ebook img

Journal of Pure Mathematics, Vol-26 PDF

2009·6.2 MB·
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Journal of Pure Mathematics, Vol-26

Volume 26, 2009 * v. S DEPARTMENT OF PURE MATHEMATICS, UNIVERSITY OF CALCUTTA 35, Bail/gunge Circular Road, Kolkata - 700 019, India JOURNAL OF PURE MATHEMATICS UNIVERSITY OF CALCUTTA Board of Editors Editorial Collaborators L. Carlitz B. Barua W. N. Everitt B. C. Chakraborty P. K. Sengupta L. Debnath M. R, Adhikari T. K. Mukheijee D. K. Bhattacharya N. K. Chakraborty M. K. Chakraborty J. Das D. K. Ganguly T. K. Dutta M. Majumdar J. Sett U. C. De A. K. Das S. Jana A. Adhikari D. Mandal S. Ganguly (Managing Editor) M. K. Sen (Managing Editor) S. K. Acharyya (Managing Editor) Chief Managing Editor M. N. Mukherjee 610 G- M Z The Journal of Pure Mathematics publishes original research work and/or expository articles of high quality in any branch of Pure Mathematics. Papers (3 copies) for publication/Books for review/Joumal in exchange should be sent to : The Chief Managing Editor Journal of Pure Mathematics Department of Pure Mathematics University of Calcutta 35, Ballygunge Circular Road Kolkata 700 019, India e-mail : [email protected] \\ t-V Jour. Pure Math., Vol. 26, 2009, pp. 1-13 ON SOME MULTIVARIABLE GENERALIZED TRUESDELL POLYNOMIALS R. C. Singh Chandel & S. S. Chauhan ABSTRACT : Motivated by the work of Chandel and Tiwari [1] and Singh [2], here in the present paper we introduce and study multivariable generalized Truesdell polynomials defined by (1.3). Its further generalization will also be discussed. Key words : Generalized Truesdell polynomials, multivariable analogues, Generating relations, Rodrigues formula. Pure Recurrence relations, Differential Recurrence Relations. 2000 Mathematics Subject Classification. 33C65, Secondary 33C70. 1. INTRODUCTION Chandel and Tiwari [1] introduced multivariable analogue of Hermite polynomials defined by Rodrigues’ formula : where nv.....,nm are positive integers, while hx,...,hm, are any numbers real or complex independent of Xj,....,xm. Singh [2] introduced generalized Truesdell polynomials by the Rodrigues’ formula : (1.2) where n is positive integer and a, p, r are arbitrary numbers real or complex independent of x. Motivated by the above work [1,2], here in the present paper, we introduce and study 2 R. C. SINGH CHANDEL & S. S. CHAUHAN multivariable generalized Truesdell polynomials defined by Rodrigues’ formula: = l-(ablogjc, ,..-(aOT logxm -pmxr°') 5? • • • 5IT [l - (a, log x, - pxx?(a* log xm - pmxr”) where nt are positive integers, b, ae rf pi are arbitrary numbers real or complex independent of x and S, a x, ;i = 1,....m. It is clear that fi-Ei Em-n r -EL J b’-’ b b'’ b ), s (1-4) ...'(*.............................................*4 7^lixl>ruPl)--7Zm{Vm^Pm) = where I^(x, r, p) are generalized Truesdell polynomials of Singh [2] defined by (1.2). 2. SOME FAMILIAR PROPORTIES OF 5 = x-£~. ox Here we write some familiar properties of 5, which will be useful in our investigations; (2.1) §"{*«} = anx2, (22) 5”{w.v}= Z (|)5',-i{w}8*{v}, k=0 v ' (2.3) F(5){e*W/(x)} = ^F(d + xg'){/(x)} and (2.4) e*m} = fee*). ON SOME MULTIVARIABLE GENERALIZED TRUESDELL POLYNOMIALS 3 3. GENERATING RELATION. Starting from defination (1.3), we have rJb.ai. ,r„,.ph..pm}f \ fm" , "1. .nm \x\> — ’xm) y—n j 1 - (a, log xi - pxxP )-•••- (aw logxm - pmx%) e+(/,81+ +'«8«)i|1 _ Jttl logjfj - )-•••- (a,„ logxm - pmx%) Now making an appeal to (2.4), we derive the generating relation: nl ,nn (3.0 ? ....... nx\'"nm\ ”1. ••nm=° = [l - («! log x{ - pxx?(aw log xm - pmxr™) -b 1 -{ai(logXj + tx)~ pxx^e^- ...-[am{\ogxm+tm)~ p^’e^] 4. APPLICATIONS OF GENERATING FUNCTION. Through generating function (3.1), we derive Jb+b'-,ax,...,am-,rx,..sm-,px,.„,pm)( \ (4.1) — Y X5 / rtt \ (nm\ji^ai....am:ri....rm'P\?-'Pm){ „ \ ( m) l’-’ rAb ,o.x,...,<xm,i\,.~,r'm,px,—,pm)/ \ 4 R. C. SINGH CHANDEL & S. S. CHAUHAN 5. PURE RECURRENCE RALATIONS Differentiating (3.1) partially with respect to /, and equating the coefficients of t"1 both the sides, we obtain pure recurrence relation: 1 - (a, log*, - p,*?) - ... - (am log*OT - pmx%) (5.1) — hrt 7-(6+ha 1am'A,Sm*P\’-'Pm)\ \xh->xm) -bLpnin_ xi> 1 Ln .... ....V V r°>'Px W’-’W which suggests m results in the following unified form : (5.2) [l “ («i log*, - P,*,n)-■••- (a* log*^ - pmx%) r(6;a1,...,am;a1,._,am;q,_..rm)/ \ lnu...,n,.x,n,+\,n,^.,nm = bailf+V,*u'",am'A...rm’Px’-,Pm\xh...,xm) »***»'7n x —hn,rxr' Y r^‘ (n‘ ....rm<Pl'-'Pm) f \. fmxi lr? ...KxU-^mh (i = 1,..., m) k=0 6. DIFFERENTIAL RECURRENCE RELATIONS. Differentiating (3.1) partially with respect to x{ and equating the coefficients of r"1 ...r”” , we establish .1) £l - (a, log*, - p,*?) - ... - (am log*m - Ptnxm ) (6 ON SOME MULTIVARIABLE GENERALIZED TRUESDELL POLYNOMIALS 5 d rAb,0 \,—\ dxx ^ I’‘"’ = ....... jCi ■dwf15 ..'‘■W-*-) *=o which can be furtht written as (6.2) 1 - (a i .og xi - pxx?) - ... - (am log xm - pmx%) 2 jib’ai’r-’am’rl’-’rm’Pl-.’Pm) (v v \ .....rz,, \xh-"’xm) ■ = -h(a, - ...... K~~ U This result further suggests m differential recurrence relations in the following unified form: (6.3) [l - («i log*i - P\x^] - ... - (aOT log*m - pmx%) s >rib',a.i,...,am',r\,...,rm',pi,...,pm)/ \ 0/-L r m = -A(ar-^)^;“'-a“:n....w"-p>n\xh...,xm) +bax4t+!Z'' , ,r",;Pl....’Pm)(*l > • • ■ * *«) -hnrr* ? (ni]rk'Ab+l;ai....a*':r'....r":p1....p“)fx, X ) -bptnxt i u yt ^_M+l...% (X],...,Amj z = l,...,/77. fc=0 6 R. C. SINGH CHANDEL & S. S. CHAUHAN An appeal to (5.2) and (6.3) further shows that 1 - (aj log*! - pxxr()-...- (ct/n logxm-pmx%) (6.4) 1n[t„,nl_un,+[,nt+h„,nm \ m) - 1 - (a, log*, - Plx? )-•••- (aw logxm - pmx%) )iiTX'a’"') vn pivi - -*(“-■ - .... ......................*»);' -1 which can be further written as b(pinxi‘ - «/) + 1 - (“1 Iog*i - P\X^ )-•••- («m logX„ (6.5) Pmxm /7j ' fft / 1 - (aj log*! - prf(am logxnl - Pmxfa) rAb,CL\,—,a.m,i\,—,fmtP\’—>Pm)(T \ ■ _ i m. inu...,n,_l,n,+\,n,+u...tnm \x\»-*xm) 1 W-* that is b{pinxi‘ -<*,) ■ + 5,- (6.6) I - (a,- log*! - Pix[‘) - ... - (a„ logxm - pmx%) rrib,0.l,~.y0.myt^i--y \ nh.-.nm \xh-’xm) _ Jb;a,._..a„;/i rm>Pl Pm)(Y v \ ; _ 1 ON SOME MULTIVARIABLE GENERALIZED TRUESDELL POLYNOMIALS 7 Now for brevity, we consider the operator b[pirixi' - a,) (6.7) © = + 8,- (/ l,...,m). - (ai log*i ~ P\x^(aOT log*m - Pmxr«) Therefore, (6.6) reduces to (6.8) "lA+hn,+i,...nnl Kxl’->xmh (z which further shows that (6.9) ©,* 1*-•«») (jf,,..., X)n) ~ Jn1,..^l,rh+k,nl+l^nm (xl>-’xm) (*=1 .-.»»)• Specially for k=nl(j=\,...,m), (6.9) gives (6.io) ...“..."■W-.*)} _ ia«|illv"4lP||- ’Pm) ( v y. \ /. , . , V Also (6.11) /=! Also from (6.9), we derive J<D, \ T{b;al,.~,am;ri,...,rn-,pl,...,pm)/ \ (6.12) e |J«|.....nm V x *! ...."m R. C. SINGH CHANDEL & S. S. CHAUHAN 7. FURTHER GENERALIZATION. (7.0 ............... (g[(“i lr|g - m') + ■ + («», logxm - pi4”)) G CCl logx, - PiX + ... + (am !ogxm-Plx%')} where (7.2) G(z) = Hlnzn, To ^ 0 n=0 (£) which for yn = reduces to (1.3). white for yn =-i—i— (7.1) defines the multivariable polynomials as rn on r'(al'—’Clnr,I>—>7»>Pl-—jPra)/'v v \ = exp(pi^ri+-+^m K’-”8S'm m It is quite clear that (7.4) ...P.\Xh...,Xm) ^{xUn,P\)-Tt”’{Vm,Pm\ = where T^(x,r,p) are eneralized truesdell polynomial of Singh [2]

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.