255-262 Benda, N., Pre-test estimation and design in the linear model (2) 225-240 Calinski, T. and S. Kageyama, The randomization model for experiments in block designs and the recovery of inter-block information (3) 359-374 Dette, H. and H.-M. Neugebauer, Bayesian optimal one point designs for one parameter nonlinear models (1) 17- 31 Dette, H. and A. Munk, Sign regularity of a generalized Cauchy Kernel with applications (2) 131-142 Dey, A., see K. Balasubramanian (2) 255—262 Durairajan, T.M. and K.J. Raman, Robustness of locally most powerful invariant test for normal mixture model in control and treatment populations (1) 33- 41 Dutta, K., Estimation of quadratic functions of the Bernoulli parameter in inverse sampling method (2) 215-224 Gelfand, A.E., see B.K. Mallick (3) 307-321 Gombay, E. and L. Horvath, Approximations for the time of change and the power function in change-point models (1) 43- 66 Hamada, N. and Y. Watamori, The nonexistence of [71, 5, 46; 3]-codes (3) 379-394 Harris, S., see K.T. Arasu (2) 241-253 Horvath, L., see E. Gombay (1) 43- 66 Jacob, P. and B. Mass, Asymptotic behavior of samples from general multivariate distributions (2) 183-196 Kageyama, S., see T. Calinski (3) 359-374 Kong, F. and B. Levin, Edgeworth expansions for the conditional distributions in logistic regression models (1) 109-129 Landsman, Z., Sample quantiles and additive statistics: Information, sufficiency, estimation (1) 93-108 Levin, B., see F. Kong (1) 109-129 Lu, W.-S., see D. Sun (3) 289-306 Mallick, B.K. and A.E. Gelfand, Semiparametric errors-in-variables models A Bayesian approach (3) 307-321 Mass, B., see P. Jacob (2) 183-196 Molinski, K., The modification of confidence intervals for variance components in one-way random model using Stein’s approach (3) 323-329 Mukhopadhyay, P. and K. Vijayan, On controlled sampling designs (3) 375-378 Munk, A., see H. Dette (2) 131-142 Nematollahi, N., see A. Parsian (1) 77- 91 Neugebauer, H.-M., see H. Dette (1) 17- 31 Parsian, A. and N. Nematollahi, Estimation of scale parameter under entropy loss function (1) 77- 91 Raman, K.J., see T.M. Durairajan (1) 33- 41 Ruppert, D., see N. Wang (3) 331-351 *The issue number is given in front of page numbers Elsevier Science B.V. 396 Author Index Volume 52 Sun, J. and M. Woodroofe, Adaptive smoothing for a penalized NPMLE of a non-increasing density (2) 143-159 Sun, D., R.K. Tsutakawa and W.-S. Lu, Bayesian design of experiment for quantal responses: What is promised versus what is delivered (3) 289-306 Tsutakawa, R.K., see D. Sun (3) 289-306 Vijayan, K., see P. Mukhopadhyay (3) 375-378 Wan, A.T.K., Estimating the error variance after a pre-test for an inequality restriction on the coefficients (2) 197-213 Wang, N. and D. Ruppert, Estimation of regression parameters in a semiparametric transformation model (3) 331-351 Wasserman, L., The conflict between improper priors and robustness (ij) 1- 15 Wesolowski, J., Stability for the Arnold—Ghosh characterization of the geometric distribution (3) 263-269 Woodroofe, M., see J. Sun (2) 143-159 Yang, H., On the stability of biased estimates and the regularization method (1) 67- 75 Yu, K.F., A simple comparison of two sequences of probabilities (3) 271-287 Zhang, J., The sample breakdown points of tests (2) 161-181

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.