ebook img

johan pohl STRUCTURE AND PROPERTIES OF DEFECTS IN PHOTOVOLTAIC ABSORBER ... PDF

210 Pages·2013·20.27 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview johan pohl STRUCTURE AND PROPERTIES OF DEFECTS IN PHOTOVOLTAIC ABSORBER ...

johan pohl STRUCTURE AND PROPERTIES OF DEFECTS IN PHOTOVOLTAIC ABSORBER MATERIALS: ATOMIC SCALE COMPUTER SIMULATIONS OF Si AND Cu(In,Ga)Se 2 Zur Erlangung des akademischen Grades des Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Johan Pohl geboren in Friedberg Fachgebiet Materialmodellierung Fachbereich Material- und Geowissenschaften Technische Universität Darmstadt Hochschulkennziffer: D17 Referent: Prof. Dr. Karsten Albe, Technische Universität Darmstadt Korreferent: Prof. Dr. Hans-Werner Schock, Helmholtz-Zentrum Berlin Tag der Einreichung: 20. November 2012 Tag der Prüfung: 23. Januar 2013 Erscheinungsort: Darmstadt Erscheinungsjahr: 2013 STRUCTURE AND PROPERTIES OF DEFECTS IN PHOTOVOLTAIC ABSORBER MATERIALS: ATOMIC SCALE COMPUTER SIMULATIONS OF Si AND Cu(In,Ga)Se 2 johan pohl Dissertation 2013 On the cover: Twin boundaries originating at a grain boundary during silicon growth from the melt. Obtained from molecular dynamics simulations and vi- sualized with OVITO. This image was awarded the second prize in the category Digitallymodifiedimagesatthe17thAmericanConferenceforCrystalGrowthand Epitaxy, Lake Geneva, USA. CONTENTS List of Abbreviations ix Abstract xiii Motivation xv I introduction 1 1 solar cells: principles and concepts 5 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 The p-n homojunction . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 A p-n heterojunction: band diagram of Cu(In,Ga)Se cells . . . . . 8 2 1.5 Optimizing photovoltaic devices: Sources of efficiency losses . . . 11 1.5.1 Efficiency limits and optimal gaps . . . . . . . . . . . . . . . 11 1.5.2 Photocarrier recombination via defect states . . . . . . . . . 11 1.5.3 Band offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.4 Lattice mismatch . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.5 Inhomogeneities and potential fluctuations . . . . . . . . . . 13 1.6 Real high-efficiency devices: Silicon versus Cu(In,Ga)Se . . . . . . 14 2 2 cu(in,ga)se : intrinsic point defects, phase diagram and 2 diffusion 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Intrinsic point defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Copper diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 silicon: crystal growth, interface kinetics and extended defects 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Crystal growth methods . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Interface growth kinetics . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Twin boundaries and stacking faults . . . . . . . . . . . . . . . . . . 31 3.5 Void formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 II methods 35 4 atomic-scale simulation methods 39 4.1 The fundamental picture . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Methods for total energies . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 Density functional theory (DFT) . . . . . . . . . . . . . . . . 43 v contents 4.2.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1.2 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1.3 Functionals for Exchange and Correlation . . . . . 44 4.2.2 Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Classical interatomic potentials . . . . . . . . . . . . . . . . . 48 4.2.4 Lattice Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Methods for time evolution and sampling equilibrium . . . . . . . 52 4.3.1 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 Metropolis Monte Carlo . . . . . . . . . . . . . . . . . . . . . 53 4.3.3 Kinetic Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Methods for saddle point search . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Nudged-elastic band method . . . . . . . . . . . . . . . . . . 55 4.5 Methodological considerations for the topics of this thesis . . . . . 56 5 ab-initio characterization of point defects 57 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Thermodynamics of Point Defects . . . . . . . . . . . . . . . . . . . 58 5.3 Formation Energies from Ab-Initio Calculations . . . . . . . . . . . 64 5.4 Correction schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 III intrinsic point defect physics in cu(in,ga)se 67 2 6 screened-exchange hybrid density functional theory cal- culations for chalcopyrites 71 6.1 HSE06: Exchange screening vs. fraction of exact exchange . . . . . 71 6.2 Bulk properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3 Setup for bulk and defect calculations . . . . . . . . . . . . . . . . . 75 7 copper vacancies in cuinse , cugase , cuins and cugas 77 2 2 2 2 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Defect formation energies . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3 Fermi-level pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.4 Migration barriers and diffusion . . . . . . . . . . . . . . . . . . . . 80 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8 copper interstitials in cuinse 85 2 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9 antisite traps and metastable point defects in cuinse and 2 cugase 91 2 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 vi contents 10 the complete intrinsic point defect physics of cuinse and 2 cugase 101 2 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 10.3.1 Stability diagrams . . . . . . . . . . . . . . . . . . . . . . . . 102 10.3.2 Point defect formation energies . . . . . . . . . . . . . . . . . 105 10.3.3 Charge transition levels . . . . . . . . . . . . . . . . . . . . . 108 10.3.4 Defect states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 10.4 Discussion of Individual Point Defects . . . . . . . . . . . . . . . . . 111 10.4.1 Cation antisites . . . . . . . . . . . . . . . . . . . . . . . . . . 111 10.4.2 Cation vacancies . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.4.3 Interstitials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.4.4 Metastable point defects . . . . . . . . . . . . . . . . . . . . . 113 10.5 Is metastability caused by point defects? . . . . . . . . . . . . . . . 114 10.6 Complexes with copper vacancies . . . . . . . . . . . . . . . . . . . 115 10.7 Comparison to the literature: Theory . . . . . . . . . . . . . . . . . 118 10.8 Comparison to the literature: Experiment . . . . . . . . . . . . . . . 119 10.9 Implications for device optimization . . . . . . . . . . . . . . . . . . 120 10.10 Connection to defects in other materials: ZnO and kesterites . . . 121 10.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 IV twin boundary, stacking fault and void formation in melt-grown silicon 125 11 the twin formation mechanism in melt-grown silicon 129 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 12 void formation from grown-in faulted dislocation loops 137 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 12.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 12.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 138 12.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 13 a lattice monte carlo model for silicon growth includ- ing twin boundaries 143 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 13.2 Lattice Monte Carlo models for crystal growth . . . . . . . . . . . . 143 13.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 13.3.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 147 13.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 152 vii contents 13.4.1 Qualitative assessment of the growth kinetics at the Si(111) solid-liquid interface . . . . . . . . . . . . . . . . . . . . . . . 152 13.4.2 Interface growth velocities . . . . . . . . . . . . . . . . . . . . 154 13.4.3 Roughening transition . . . . . . . . . . . . . . . . . . . . . . 158 13.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Summary 165 Contributions 169 Erklärung – Disclaimer 171 Danksagung – Acknowledgments 173 Bibliography 177 viii contents ix

Description:
act as a hole traps in both CuInSe2 and CuGaSe2 and are assigned to the N2 level, defects it is worth mentioning some quantities of interest, which can be calcu- were previously thought to associate with unkown point defects, This method leads to the well known Kröger-Vink notation of defect.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.