Chapter 6 Single factor - pairing and blocking Contents 6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370 6.2 Randomizationprotocol . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 373 6.2.1 Someexamplesofseveraltypesofblockdesigns . . . . . . . . . . . . . . . . 373 6.3 Assumptions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 376 6.3.1 Doestheanalysismatchthedesign? . . . . . . . . . . . . . . . . . . . . . . 376 6.3.2 Additivitybetweenblocksandtreatments. . . . . . . . . . . . . . . . . . . . 377 6.3.3 Nooutliersshouldbepresent . . . . . . . . . . . . . . . . . . . . . . . . . . 378 6.3.4 Equaltreatmentgroupstandarddeviations? . . . . . . . . . . . . . . . . . . . 379 6.3.5 Aretheerrorsnormallydistributed?. . . . . . . . . . . . . . . . . . . . . . . 380 6.3.6 Aretheerrorsindependent? . . . . . . . . . . . . . . . . . . . . . . . . . . . 380 6.4 Comparingtwomeansinapaireddesign-thePairedt-test . . . . . . . . . . . . . 381 6.5 Example-effectofstreamslopeuponfishabundance . . . . . . . . . . . . . . . . 381 6.5.1 Introductionandsurveyprotocol . . . . . . . . . . . . . . . . . . . . . . . . 381 6.5.2 UsingaDifferencesanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 383 6.5.3 UsingaMatchedpairedanalysis . . . . . . . . . . . . . . . . . . . . . . . . 386 6.5.4 UsingaSingleFactorRCBanalysis . . . . . . . . . . . . . . . . . . . . . . 388 6.5.5 UsingaGeneralModelinganalysis . . . . . . . . . . . . . . . . . . . . . . . 390 6.5.6 Whichanalysistochoose? . . . . . . . . . . . . . . . . . . . . . . . . . . . 393 6.5.7 Commentsabouttheoriginalpaper . . . . . . . . . . . . . . . . . . . . . . . 393 6.6 Example-Qualitycheckontwolaboratories. . . . . . . . . . . . . . . . . . . . . 393 6.7 Example-Comparingtwovarietiesofbarley . . . . . . . . . . . . . . . . . . . . 396 6.8 Example-Comparingprepofmosaicvirus . . . . . . . . . . . . . . . . . . . . . 399 6.9 Example-Comparingturbidityattwosites . . . . . . . . . . . . . . . . . . . . . 401 6.9.1 Introductionandsurveyprotocol . . . . . . . . . . . . . . . . . . . . . . . . 401 6.9.2 UsingaDifferencesanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . 403 6.9.3 UsingaMatchedpairedanalysis . . . . . . . . . . . . . . . . . . . . . . . . 406 6.9.4 UsingaGeneralModelinganalysis . . . . . . . . . . . . . . . . . . . . . . . 408 6.9.5 Whichanalysistochoose? . . . . . . . . . . . . . . . . . . . . . . . . . . . 412 6.10 Powerandsamplesizedetermination . . . . . . . . . . . . . . . . . . . . . . . . . 412 6.11 SingleFactor-RandomizedCompleteBlock(RCB)Design . . . . . . . . . . . . . 416 6.11.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416 6.11.2 Thepotato-peelingexperiment-revisited . . . . . . . . . . . . . . . . . . . . 417 6.11.3 Anagriculturalexample . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418 369 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING 6.11.4 Basicideaoftheanalysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419 6.12 Example-Comparingeffectsofsalinityinsoil . . . . . . . . . . . . . . . . . . . . 420 6.12.1 “AdjustingforBlocks”-UsingtheAnalyze->FitY-by-Xplatform . . . . . . . 423 6.12.2 Modelbuilding-fittingalinearmodel . . . . . . . . . . . . . . . . . . . . . 430 6.13 Example-Comparingdifferentherbicides . . . . . . . . . . . . . . . . . . . . . . 436 6.14 Example-Comparingturbidityatseveralsites . . . . . . . . . . . . . . . . . . . 440 6.15 PowerandSampleSizeinRCBs . . . . . . . . . . . . . . . . . . . . . . . . . . . 446 6.16 Example-BPK:Bloodpressureatpresyncope . . . . . . . . . . . . . . . . . . . . 450 6.16.1 Experimentalprotocol. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 450 6.16.2 Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 453 6.16.3 Powerandsamplesize . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460 6.17 Finalnotes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 465 6.18 FrequentlyAskedQuestions(FAQ) . . . . . . . . . . . . . . . . . . . . . . . . . . 466 6.18.1 Differencebetweenpairingandconfounding . . . . . . . . . . . . . . . . . . 466 6.18.2 WhatisthedifferencebetweenapaireddesignandanRCBdesign? . . . . . . 467 6.18.3 Whatisthedifferencebetweenapairedt-testandatwo-samplet-test? . . . . 467 6.18.4 Howtointerpretthegraphofamatchedpairsanalysis . . . . . . . . . . . . . 468 6.18.5 WhentouseAnalyze->FitModelandAnalyze->FitY-by-X(BlockCentered) platformsforanRCB? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 469 6.18.6 HowtousetheAnalyze->FitModelplatformtoadjustforblocksinanRCB? . 469 6.18.7 CanyouusemeandiamondswithanRCBdesign? . . . . . . . . . . . . . . . 470 6.18.8 ThelogicbehindtheAnalyze->FitModelplatform . . . . . . . . . . . . . . . 470 6.18.9 PowerinRCB/matchedpairdesign-whatisrootMSE? . . . . . . . . . . . . 470 6.18.10Testingforblockeffects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470 6.18.11Presentingresultsforblockedexperiment. . . . . . . . . . . . . . . . . . . . 471 6.18.12Whatisamarginalmean? . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471 6.18.13Multipleexperimentalunitswithinablock? . . . . . . . . . . . . . . . . . . 472 6.18.14Howdoesablockdifferfromacluster?. . . . . . . . . . . . . . . . . . . . . 472 Thesuggestedcitationforthischapterofnotesis: Schwarz,C.J.(2015). Singlefactor-pairingandblocking. InCourseNotesforBeginningandIntermediateStatistics. Available at http://www.stat.sfu.ca/~cschwarz/CourseNotes. Retrieved 2015-08-20. 6.1 Introduction Inthecompletelyrandomizeddesign,acompleterandomizationofexperimentalunitstotreatmentswas performed. Thisrandomizationensuredthattheeffectsofallpossibleothervariablesthatmightaffect theresponseare,onaverage,equalinalltreatmentgroups.Consequently,differencesinthegroupmeans canbeattributedtothetreatments. In some cases, it is known or suspected in advance, that a variable, not of primary interest to the experimenter,willaffecttheresultsanditispossibletogroupexperimentalunitsintoclusters(orblocks orstrata)whereunitswithinaclusterhavesimilarvaluesofthisothervariable. Bychangingtheexperi- mentaldesignslightly,itispossibletodesignamorepowerfulexperimentthatadjustsforthepotential effectsofthisadditionalexplanatoryvariable. 370 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING Forexample, supposethatanexperimentwastobeperformedtoinvestigatetheeffectofadrugin loweringbloodpressure. Agroupoftestsubjectsisavailable. In a completely randomized design, 1/2 of the test subjects would be assigned at random to the controlgrouptoreceiveaplacebo,and1/2ofthetestsubjectswouldbeassignedtothedruggroup. By randomizing, theeffectsofother, uncontrolledvariablessuchasamountofexercise, metabolism, diet, etc.,wouldbeequal,onaverage,betweenthetwogroups. However,theseotheruncontrolledvariables would result in a large variation in blood pressure within each group making it harder to detect any changes. [Recallthatpowerforthistypeofexperimentisrelatedtotheratioofthedifferenceinmeans tothestandarddeviationwithingroups.] Thedesigncanbeimprovedbytreatingeachsubjectwithboththeplaceboandthedrug(inrandom order). Now each subject serves as a “control” for these other variables and the difference in blood pressurereadingswillbefree(wehope)oftheeffectsoftheseothervariables.Thisisknownasapaired design,ormoregenerally,asablockeddesign. Thisdesignisnotperfect–onestillhastoworryabout carry-overeffects(e.g.theresponseforthesecondtreatmentmightbeaffectedbywhathappenedinthe firsttreatment),andabouttheinteractionoftheblockingfactorwiththetreatment(i.e.,perhapspeople withhighbloodpressurereactdifferentlytothedrugthanpeoplewithlowbloodpressure). Itispossible toblockbymorethanonevariable,e.g.thesubjectscouldbefurthergroupedbyinitialbloodpressure levels–thisisbeyondthescopeofthiscourse. Thisexamplewithtwotreatmentlevelscanbeextendedtoarandomizedcompleteblockexperiment where2ormorelevelsarerandomizedwithineachblock. Infieldbiology,commonblockingvariablesaresiteoftheexperimentorbiogeoclimaticzone. Someotherexamplesofblockeddesignsare: • Honeybeecoloniesarestackedonpallets,threeperpallet. Investigatorswishtodeterminewhich of three brands of a chemical treatment is most effective in killing a bee mite. They randomly assignthethreetreatmentswithineachpalletensuringthateachpalletreceivesallthreetreatments. Theblocksarethepallets;thefactoristhechemicaltreatment;thelevelsarethethreebrands. • Restingheartratevariesconsiderablyamongpeople. Consequently,youmaydecidetomeasurea personbeforeandafterexercisetoseethechangeinheartrate. Theblocksarepeople;thefactor is time; the levels are before and after exercise. Notice in this experiment, you can’t randomize time-thiscanintroducesubtleproblemsintotheanalysis.1 • Driving habits vary considerably among drivers. Consequently, you may decide to compare the durability of different brands of tires by mounting all brands on the same car and doing a direct comparison under the same driving conditions, rather than using different cars for each grand withdifferentdriversand(presumably)differentdrivingconditions. Theblocksaredriver/car;the factorisbrandoftire;thelevelsaretheparticularbrandschosenintheexperiment. Therearetwoseeminglydifferentexperimentalproceduresandanalyses. 1. Paireddesign. Therearetwotreatmentlevels. Apairedt-testisusedtoanalyzethedata. 2. Blockeddeign. Therearetwoormoretreatmentlevels. AnANOVAisusedtoanalyzethedata. 1Forthetechnicalmasochistsintheaudience,thesubtleproblemisthattheerrortermslikelynolongerhaveacompound symmetriccovariancestructure. Measurementsthatareclosertogetherintimewillbemorerelatedthanmeasurementsthatare distantintime. 371 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING Thepairedt-testisaspecialcaseofamoregeneralANOVAapproachandthetwoapproacheswillgive identicalresultsfordesignswithexactly2treatmentlevels. Incaseswithmorethan2levels,thepaired approachcannotbeused. ThenullhypothesisisexactlythesameregardlessifthedesignisaCRDoranRCB!Moregen- erally,forfixedeffects,thehypothesesarealwaysaboutthemeanresponsesatdifferentlevels.Typically thenullhypothesisisH:noeffectoffactorXuponthemeanresponseorH:themeanresponseforeach leveloffactorXisthesame. ThealternatehypothesisisthatthereissomeeffectoffactorXuponthe meanresponseorthatthemeanresponsediffersamongthelevelsoffactorX. Thereasonthatthehypothesesarethesameisthathypothesesareconcernedabouttreatmenteffects. Thetreatmentstructureisquiteindependentoftheexperimentalunitstructure(i.e.,anRCB,CRD,sub- sampling,orsplit-plotdesign)andtherandomizationstructure(i.e.,wasitcompleterandomization). AdvantagesandDisadvantagesofanRCB WhychooseaRCBoveraCRDorvice-versa? Herearetheadvantagesanddisadvantagesofeach design. Design Advantages Disadvantages CRD Easytoconstructthedesign. Experimental units are presumed to Easy to analyze even if the number be homogeneous so that complete ofreplicationsdiffersineachgroup. randomizationisappropriate. Canbeusedforanynumberoftreat- ments. RCB Onesourceofheterogeneityamong Maybedifficulttogetlargeenough experimentalunitscanbeaccounted blocksifyouhavealargenumberof for. treatments. More complex analysis if doing by hand - otherwise must properly specifydesigntocomputerpackage. Can be a complicated analysis if many values go missing - but in many cases modern software han- dles missing values without prob- lems. In general, it is almost always advantageous to block. If the blocking is successful, you can substantiallyincreasethepowerofyourdesigntodetectdifferences;ifblockingisunimportant,thereis verylittlelossofefficiencyinthedesign. Whatisthedifferencebetweentreatingblocksassimplyblocksortreatingblocksasanother factor? Insomecases,thecreationofblocksisdependantuponavariablethatlookslikeafactor. For example,blockscouldbeformedbasedupon(hypothesized)fertilitydifferencesamongfields. Thekey differencebetweentreatingblocksassimplynusiancevariablesortreatingthemasafactorishowyou goaboutmeasuringtheblockvariable. Ifblocksareformedupon(hypothesized)differencesinfertility amongplots,itisNOTnecessarytomeasuretheactualfertilitylevels,norisitnecessarytorestrictthe number of fertility levels to a small number of levels. If you wanted to treat fertility as a factor, you would normally only have a few levels (e.g. low, medium, high), you would be forced to measure the fertilityofeachplotofland,andyouwouldliketohavereplicatesofeachleveloffertility. Youarenow intotherealmoftwofactordesignswhicharediscussedinotherchapters. 372 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING 6.2 Randomization protocol Asinglefactor,randomizedcompleteblockdesign(RCB)hasthefollowingattributes: 1. Thereisasinglesizeofexperimentalunit. 2. Experimentalunitscanbegroupedintoclusters(orblocksorstrata)andwithineachblock,exper- imentalunitsareassimilaraspossible. 3. Within each block, experimental units are completely randomized (independently within each block) to treatments such that every treatment occurs once and only once in each block and all treatmentsoccurineachblock. Therestrictedrandomizationprocedureisakeypointofblockeddesigns-therandomizationtakes placeindependentlywithineachblock. The most common violation of this protocol is incomplete randomization within each block. For example,inadrugstudytocomparethebloodpressureofadrugvs.thebloodpressurewhentakinga placebo, theplacebomayalwaysbegivenbeforethedrug. Inthiscase, itisimpossibletoknowifthe drugcausedanychangeinmeanbloodpressure; perhapsthedifferentamountofsunlightbetweenthe twooccasionscausedthechange. 6.2.1 Someexamplesofseveraltypesofblockdesigns SupposethattheMinistryofForestsisinterestedinstudyingtheeffectsofsupplementalfertilizationon thegrowthofseedlingsafterplanting. Threelevelsofsupplementalfertilizationwillbeused(none,low, orhighamountsoffertilization). Theexperimentwillbeconductedatsixdifferenttestsitesaroundthe province. Ateachlocation,threerecentlyreplantedforestplotsareavailableforuseintheexperiment. Hereareseveralpossibledesigns. Completelyrandomizeddesign-noblocking Plot number at each site Site 1 2 3 --------------------- 1 0 high 0 2 low low high 3 high low 0 4 low 0 high 5 low 0 low 6 0 high high --------------------- The experimental units were completely randomized to the treatments ignoring the site groupings. Thereisnoguaranteethateachsitereceiveseachtreatmentlevel. Consequentlycomparisonsbetween treatment levels (e.g. high vs. low) include extra variation because different locations are used for the twotreatments. 373 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING Randomizedcompleteblockdesign-RCBdesign Plot number at each site Site 1 2 3 --------------------- 1 0 high low 2 low 0 high 3 high low 0 4 low 0 high 5 high 0 low 6 0 high low --------------------- Within each block, all treatments occur once and only once and within each block randomization wasperformedindependentlyoftherandomizationinotherblocks. Randomizedcompleteblockdesign-RCBdesign-missingvalues Plot number at each site Site 1 2 3 --------------------- 1 0 high low 2 low 0 * 3 high low 0 4 low 0 high 5 high 0 low 6 0 high low --------------------- Within each block, all treatments occur once and only once and within each block randomization was performedindependentlyoftherandomizationinotherblocks. However, duringtheexperiment, some plots were rendered unusable (e.g. damage by deer) and some treatments could not be measured (e.g. plot 3 in site 2). In the past (when computations were done by hand), this made the analysis more difficult.Withmodernsoftware(e.g.NOTExcel!),thisusuallydoesn’tcausemanyproblemunlessthere are substantial number of missing values. You may wish to seek advice on the analysis of blocked designswithmissingvalues. 374 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING Incompleteblockdesign-notanRCB Plot number at each site Site 1 2 --------------- 1 0 high 2 low 0 3 high low 4 low 0 5 high 0 6 0 high --------------------- Insomebases,blocksmaynotbelargeenoughtocontainalltreatments. Theblocksareincompletebut randomizationstilltakesplacewithineachblockandindependentlyofotherblocks. Seekadviceonthe designandanalysisofsuchdesigns. Forexample,theabovedesignisnotbalancedasnotallpairsof treatmentsoccurequallyoften(the0vs.highpairoccursmoreoftenthanotherpairs). Generalizedrandomizedcompleteblockdesign Plot number at each site Site 1 2 3 4 --------------------------- 1 0 high low low 2 low 0 high 0 3 high low 0 0 4 low 0 high high 5 high 0 low high 6 0 high low low --------------------------- Insomecases,theblocksarelargeenoughtohavesomeorallofthetreatmentsreplicatedwithineach block.Thisprovidesadditionalinformationaboutthevariabilityoftreatmentswithinblocks.Inaddition, thefactthatyounowknowthevariabilityofresponseswithinblocksforthesametreatment,allowsthe experimentertoconductaformalstatisticaltesttoexamineiftheblock-treatmentadditivityassumption holdsinthisexperiment. Forthisreason,Irecommendtheuseofthelatterdesign(theGeneralizedRandomizedCom- plete Block Design) whenever possible The design gives you the advantage of blocking - increased precision. Aswell,itallowsyoutoempiricallytesttheblock-treatmentassumptionofaddivitivity. The“balanced”caseofaGRCBdesignwouldhaveanequalnumberofreplicatesofeachtreatment ineachblock(e.g. 2replicateswithineachblock). However,thisisnotessentialiftheblockscannotbe made big enough. While there is no “formal” rule, it seems sensible to spread the replication over the differenttreatmentsamongtheblocks, i.e.insomeblockreplicatetreatmentlevelsa1anda2, whilein other blocks, replicate a2 and a3, and then a1 and a3 etc. Seek advice on the design and analysis of suchdesigns. Twonicereferencesare: • Addelman,S.(1969). 375 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING TheGeneralizedRandomizedBlockDesign. AmericanStatistician,23,35-36. http://dx.doi.org/10.2307/2681737. • GatesC.E.(1999). Whatreallyisexperimentalerrorinblockdesigns. AmericanStatistician49,362-363. http://dx.doi.org/10.2307/2684574. 6.3 Assumptions As noted earlier, each and every statistical procedure makes a number assumptions about the data that shouldbeverifiedastheanalysisproceeds. Someoftheseassumptionscanbeexaminedusingthedata athand;other,oftenthemostimportantcanonlybeassessedusingthemeta-dataabouttheexperiment. The set of assumptions for the single factor RCB are, for the most part, identical to those for the single factor CRD. To make this chapter self-contained, they are repeated in detail below and the key differencesforanRCBwillbehighlighted. 6.3.1 Doestheanalysismatchthedesign? THISISTHEMOSTCRUCIALASSUMPTION! Inthischapter,thedatawerecollectedunderablockeddesign. Itisnotpossibletocheckthisassumptionbyexaminingthedataandyoumustspendsometimeex- aminingexactlyhowthetreatmentswererandomizedtoexperimentalunits,andiftheobservationalunit isthesameastheexperimentalunit(i.e.themeta-dataabouttheexperiment). Thiscomesdowntothe RRR’sofstatistics-howweretheexperimentalunitsrandomized,whatarethenumbersofexperimental units,andaretheregroupingsofexperimentalunits(blocks)? The key features of a RCB design are the restricted randomization of the treatments within each block,andthattheblockarecomplete(i.e.everytreatmentoccursexactlyonceineveryblock).2 Typicalproblemsarelackofrandomizationwithineachblock,pseudo-replication,and(ironically)a lackofblocking. Wasrandomizationcomplete? Ifyouaredealingwithanalyticalsurvey,thenverifythatthesam- plesaretruerandomsamples(notmerelyhaphazardsamples).Ifyouaredealingwithatrueexperiments, ensurethattherewasacompleterandomizationoftreatmentstoexperimentalunits. Whatisthetruesamplesize? Aretheexperimentalunitsthesameastheobservationalunits? In pseudo-replication(Hurlbert,1984),theexperimentalandobservationalunitsaredifferent. Anexample of pseudo-replication are experiments with fish in tanks where the tank is the experimental unit (e.g. chemicalsaddedtothetank)butthefisharetheobservationalunits. Isblockingpresent? Theexperimentalunitsshouldbegroupedintomorehomogeneousunitswith restrictedrandomizationswithineachgroup.NotehowthisdiffersfromaCRDwherethereisnoa-priori 2Theassumptionofacompleteblockcanberelaxedsomewhatthrougheitheradditionalreplicatesineachblockorincomplete blocks.Ineithercase,pleaseseekadditionalhelpindesignandtheanalysisofsuchdesigns. 376 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING groupingofexperimentalunitsandthereiscompleterandomizationoftreatmentstoexperimentalunits. 6.3.2 Additivitybetweenblocksandtreatments THISISACRUCIALASSUMPTIONthatallowstheanalysistobeinterpreted! Acrucialfeatureinthedesignandanalysisofblockeddesignsistheassumptionofadditivitybe- tweentreatmenteffectsandblockeffectsupontheresponsevariable. Thisassumptionsstatesthatthedifferenceinthemeanresponsebetweenanytwotreatmentsisthe sameinallblocks. Theoverallmeanoftheresponsesfromeachtreatmentmayvaryamongblocks,but thedifferencesmustbeconstant. Forexample,consideranexperimentwiththreetreatmentsconductedintwoblocks.Table6.1shows actualpopulationmeansundertheassumptionofadditivity. Table6.1: Populationmeansunderassumptionofadditivity Treatment Block a b c 1 10 20 15 2 35 45 40 Noticethattheresponseisgenerallyhigherinblock2thaninblock1–infactthedifferencebetween thetwoblocksisaconstantvalueof25foreachtreatment. Themeanoftreatmentbisalways10units higherinbothblocksthanthemeanfortreatmenta.Thedifferenceinthemeansforanypairoftreatment isthesameinallblocks. Note that the above table refers to POPULATION means - the sample means may not enjoy this strictadditivityasanartifactofthesamplingprocess. Anothernamefortheassumptionofadditivityisnointeractionbetweentreatmentsandblocks. Therearetwowaysinwhichadditivitycanfail. First,theunitsmaybemeasuredonthewrongscale. ConsiderTable6.2ofmeanswhereadditivitydoesnothold: Table6.2: Populationmeanswhentheassumptionofadditivityisfalsebutcorrectable Treatment Block a b c 1 10 20 15 2 100 200 150 InTable6.2, thetreatmenteffectsarenotthesameinbothblocks(why?), butnoticethatthemeanfor treatment b is always twice the mean for treatment a in both blocks. This suggests that the effects of treatmentaremultiplicativeratherthanadditive, andthattheanalysisshouldproceedonthelog-scale. Indeed,considerthesamevaluesinTable6.3afteralog-transformation:3 ThetreatmenteffectsinTable6.3arenowadditiveonthelog-scale(howcanyoutell?). 3Eitherthelnorlogtransformationcanbeused.Theresultswilldifferbyaconstant 377 (cid:13)c2015CarlJamesSchwarz 2015-08-20 CHAPTER6. SINGLEFACTOR-PAIRINGANDBLOCKING Table6.3: Populationmeanswhentheassumptionofadditivityisfalsebutcorrectable. Alog-transform isapplied. Treatment Block a b c 1 2.30 3.00 2.71 2 4.61 5.30 5.01 Table6.4: Populationmeanswhentheassumptionofadditivityisfalseandnotcorrectable. Treatment Block a b c 1 10 20 15 2 35 30 25 Insomecases,notransformationwillcorrectnon-additivityasillustratedinTable6.4.. Notice that the response Table 6.4 is generally higher in block 2 than in block 1 – but there is no simplepatterntothedifferenceamongmeans. Thedifferencebetweenthemeanresponsefortreatment aandtreatmentbchangesinthetwoblocks. Inblock1, treatmentbhasameanthatis10unitslarger thanthemeanfortreatmenta,whileinblock2,themeanforbis5unitslowerthanthemeanfora. This isalsoknownasaninteractionbetweentreatmentsandblocks. Thediscussionoftheconceptofinteractionandadditivityisresumedwhentwo-factordesignsare examinedinalaterchapter.. Theassumptionofadditivitybetweenblocksandtreatmentscanbeassessed(roughly)intwoways depending if the design is a simple paired experiment or a more complex design with more than two treatments.4 Inapaireddesign,aplotofthedifferencesbetweenthetwotreatmentsisplottedagainstthesample averageofthetwotreatmentsforeachpair. Thedatashouldshowaroughscatterinaparallelbandto theX-axis(thiswillbedemonstratedintheexamples). In blocked designs with more than two treatments, plot the data points against the treatments and joinpointsfromthesameblock(againthiswillbedemonstratedintheexamples).5 6.3.3 Nooutliersshouldbepresent ThisisthesameassumptionasintheCRD. As seen in previous chapters, the idea behind the tests for equality of means is, ironically, to com- paretherelativevariationamongmeanstothevariationwitheachgroup. Outlierscanseverelydistort estimatesofthewithin-groupvariationandseverelydistorttheresultsofthestatisticaltest. Construct side-by-side scatterplots of the individual observations for each group. Check for any 4A more formal test that compares complete additivity to a multiplicative effect is possible. It is called Tukey’s test for additivity,butisrarelymoreusefulthanthesimpleplotsoutlinedinthissection 5TheMatchingColumnoptionsintheAnalyze->FitY-by-Xplatformgivesthis. 378 (cid:13)c2015CarlJamesSchwarz 2015-08-20
Description: