ebook img

Joint Angle Tracking with Inertial Sensors PDF

143 Pages·2016·3.51 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Joint Angle Tracking with Inertial Sensors

PPoorrttllaanndd SSttaattee UUnniivveerrssiittyy PPDDXXSScchhoollaarr Dissertations and Theses Dissertations and Theses Winter 2-22-2013 JJooiinntt AAnnggllee TTrraacckkiinngg wwiitthh IInneerrttiiaall SSeennssoorrss Mahmoud Ahmed El-Gohary Portland State University Follow this and additional works at: https://pdxscholar.library.pdx.edu/open_access_etds Part of the Artificial Intelligence and Robotics Commons, and the Other Electrical and Computer Engineering Commons Let us know how access to this document benefits you. RReeccoommmmeennddeedd CCiittaattiioonn El-Gohary, Mahmoud Ahmed, "Joint Angle Tracking with Inertial Sensors" (2013). Dissertations and Theses. Paper 661. https://doi.org/10.15760/etd.661 This Dissertation is brought to you for free and open access. It has been accepted for inclusion in Dissertations and Theses by an authorized administrator of PDXScholar. Please contact us if we can make this document more accessible: [email protected]. JointAngleTrackingwithInertialSensors by MahmoudAhmedEl-Gohary Adissertationsubmittedinpartialfulfillmentofthe requirementsforthedegreeof DoctorofPhilosophy in ElectricalandComputerEngineering DissertationCommittee: JamesMcNames,Chair DanHammerstrom GerardoLafferriere AndresLaRosa MartinSiderius PortlandStateUniversity 2013 i Abstract Theneedtocharacterizenormalandpathologicalhumanmovementhasconsistently driven researchers to develop new tracking devices and to improve movement anal- ysis systems. Movement has traditionally been captured by either optical, magnetic, mechanical,structuredlight,oracousticsystems. Allofthesesystemshaveinherent limitations. Opticalsystemsarecostly,requirefixedcamerasinacontrolledenviron- ment,andsufferfromproblemsofocclusion. Similarly,acousticandstructuredlight systems suffer from the occlusion problem. Magnetic and radio frequency systems sufferfromelectromagneticdisturbances,noiseandmultipathproblems. Mechanical systemshavephysicalconstraintsthatlimitthenaturalbodymovement. Recently, the availability of low-cost wearable inertial sensors containing ac- celerometers, gyroscopes, and magnetometers has provided an alternative means to overcome the limitations of other motion capture systems. Inertial sensors can be used to track human movement in and outside of a laboratory, cannot be occluded, and are low cost. To calculate changes in orientation, researchers often integrate the angular velocity. However, a relatively small error or drift in the measured angular velocityleadstolargeintegrationerrors. Thisrestrictsthetimeofaccuratemeasure- ment and tracking to a few seconds. To compensate that drift, complementary data fromaccelerometersandmagnetometersarenormallyintegratedintrackingsystems that utilize the Kalman filter (KF) or the extended Kalman filter (EKF) to fuse the nonlinear inertial data. Orientation estimates are only accurate for brief moments whenthebody isnotmovingand accelerationisonlydueto gravity. Moreover, suc- ii cessofusingmagnetometerstocompensatedriftabouttheverticalaxisislimitedby magneticfielddisturbance. We combine kinematic models designed for control of robotic arms with state space methods to estimate angles of the human shoulder and elbow using two wire- less wearable inertial measurement units. The same method can be used to track movement of other joints using a minimal sensor configuration with one sensor on each segment. Each limb is modeled as one kinematic chain. Velocity and accel- eration are recursively tracked and propagated from one limb segment to another using Newton-Euler equations implemented in state space form. To mitigate the ef- fectofsensordriftonthetrackingaccuracy,oursystemincorporatesnaturalphysical constraints on the range of motion for each joint, models gyroscope and accelerom- eter random drift, and uses zero-velocity updates. The combined effect of imposing physical constraints on state estimates and modeling the sensor random drift results in superior joint angles estimates. The tracker utilizes the unscented Kalman filter (UKF)whichisanimprovementtotheEKF.Thisremovestheneedforlinearization ofthesystemequationswhichintroducestrackingerrors. We validate the performance of the inertial tracking system over long durations of slow, normal, and fast movements. Joint angles obtained from our inertial tracker arecomparedtothoseobtainedfromanopticaltrackingsystemandahigh-precision industrialrobotarm. Resultsshowanexcellentagreementbetweenjointanglesesti- matedbytheinertialtrackerandthoseobtainedfromthetworeferencesystems. iii Dedication For my mother Zahira & my father Ahmed; my sisters Gamila & Fatma; my brothers Ali, Mohamad & Khalid; and for Greer. iv Acknowledgements I would like to express my gratitude to the many people who made working on my Ph.D. a wonderful experience. Foremost, I am deeply indebted to my advisor Dr. JamesMcNames. Ithasbeenarealpleasureworkingwithyou. Youhaveguidedand supported me. You expected great things from me with such sheer confidence, that I eventually felt that same confidence in myself. I admire your hard work and high academic standards, which have set an example of excellence for all your students andmyself. Icontinuetobeinspiredtomeetahighlevelofachievement,astandard youmodeledforme. Aboveall,youhavebecomeatruefriend,thankyou. During this work, I have collaborated with many colleagues for whom I have great regard. I wish to extend my warmest thanks to all those who have helped me with my work in the Biomedical Signal Processing Laboratory at PSU, and in the BalanceDisordersLaboratoryatOHSU. IowemymostsinceregratitudetoGreerCarverforherloveandencouragement. Thank you for your support when I have needed it the most. To quote one of your favorite poets, Khalil Gibran1, “And think not you can direct the course of love, for love, if it finds you worthy, directs your course.” Your love and friendship have changedthecourseofmylifebeyondmywildestdreams. Finally, I would like to thank my family for their infinite support throughout my life. Theirunconditionalloveandunderstandinghasencouragedmetoworkhardand value education; to capitalize on the gifts given to me. My mother’s firm and kind- 1TheProphet,byKahlilGibran v heartedpersonalitytaughtmetobefaithfultomydreamsandneverbendtodifficulty. Myfather’sgentleexampletaughtmethathumilityisgraceandcompassionispower. Though my mother and father are no longer here in the flesh, I feel their love still, and their sage advice is no more than a memory away. Thank you my brothers and sisters, with you I discovered the joy that radiates from life and love that endures. Becauseofyou,nomatterhowfarawayImaybe,Iamabletocarryhomewithme. vi Table of Contents Abstract i Dedication iii Acknowledgements iv List of Tables ix List of Figures xi 1 Introduction 1 1.1 BiomedicalApplications . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 SportsandVirtualRealityApplications . . . . . . . . . . . . . . . . 5 1.3 MotionCaptureTechnologies . . . . . . . . . . . . . . . . . . . . . 6 1.4 InertialMeasurementUnit . . . . . . . . . . . . . . . . . . . . . . 9 1.5 ObjectivesandSignificance . . . . . . . . . . . . . . . . . . . . . . 10 1.6 DissertationOverview . . . . . . . . . . . . . . . . . . . . . . . . . 12 2 Literature Review 14 2.1 InertialSensorsAlgorithms . . . . . . . . . . . . . . . . . . . . . . 14 2.2 LimitationsofPreviousStudies . . . . . . . . . . . . . . . . . . . . 20 2.3 AddressingTheLimitations . . . . . . . . . . . . . . . . . . . . . . 21 TABLE OF CONTENTS vii 3 Kinematics of Human Motion 23 3.1 BasicMovementDescription . . . . . . . . . . . . . . . . . . . . . 23 3.2 KinematicChainsandModelDevelopment . . . . . . . . . . . . . 25 3.2.1 Denavit-HartenbergConvention . . . . . . . . . . . . . . . 26 3.2.2 Denavit-HartenbergParameters . . . . . . . . . . . . . . . . 28 3.2.3 LinkTransformations . . . . . . . . . . . . . . . . . . . . . 30 3.3 VelocityandAccelerationPropagation . . . . . . . . . . . . . . . . 31 3.3.1 Netwon-EulerEquations . . . . . . . . . . . . . . . . . . . 32 3.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33 4 Joint Angles Estimation 34 4.1 EstimationandFiltering . . . . . . . . . . . . . . . . . . . . . . . . 34 4.2 StateSpaceModels . . . . . . . . . . . . . . . . . . . . . . . . . . 36 4.2.1 StateModel . . . . . . . . . . . . . . . . . . . . . . . . . . 37 4.2.2 ObservationModel . . . . . . . . . . . . . . . . . . . . . . 38 4.2.3 NonlinearStateEstimator . . . . . . . . . . . . . . . . . . . 38 4.3 ModelValidationUsingSyntheticData . . . . . . . . . . . . . . . . 39 4.3.1 ElbowandForearmModel . . . . . . . . . . . . . . . . . . 40 4.3.2 ShoulderModel . . . . . . . . . . . . . . . . . . . . . . . . 41 4.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41 4.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45 5 Performance Assessment 46 5.1 StudyProtocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 5.1.1 DataCollection . . . . . . . . . . . . . . . . . . . . . . . . 48 5.2 ShoulderandElbowMeasurementModel . . . . . . . . . . . . . . 49 5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 TABLE OF CONTENTS viii 6 Modified Arm Model 61 6.1 RobotArmJointAngles . . . . . . . . . . . . . . . . . . . . . . . 62 6.1.1 BaselinePerformanceResults . . . . . . . . . . . . . . . . 65 6.2 ModelingSensorRandomDrift . . . . . . . . . . . . . . . . . . . . 74 6.2.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 6.3 AnatomicalConstraintsinShoulderandElbow . . . . . . . . . . . 77 6.3.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 6.4 Zero-VelocityUpdates . . . . . . . . . . . . . . . . . . . . . . . . 79 6.4.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 6.5 ModifiedModelwithBias,Constraints,andZero-VelocityUpdates . 80 6.5.1 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7 Nonlinear State Estimation 87 7.1 ExtendedKalmanFilter . . . . . . . . . . . . . . . . . . . . . . . . 88 7.1.1 ExtendedKalmanFilterRecursions . . . . . . . . . . . . . 89 7.2 UnscentedKalmanFilter . . . . . . . . . . . . . . . . . . . . . . . 90 7.2.1 UnscentedKalmanFilterRecursions . . . . . . . . . . . . . 90 7.3 ParticleFilters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 7.4 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94 7.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 8 Summary And Conclusion 101 8.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 8.2 Contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104 8.3 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107 References 108

Description:
space methods to estimate angles of the human shoulder and elbow using two wire Results show an excellent agreement between joint angles esti-.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.