johan pohl STRUCTURE AND PROPERTIES OF DEFECTS IN PHOTOVOLTAIC ABSORBER MATERIALS: ATOMIC SCALE COMPUTER SIMULATIONS OF Si AND Cu(In,Ga)Se 2 Zur Erlangung des akademischen Grades des Doktors der Ingenieurwissenschaften (Dr.-Ing.) genehmigte Dissertation vorgelegt von Dipl.-Phys. Johan Pohl geboren in Friedberg Fachgebiet Materialmodellierung Fachbereich Material- und Geowissenschaften Technische Universität Darmstadt Hochschulkennziffer: D17 Referent: Prof. Dr. Karsten Albe, Technische Universität Darmstadt Korreferent: Prof. Dr. Hans-Werner Schock, Helmholtz-Zentrum Berlin Tag der Einreichung: 20. November 2012 Tag der Prüfung: 23. Januar 2013 Erscheinungsort: Darmstadt Erscheinungsjahr: 2013 STRUCTURE AND PROPERTIES OF DEFECTS IN PHOTOVOLTAIC ABSORBER MATERIALS: ATOMIC SCALE COMPUTER SIMULATIONS OF Si AND Cu(In,Ga)Se 2 johan pohl Dissertation 2013 On the cover: Twin boundaries originating at a grain boundary during silicon growth from the melt. Obtained from molecular dynamics simulations and vi- sualized with OVITO. This image was awarded the second prize in the category Digitallymodifiedimagesatthe17thAmericanConferenceforCrystalGrowthand Epitaxy, Lake Geneva, USA. CONTENTS List of Abbreviations ix Abstract xiii Motivation xv I introduction 1 1 solar cells: principles and concepts 5 1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.2 Basic concepts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.3 The p-n homojunction . . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 A p-n heterojunction: band diagram of Cu(In,Ga)Se cells . . . . . 8 2 1.5 Optimizing photovoltaic devices: Sources of efficiency losses . . . 11 1.5.1 Efficiency limits and optimal gaps . . . . . . . . . . . . . . . 11 1.5.2 Photocarrier recombination via defect states . . . . . . . . . 11 1.5.3 Band offsets . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.4 Lattice mismatch . . . . . . . . . . . . . . . . . . . . . . . . . 12 1.5.5 Inhomogeneities and potential fluctuations . . . . . . . . . . 13 1.6 Real high-efficiency devices: Silicon versus Cu(In,Ga)Se . . . . . . 14 2 2 cu(in,ga)se : intrinsic point defects, phase diagram and 2 diffusion 17 2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.2 Intrinsic point defects . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Phase diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.4 Copper diffusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 2.5 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 3 silicon: crystal growth, interface kinetics and extended defects 29 3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.2 Crystal growth methods . . . . . . . . . . . . . . . . . . . . . . . . . 29 3.3 Interface growth kinetics . . . . . . . . . . . . . . . . . . . . . . . . . 30 3.4 Twin boundaries and stacking faults . . . . . . . . . . . . . . . . . . 31 3.5 Void formation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 3.6 Open questions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 II methods 35 4 atomic-scale simulation methods 39 4.1 The fundamental picture . . . . . . . . . . . . . . . . . . . . . . . . . 39 4.2 Methods for total energies . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1 Density functional theory (DFT) . . . . . . . . . . . . . . . . 43 v contents 4.2.1.1 Basics . . . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1.2 Basis Sets . . . . . . . . . . . . . . . . . . . . . . . . 43 4.2.1.3 Functionals for Exchange and Correlation . . . . . 44 4.2.2 Quantum Monte Carlo . . . . . . . . . . . . . . . . . . . . . . 46 4.2.3 Classical interatomic potentials . . . . . . . . . . . . . . . . . 48 4.2.4 Lattice Hamiltonians . . . . . . . . . . . . . . . . . . . . . . . 51 4.3 Methods for time evolution and sampling equilibrium . . . . . . . 52 4.3.1 Molecular dynamics . . . . . . . . . . . . . . . . . . . . . . . 52 4.3.2 Metropolis Monte Carlo . . . . . . . . . . . . . . . . . . . . . 53 4.3.3 Kinetic Monte Carlo . . . . . . . . . . . . . . . . . . . . . . . 54 4.4 Methods for saddle point search . . . . . . . . . . . . . . . . . . . . 55 4.4.1 Nudged-elastic band method . . . . . . . . . . . . . . . . . . 55 4.5 Methodological considerations for the topics of this thesis . . . . . 56 5 ab-initio characterization of point defects 57 5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 5.2 Thermodynamics of Point Defects . . . . . . . . . . . . . . . . . . . 58 5.3 Formation Energies from Ab-Initio Calculations . . . . . . . . . . . 64 5.4 Correction schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 III intrinsic point defect physics in cu(in,ga)se 67 2 6 screened-exchange hybrid density functional theory cal- culations for chalcopyrites 71 6.1 HSE06: Exchange screening vs. fraction of exact exchange . . . . . 71 6.2 Bulk properties . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73 6.3 Setup for bulk and defect calculations . . . . . . . . . . . . . . . . . 75 7 copper vacancies in cuinse , cugase , cuins and cugas 77 2 2 2 2 7.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77 7.2 Defect formation energies . . . . . . . . . . . . . . . . . . . . . . . . 78 7.3 Fermi-level pinning . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.4 Migration barriers and diffusion . . . . . . . . . . . . . . . . . . . . 80 7.5 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 8 copper interstitials in cuinse 85 2 8.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 8.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 8.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90 9 antisite traps and metastable point defects in cuinse and 2 cugase 91 2 9.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91 9.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 92 9.4 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100 vi contents 10 the complete intrinsic point defect physics of cuinse and 2 cugase 101 2 10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101 10.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102 10.3.1 Stability diagrams . . . . . . . . . . . . . . . . . . . . . . . . 102 10.3.2 Point defect formation energies . . . . . . . . . . . . . . . . . 105 10.3.3 Charge transition levels . . . . . . . . . . . . . . . . . . . . . 108 10.3.4 Defect states . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110 10.4 Discussion of Individual Point Defects . . . . . . . . . . . . . . . . . 111 10.4.1 Cation antisites . . . . . . . . . . . . . . . . . . . . . . . . . . 111 10.4.2 Cation vacancies . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.4.3 Interstitials . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112 10.4.4 Metastable point defects . . . . . . . . . . . . . . . . . . . . . 113 10.5 Is metastability caused by point defects? . . . . . . . . . . . . . . . 114 10.6 Complexes with copper vacancies . . . . . . . . . . . . . . . . . . . 115 10.7 Comparison to the literature: Theory . . . . . . . . . . . . . . . . . 118 10.8 Comparison to the literature: Experiment . . . . . . . . . . . . . . . 119 10.9 Implications for device optimization . . . . . . . . . . . . . . . . . . 120 10.10 Connection to defects in other materials: ZnO and kesterites . . . 121 10.11 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122 IV twin boundary, stacking fault and void formation in melt-grown silicon 125 11 the twin formation mechanism in melt-grown silicon 129 11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 129 11.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 130 11.4 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 131 12 void formation from grown-in faulted dislocation loops 137 12.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 12.2 Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 137 12.3 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 138 12.4 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142 13 a lattice monte carlo model for silicon growth includ- ing twin boundaries 143 13.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143 13.2 Lattice Monte Carlo models for crystal growth . . . . . . . . . . . . 143 13.3 The Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144 13.3.1 Parameterization . . . . . . . . . . . . . . . . . . . . . . . . . 147 13.4 Results and Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . 152 vii contents 13.4.1 Qualitative assessment of the growth kinetics at the Si(111) solid-liquid interface . . . . . . . . . . . . . . . . . . . . . . . 152 13.4.2 Interface growth velocities . . . . . . . . . . . . . . . . . . . . 154 13.4.3 Roughening transition . . . . . . . . . . . . . . . . . . . . . . 158 13.5 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 161 Summary 165 Contributions 169 Erklärung – Disclaimer 171 Danksagung – Acknowledgments 173 Bibliography 177 viii contents ix
Description: