ebook img

Journal of Functional Analysis - Volume 260 - Issues 5, 6, 7, 8 PDF

1238 Pages·2011·10.6 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Journal of Functional Analysis - Volume 260 - Issues 5, 6, 7, 8

JournalofFunctionalAnalysis260(2011)1257–1284 www.elsevier.com/locate/jfa An exact estimate result for a class of singular equations with critical exponents Sun Yijinga,∗, Wu Shaopingb aSchoolofMathematicalSciences,GraduateUniversityofChineseAcademyofSciences,Beijing100049,PRChina bDepartmentofMathematics,ZhejiangUniversity,Hangzhou,Zhejiang310027,PRChina Received18June2009;accepted26November2010 Availableonline14December2010 CommunicatedbyG.Godefroy Abstract Weconsiderthesingularboundaryvalueproblem −(cid:2)u= h(x)+λup−1 inΩ, u=0 on∂Ω uγ with p=2N/(N −2), γ ∈(0,1). It is well known that there exists λ∗>0 such that the problem has asolutionforallλ∈(0,λ∗)andnosolutionforλ>λ∗.Weobtainanexactresultforλ∗(Ω,p,γ,h). ©2010ElsevierInc.Allrightsreserved. Keywords:Anexactestimateresult;Extremalvalue;Singularnonlinearity;Criticalexponent 1. Introduction Let Ω be a smooth bounded domain in RN, N (cid:2)3, and p =2N/(N −2). We consider therangeofλinthesingularproblem h(x) (cid:2)u+ +λup−1=0 inΩ, u>0 inΩ, u=0 on∂Ω (1 ) uγ λ * Correspondingauthor. E-mailaddresses:[email protected],[email protected](Y.J.Sun). 0022-1236/$–seefrontmatter ©2010ElsevierInc.Allrightsreserved. doi:10.1016/j.jfa.2010.11.018 1258 Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 where h∈L∞(Ω) is like distα(x,∂Ω) with α−γ (cid:2)0 (i.e. there exist two positive constants m, M such that mdistα(x,∂Ω)(cid:3)h(x)(cid:3)Mdistα(x,∂Ω), ∀x∈Ω), γ ∈(0,1), and λ>0 is a parameter. Equations of the type (1 ) have been intensively studied for both bounded and unbounded λ domains because of its wide applications to physical models in the study of non-Newtonian fluids, boundary layer phenomena for viscous fluids, chemical heterogenous catalysts, glacial advance,etc.(cf.[2,8–11,13,15,16,19–26,28]). ∗ In[10]CocliteandPalmieriprovedthatthereexistsλ >0suchthat(1 )hasasolutionfor λ all λ∈(0,λ∗) andno solution for λ>λ∗. Furthermore,our previous work [26] and Yang[28] ∗ showed the multiplicity of (1 ). We are now interested in the dependence of λ on Ω, p, γ λ ∗ andh(i.e.howlargeisλ ?).Thisispreciselytheaimofthispaper.AsweshallseeinSection3, for λ in an exact range (see Section 2), (1 ) has at least two solutions. To see this, we give λ a complete description of a constraint set associated to the action functional and use careful estimates inspired by these in [26,27]. We emphasize that there is no restriction on the shape ofΩ.Thusweobtainuniformlowerboundsforλ∗=λ∗(Ω,p,γ,h).There,itmustbesaidthat themethodofsubandsupersolutionsdoesnotadaptfordealingwithestimatesofthistype,since forgeneralΩ (withoutsymmetricproperty,say)preciseinformationaboutsub/supersolutionsis ∗ nolongerpossibleandexplicitcalculationsforλ cannotbeactuallycarriedout. Thedistanceconditiononh(x)hasalreadybeenintroducedinthestudyofregularityofpure singularproblem(i.e.λ=0)(cf.[12,16,18]).Gomes[16],delPino[12]provedthattheunique solution of (1 ) belongs to C1,β(Ω), ∀β ∈[0,1). Moreover, Gui and Lin [18] established the 0 followingestimatefortheuniquesolution c dist(x,∂Ω)(cid:3)u(x)(cid:3)c dist(x,∂Ω), ∀x∈Ω. 1 2 Asitturnsout,theconditionalsoplaysanimportantroleinthecombinedeffectofsingularand criticalnonlinearities,whichcontributestotheboundednessofthegradientofdesiredminimiz- ers.Actually,fromourargumentsthebehaviorneartheboundary(i.e.h(x)∼distα(x,∂Ω)for allx near∂Ω)issufficienttoguaranteetheboundedness.Tostateourresultswefirstintroduce somenotationsanddefinitions. ThroughoutthepaperweassumethatΩ∈L,where (cid:2) (cid:3) (cid:4)(cid:5) L= Ω⊂RN; Ω boundedopenandregular sayC1,β . ForameasurablesetA⊂RN denotewith|A|theN-dimensionalL(cid:6)ebesguemeasureofA.Cde- note(possiblydifferent)positiveconstants.Furthermore,(cid:8)u(cid:8)2= |∇u|2dx denotestheusual Ω norm of u in H1(Ω), while for any other function space X, we denote its norm by (cid:8)·(cid:8) . We 0 X denotebythefirsteigenfunctione with(cid:2)e +λ e =0inΩ,e | =0,0(cid:3)e (cid:3)1,andwe 1 1 1 1 1 ∂Ω 1 knowthat0<d (cid:3)e (x)dist(x,∂Ω)−1(cid:3)d onΩ forsomeconstantsd ,d . 0 1 1 0 1 WeassumeN (cid:2)3,letp=2N/(N−2)andset (cid:7) (cid:6) (cid:8) (cid:9) |∇u|2dx (cid:8) S=inf (cid:6) Ω (cid:8)u∈H1(Ω), u(cid:10)=0 ( |u|pdx)2/p 0 Ω thebestSobolevconstant.ItiswellknownthatS isindependentofΩ anddependsonlyonN. Theinfimumcanbeachievedbythefunction Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 1259 1 U∗(x)= (1+|x|2)(N−2)/2 thatis, (cid:6) |∇U∗|2dx S= (cid:6) RN . ( |U∗|pdx)2/p RN Thefunctionalassociatedto(1 )is λ (cid:10) (cid:10) (cid:10) 1 1 λ I (u)= |∇u|2dx− h(x)|u|1−γ dx− |u|pdx, ∀u∈H1(Ω). λ 2 1−γ p 0 Ω Ω Ω ClearlyI isonlyacontinuousfunctionalonH1(Ω). λ 0 Definetheconstraintset (cid:2) (cid:5) N = t(u)u: u∈H1(Ω)\{0} λ 0 wheret(u)arethezerosofthemap 1 d t→φ(t,u)= I (tu) tp−1dt λ (cid:10) (cid:10) (cid:10) =t2−p |∇u|2dx−t−γ−p+1 h(x)|u|1−γ dx−λ |u|pdx. Ω Ω Ω Let Nλ+ (resp. Nλ−)bethesubsetof Nλ correspondingto t(u) with ddt|t=t(u)φ(t,u)>0 (resp. ddt|t=t(u)φ(t,u)<0),thatis (cid:7) (cid:10) (cid:10) (cid:9) N±= v=t(u)u∈N : (2−p) |∇v|2dx+(p+γ −1) h(x)|v|1−γ dx>(<)0 . λ λ Ω Ω Byasolutionof(1 )wemean,afunctionu∈H1(Ω)suchthatu(x)>0a.e.inΩ and λ 0 (cid:10) (cid:10) (cid:10) h(x) ∇u·∇ϕdx− ϕdx−λ up−1ϕdx=0, ∀ϕ∈H1(Ω). uγ 0 Ω Ω Ω Ourmainresultisasfollows: ∗ Theorem.Letλ betheextremalvalueforproblem(1 ).Then λ λ∗(Ω,p,γ,h)(cid:2)(cid:11) 1+γ (cid:12)(cid:11) p−2 (cid:12)1p+−γ2(cid:11) S (cid:12)p+1+γγ−1(cid:11) 1 (cid:12)1p+−γ2 :=Λ. p+γ −1 p+γ −1 |Ω|2/N (cid:8)h(cid:8)∞ 1260 Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 ∗ Forgeneraldomainswithoutsymmetricpropertiesitisdifficulttoderiveanexactresultforλ . Stillfewgeneralresultsareknownexceptin[14]GazzolaandMalchiodiprovideuniformlower boundsofλ∗fortheproblem−(cid:2)u=λ(1+u)p,1<p(cid:3)(N+2)/(N−2)andourrecentpaper [24,25]forsingular-subcriticalandnonsingular-criticalcases. The outline of the paper is the following. In Section 2 we obtain the value Λ through the connection between N and the fibrering maps (i.e., maps of the form t →I (tu); see Alves λ λ andElHamidi[1],BrownandZhang[7]).InSection3,wediscussinfN+Iλ underλ∈(0,Λ). λ First, we provide an estimate for u0 as a weak limit of a minimizing sequence for infN+Iλ, which will influence a series of estimates of critical case since ∇u turns rather delicate inλsin- gular case (see Lazer and Mckenna [21]). Then, with the help of the estimate and the family U (x):=η(x)ε−(N−2)/2U∗(x−a),wemanagetolocatethatu ∈N .Finally,usingtheideas ε,a ε 0 λ of Graham-Eagle [17] and the location information we prove that u is a solution of (1 ). By 0 λ takingadvantageofthestructureofNλ underλ∈(0,Λ),wediscusstheprobleminfN−Iλ and ∗ λ obtainthemultiplicityof(1 ).InSection4weprovideuniformboundsforλ (Ω,p,γ,h). λ 2. ThenumberΛ Lemma1.Supposethatλ∈(0,Λ).Thenforanyu∈H1(Ω)\{0},φ(t,u)hasexactlytwozeros 0 ∓ t (u)whichsatisfy 0<t−(u)<t+(u), t−(u)u∈N+, t+(u)u∈N−. λ λ Proof. Defineφ:(0,∞)×{H1(Ω)\{0}}→Rby 0 (cid:10) (cid:10) (cid:10) φ(t,u)=t2−p |∇u|2dx−t−γ−p+1 h(x)|u|1−γ dx−λ |u|pdx. Ω Ω Ω Sinceφ(t,u)isincreasing/decreasingalongt>0,itiseasilyderivedthat (cid:13) (cid:14) (p−2)(cid:8)∇u(cid:8)2 −1/(1+γ) t = (cid:6) 2 , max,u (p+γ −1) h(x)|u|1−γ dx Ω φ(t ,u) max,u (cid:11) (cid:12)(cid:11) (cid:12) (cid:10) 1+γ p−2 (p−2)/(1+γ) (cid:8)∇u(cid:8)2(p+γ−1)/(1+γ) = (cid:6) 2 −λ |u|pdx p+γ −1 p+γ −1 ( h(x)|u|1−γ dx)(p−2)/(1+γ) Ω Ω (cid:13)(cid:11) 1+γ (cid:12)(cid:11) p−2 (cid:12)(p−2)/(1+γ)(cid:11) 1 (cid:12)(p−2)/(1+γ)(cid:11) √S (cid:12)(p−(12+)(γ1−)γ) > p+γ −1 p+γ −1 (cid:8)h(cid:8)∞ |Ω|pp−(1(1−−γγ)) (cid:11) (cid:12) (cid:14) 1 p −λ √ (cid:8)∇u(cid:8)p 2 S :=D(λ)(cid:8)∇u(cid:8)p, (2) 2 and Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 1261 D(λ)=0 iff λ=Λ, wherewehaveusedHölder’sandSobolevinequalities,andthefollowingtworelations (p−2)(1−γ) 2(p+γ −1) +p= , 1+γ 1+γ p−(1−γ) p−2 p−2 (p+γ −1) 2 p+γ −1 · = · = . p 1+γ p (1+γ) N 1+γ Sinceλ<Λ,itfollowsD(λ)>0andφ(t ,u)>0,thereforeφ(t,u)hasexactlytwozeros max,u − + 0<t (u)<t (u),thatis (cid:10) (cid:10) (cid:8)∇v(cid:8)2− h(x)|v|1−γ −λ |v|p=0, wherev=t∓(u)u 2 Ω Ω suchthat t−(u)u∈N+, t+(u)u∈N−. λ λ ThiscompletestheproofofLemma1. (cid:2) Set E0=(cid:11)p+p−γ −1 1(cid:12)1+1γ(cid:8)h(cid:8)∞1+1γ |Ω√|12+1N−1γ11+−γγ , S1+γ (cid:13) (cid:14) E(λ)= 1+γ (N−2)/4√SN/2. λ(p+γ −1) Lemma2.Supposethatλ∈(0,Λ).ThenN hasagapstructureinthesensethat(cid:8)∇u(cid:8) <E , λ 2 0 ∀u∈N+;(cid:8)∇U(cid:8) >E(λ)>E ,∀U ∈N−.Clearly,E(λ)→∞asλ→0. λ 2 0 λ (cid:6) Proof. Ifu∈N+ thennecessarily(p−2)(cid:8)∇u(cid:8)2−(p+γ −1) h(x)|u|1−γ dx<0.Onthe λ 2 Ω otherhand,forallU ∈N−(⊂N ) λ λ (1+γ)(cid:8)∇U(cid:8)2−λ(p+γ −1)(cid:8)U(cid:8)p 2 p (cid:13) (cid:10) (cid:14) =− (p−2)(cid:8)∇U(cid:8)2−(p+γ −1) h(x)|U|1−γ dx <0. 2 Ω Consequently, (cid:8)∇U(cid:8) >E(λ), ∀U ∈N−, (3) 2 λ (cid:8)∇u(cid:8) <E , ∀u∈N+. (4) 2 0 λ 1262 Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 Surprisinglyenough, E(λ)=E iff λ=Λ, 0 weconcludethat (cid:8)∇U(cid:8) >E(λ)>E >(cid:8)∇u(cid:8) , ∀u∈N+, U ∈N− (5) 2 0 2 λ λ forallλ∈(0,Λ),wherewehaveusedthefollowingtworelations p−(1−γ) 1 1 1−γ = + , p(1+γ) 2 N 1+γ 1−γ 4 2N 1−γ 2(p+γ −1) + = (p−2)+p= . 1+γ N−2 N−2 1+γ 1+γ ThiscompletestheproofofLemma2. (cid:2) Lemma3.Supposethatλ∈(0,Λ).ThenN− isaclosedsetinH1-topology. λ 0 Proof. FromtheargumentsofLemma1wederivethatifu∈H1(Ω)\{0}satisfiesthefollowing 0 twoequalities (cid:10) (cid:10) (cid:8)∇u(cid:8)2− h(x)|u|1−γ dx−λ |u|pdx=0, 2 Ω Ω (cid:10) (p−2)(cid:8)∇u(cid:8)2−(p+γ −1) h(x)|u|1−γ dx=0, 2 Ω then D(λ)(cid:8)∇u(cid:8)p 2 (cid:11) (cid:12)(cid:11) (cid:12) (cid:10) 1+γ p−2 (p−2)/(1+γ) (cid:8)∇u(cid:8)2(p+γ−1)/(1+γ) < (cid:6) 2 −λ |u|pdx p+γ −1 p+γ −1 ( h(x)|u|1−γ dx)(p−2)/(1+γ) Ω Ω (cid:11) (cid:12)(cid:11) (cid:12) 1+γ p−2 (p−2)/(1+γ) (cid:8)∇u(cid:8)2(p−2)/(1+γ) = (cid:6) 2 (cid:8)∇u(cid:8)2 p+γ −1 p+γ −1 ( h(x)|u|1−γ dx)(p−2)/(1+γ) 2 Ω 1+γ − (cid:8)∇u(cid:8)2=0, p+γ −1 2 whichisimpossibleasD(λ)>0forallλ∈(0,Λ).Thisfact,togetherwith(3)impliesthatN− λ isclosed.ThiscompletestheproofofLemma3. (cid:2) Afterthesepreliminaries,letusgiveSection3. Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 1263 3. Solutionsof(1 )forallλ∈(0,Λ) λ Theorem 1. Suppose that λ ∈ (0,Λ). Then the singular problem (1 ) has a solution u ∈ λ 0 H1(Ω) ∩ C1,β(Ω), ∀0 < β < 1, satisfying I (u ) < 0 and (cid:8)∇u (cid:8) (cid:3) E (E defined in 0 λ 0 0 2 0 0 Lemma2). Proof. Notethatforu∈N itisclearthat λ (cid:10) (cid:10) (cid:10) 1 1 λ I (u)= |∇u|2dx− h(x)|u|1−γ dx− |u|pdx λ 2 1−γ p Ω Ω Ω (cid:11) (cid:12)(cid:10) (cid:11) (cid:12)(cid:10) 1 1 1 1 = − |∇u|2dx− − h(x)|u|1−γ dx 2 p 1−γ p Ω Ω (cid:11) (cid:12) (cid:2) 1 − 1 (cid:8)∇u(cid:8)2−C(cid:8)∇u(cid:8)1−γ, ∀u∈N . 2 p 2 2 λ ThereforeI iscoerciveandboundedbelowinN .So,twoimmediatecandidatesforsolutions λ λ of the singular problem (1 ) would be that found by considering the following minimization λ problems infI , infI . λ λ N+ N− λ λ Observethat d I (tu)hasthesamesignwithφ(t,u),I (tu)isincreasingin[t−(u),t+(u)]for dt λ λ each u∈H1(Ω)\{0}. In particular, if u∈N− (i.e., t+(u)=1) we clearly have I (t−(u)u)(cid:3) 0 λ λ Iλ(Itn+(vuie)uw)=ofItλh(eu)a,rgaunmdecnotnsseinquLeenmtlymianf3N,λ+NIλ+(cid:3)∪i{n0f}Nλa−nIdλ.NA−lsoa,rienftNwλoIcλlo=seindfNseλ+tsIλin. H1(Ω) λ λ 0 providedλ∈(0,Λ).Thisallowsustoselect“best”minimizingsequencesbymeansofEkeland’s principle(see[3]).First,consider(u )⊂N+∪{0}withtheproperties: n λ (i) Iλ(un)<infN+∪{0}Iλ+ n1; λ (ii) I (u)(cid:2)I (u )− 1(cid:8)u−u (cid:8),∀u∈N+∪{0}. λ λ n n n λ Since I(|u|)=I(u), we may assume u (cid:2)0. Clearly, (u ) is bounded in H1(Ω), so (a sub- n n 0 sequenceof) u (cid:14)u weaklyin H1(Ω) and Lp(Ω),stronglyin L1−γ(Ω),andpointwisea.e. n 0 0 inΩ,withu (cid:2)0.Writeu =u +w withw (cid:14)0weaklyinH1(Ω).Now,takingintoaccount 0 n 0 n n 0 that, (cid:11) (cid:12) (cid:11) (cid:12)(cid:10) 1 1 1 1 I (u)= − (cid:8)∇u(cid:8)2− − h(x)|u|1−γ dx λ 2 p 2 1−γ p Ω (cid:11) (cid:12) < p−2 1 − 1 (cid:8)∇u(cid:8)2<0, forallu∈N+ p 2 1−γ 2 λ thatis, 1264 Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 inf I = infI <0 (6) λ λ N+∪{0} N+ λ λ whilebytheweaklowersemi-continuityofnormIλ(u0)(cid:3)liminfIλ(un)=infN+∪{0}Iλ,wesee thatu (cid:10)≡0and(u )⊂N+. λ 0 n λ Now,usingtechniquesdevelopedinourpreviouswork[26],weinvestigatefurtherproperties of(u )whichyieldtheimportantestimateforu : n 0 Claim1.Thereexistsε >0suchthatu (x)(cid:2)ε e (x),∀x∈Ω. 0 0 0 1 Westartbyobservingthat (cid:10) (cid:15) (cid:16) liminf (p−2)(cid:8)∇u (cid:8)2 <(p+γ −1) h(x)u1−γ dx. (7) n→∞ n 2 0 Ω In fact, ar(cid:6)guing by contradiction and assume that liminfn→∞[(p − 2)(cid:8)∇un(cid:8)22] = (p+γ −1) h(x)u1−γ dx.Sinceu ∈N+,then Ω 0 n λ (cid:10) (cid:15) (cid:16) (cid:15) (cid:16) liminf (p−2)(cid:8)∇u (cid:8)2 (cid:3)limsup (p−2)(cid:8)∇u (cid:8)2 (cid:3)(p+γ −1) h(x)u1−γ dx n→∞ n 2 n→∞ n 2 0 Ω andthus (cid:10) lim (cid:8)∇u (cid:8)2= p+γ −1 h(x)u1−γ dx. (8) n→∞ n 2 p−2 0 Ω Consequently, (cid:13) (cid:10) (cid:14) (cid:10) lim (cid:15)λ(cid:8)u (cid:8)p(cid:16)= lim (cid:8)∇u (cid:8)2− h(x)u1−γ dx = 1+γ h(x)u1−γ dx. (9) n→∞ n p n→∞ n 2 n p−2 0 Ω Ω NotethatD(λ)>0.Thisprovidesthenecessarycontradiction,as(8)and(9)implythat 0<D(λ)(cid:8)∇u (cid:8)p n 2 (cid:11) (cid:12)(cid:11) (cid:12) < 1+γ p−2 (p−2)/(1+γ) (cid:6) (cid:8)∇un(cid:8)22(p+γ−1)/(1+γ) −λ(cid:8)u (cid:8)p p+γ −1 p+γ −1 ( h(x)u1−γ dx)(p−2)/(1+γ) n p Ω n (cid:6) −n−→−−∞→(cid:11) 1+γ (cid:12)(cid:11) p−2 (cid:12)(p−2)/(1+γ)(p+p−γ−2(cid:6)1 Ωh(x)u01−γ dx)(p+γ−1)/(1+γ) p+γ −1 p+γ −1 ( h(x)u1−γ dx)(p−2)/(1+γ) (cid:10) Ω 0 − 1+γ h(x)u1−γ dx=0 p−2 0 Ω thatis,un→0stronglyinH01(Ω)whileIλ(un)→infN+Iλ<0. λ Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 1265 By(7),wemayextractasubsequencesuchthat (cid:10) (p−2)(cid:8)∇u (cid:8)2−(p+γ −1) h(x)u1−γ dx(cid:3)−C (10) n 2 n Ω forsuitableconstantC>0. Let ϕ ∈H1(Ω) with ϕ(x)(cid:2)0. From Lemma 1 we know that, for each u there exists a 0 n continuousfunctionf (t)suchthatf (t)(u +tϕ)∈N+(⊂N )forallsufficientlysmallt(cid:2)0. n n n λ λ Clearly,f (0)=1.Therefore, n (cid:10) (cid:15) (cid:16) (cid:15) (cid:16) (cid:15) (cid:16) 0= f (t) 2(cid:8)u +tϕ(cid:8)2− f (t) 1−γ h(x)(u +tϕ)1−γ dx−λ f (t) p(cid:8)u +tϕ(cid:8)p, n n n n n n p Ω (cid:10) 0=(cid:8)u (cid:8)2− h(x)u1−γ dx−λ(cid:8)u (cid:8)p, n n n p Ω fort>0small,thatis, (cid:15) (cid:16) (cid:3) (cid:4) 0= f2(t)−1 (cid:8)u +tϕ(cid:8)2+ (cid:8)u +tϕ(cid:8)2−(cid:8)u (cid:8)2 n n n n (cid:10) (cid:13)(cid:10) (cid:10) (cid:14) (cid:15) (cid:16) − f1−γ(t)−1 h(x)(u +tϕ)1−γ − h(x)(u +tϕ)1−γ − h(x)u1−γ n n n n Ω Ω Ω (cid:15) (cid:16) (cid:15) (cid:16) −λ fp(t)−1 (cid:8)u +tϕ(cid:8)p− λ(cid:8)u +tϕ(cid:8)p−λ(cid:8)u (cid:8)p n n p n p n p (cid:15) (cid:16) (cid:3) (cid:4) (cid:3) f2(t)−1 (cid:8)u +tϕ(cid:8)2+ (cid:8)u +tϕ(cid:8)2−(cid:8)u (cid:8)2 n n (cid:10) n n (cid:15) (cid:16) (cid:15) (cid:16) − f1−γ(t)−1 h(x)(u +tϕ)1−γ −λ fp(t)−1 (cid:8)u +tϕ(cid:8)p, n n n n p Ω dividingbyt>0andpassingtothelimitfort→0,wederive (cid:10) (cid:10) 0(cid:3)2f(cid:17)(0)(cid:8)∇u (cid:8)2+2 ∇u ·∇ϕ−(1−γ)f(cid:17)(0) h(x)u1−γ −λpf(cid:17)(0)(cid:8)u (cid:8)p n n 2 n n n n n p Ω Ω (cid:13) (cid:10) (cid:14) (cid:10) =f(cid:17)(0) (2−p)(cid:8)∇u (cid:8)2+(p+γ −1) h(x)u1−γ +2 ∇u ·∇ϕ n n 2 n n Ω Ω wheref(cid:17)(0)∈[−∞,+∞]denotestherightderivateoff (t)atzero(forthesakeofsimplicity, n n weassumehenceforththattherightderivateoff att =0exists.Indeed,ifitisn’treal,welet n twkh→ere0q(in∈ste[−ad∞of,+t→∞]0,)a,ntkd>th0enisrecphloasceenfin(cid:17)(s0u)chbyaqwa)y.Sthinactefnusa∈tisNfie+s,qfn(cid:17):(=0)li(cid:10)=m−k→∞∞.fFnu(rttkkt)h−e1r-, n n n n λ n (cid:17) more,from(10)weconcludethatf (0)isuniformlyboundedfrombelow. n Ontheotherhand,using(ii)weclearlyhave (cid:3) (cid:4) (cid:17) (cid:17) I (u )(cid:3)I f (t)(u +tϕ) + 1(cid:17)f (t)(u +tϕ)−u (cid:17) (11) λ n λ n n n n n n 1266 Y.J.Sun,S.P.Wu/JournalofFunctionalAnalysis260(2011)1257–1284 fort>0small,thatis, (cid:15)(cid:8) (cid:8) (cid:16) 1 (cid:8)f (t)−1(cid:8)(cid:8)u (cid:8)+tf (t)(cid:8)ϕ(cid:8) n n n n (cid:17) (cid:17) (cid:2) 1(cid:17)f (t)(u +tϕ)−u (cid:17) n n n n (cid:3) (cid:4) (cid:2)I (u )−I f (t)(u +tϕ) λ n λ n n (cid:11) (cid:12) (cid:11) (cid:12) (cid:11) (cid:12) (cid:15) (cid:16) 1 1 1 1 1 1 = − (cid:8)u (cid:8)2+λ − (cid:8)u (cid:8)p− − f (t) 2(cid:8)u +tϕ(cid:8)2 2 1−γ n 1−γ p n p 2 1−γ n n (cid:11) (cid:12) (cid:15) (cid:16) 1 1 −λ − f (t) p(cid:8)u +tϕ(cid:8)p, 1−γ p n n p dividingbyt>0andpassingtothelimitast→0,weget (cid:13) (cid:10) (cid:14) (cid:15)(cid:8) (cid:8) (cid:16) (cid:17) 1 (cid:8)f(cid:17)(0)(cid:8)(cid:8)u (cid:8)+(cid:8)ϕ(cid:8) (cid:2) fn(0) (p+γ −1) h(x)u1−γ −(p−2)(cid:8)∇u (cid:8)2 n n n 1−γ n n 2 Ω (cid:11) (cid:12)(cid:10) (cid:11) (cid:12)(cid:10) + 1+γ ∇u ·∇ϕ−λ p+γ −1 up−1ϕ. (12) 1−γ n 1−γ n Ω Ω Butby(10),fornlargeenough (cid:13) (cid:10) (cid:14) − 1 (p−2)(cid:8)∇u (cid:8)2−(p+γ −1) h(x)u1−γ − (cid:8)un(cid:8) (cid:2)C (13) 1−γ n 2 n n Ω (cid:17) with C >0 a suitable constant. Putting together (12) and (13), we see that f (0) is uniformly n boundedfromabove. Inconclusion, (cid:17) f (0)isuniformlyboundedinn. (14) n Now,applying(11)again, (cid:15)(cid:8) (cid:8) (cid:16) 1 (cid:8)f (t)−1(cid:8)(cid:8)u (cid:8)+tf (t)(cid:8)ϕ(cid:8) n n n n (cid:17) (cid:17) (cid:2) 1(cid:17)f (t)(u +tϕ)−u (cid:17) n n n n (cid:3) (cid:4) (cid:2)I (u )−I f (t)(u +tϕ) λ n λ n n (cid:10) (cid:15) (cid:16) = 1(cid:8)u (cid:8)2− 1 h(x)u1−γ − λ(cid:8)u (cid:8)p− 1 f (t) 2(cid:8)u +tϕ(cid:8)2 2 n 1−γ n p n p 2 n n Ω (cid:10) (cid:15) (cid:16) (cid:15) (cid:16) + 1 f (t) 1−γ h(x)(u +tϕ)1−γ + λ f (t) p(cid:8)u +tϕ(cid:8)p, 1−γ n n p n n p Ω

Description:
Articles in this volume: An exact estimate result for a class of singular equations with critical exponents Pages 1257-1284 Yijing Sun, Shaoping Wu Operators whose dual has non-separable range Pages 1285-1303 Pandelis Dodos On stabilization and control for the critical Klein–Gordon equation on a 3
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.