Jet measurements in pp, p–Pb and Pb–Pb collisions with ALICE at the LHC 6 1 S. K. Prasad∗† 0 CentreforAstroparticlePhysicsandSpaceScience,BoseInstitute,Kolkata,700091(INDIA) 2 E-mail: [email protected] n a J We present a systematic study of jet measurements in pp, p–Pb and Pb–Pb collisions using the 8 √ ALICE detector at the LHC. Jet production cross sections are measured in pp collisions at s 1 √ √ = 2.76 and 7 TeV, in p–Pb collisions at s = 5.02 TeV and in Pb–Pb collisions at s = NN NN ] x 2.76 TeV. Jet shape observables and fragmentation distributions are measured in pp collisions e at 7 TeV. Jets are reconstructed at midrapidity in a wide range of transverse momentum using - p sequentialrecombinationjetfindingalgorithms(k ,anti-k ,andSISCone)withseveralvaluesof e T T h jetresolutionparameterRintherange0.2–0.6. MeasurementsarecomparedtoNext-to-Leading [ Order(NLO)perturbativeQuantumChromodynamics(pQCD)calculationsandpredictionsfrom 1 Monte Carlo (MC) event generators such as PYTHIA, PHOJET and HERWIG. Jet production v √ 2 crosssectionsarewellreproducedbyNLOpQCDcalculationsinppcollisionsat s=2.76TeV. √ 6 MC models could not explain the jet cross sections in pp collisions at s = 7 TeV, whereas 4 4 jet shapes and fragmentation distributions are rather well reproduced by these models. The jet 0 nuclearmodificationfactorR inp–Pbcollisionsisfoundtobeconsistentwithunityindicating pPb . 1 theabsenceoflargemodificationsoftheinitialpartondistributionorstrongfinalstateeffectson 0 6 jetproduction,whereasalargejetsuppressionisobservedinPb–Pbcentraleventswithrespectto 1 peripheraleventsindicatingformationofadensemediumincentralPb–Pbevents. : v i X r a ∗Speaker. †OnbehalfoftheALICECollaboration. Jetsinpp,p–Pb,andPb–PbusingALICE S.K.Prasad 1. Introduction In high energy hadronic or nuclear collisions, hard (large momentum transfer Q2) scattered partons (quarks and gluons) fragment and hadronize, resulting in a collimated shower of particles known as a jet [1]. Jet measurements in pp collisions provide a test of perturbative and non- perturbative aspects of jet production and fragmentation as implemented in the MC models, and formabaselineforsimilarmeasurementsinnucleus–nucleus(A–A)andproton–nucleus(p–A)col- lisions. In A–A collisions an energetic parton while passing through the produced medium loses energyviainducedgluonradiationandelasticscattering. JetstudiesinA–Acollisionsincompar- isontoppallowabetterunderstandingofthemediuminducedmodificationsinthefragmentation ofhardscatteredpartonsandenergylossmechanisms[2,3],whereassimilarstudiesinp–Acolli- sionspotentiallyrevealtheeffectsof(cold)nuclearmatter(CNM).Inthispaperwepresentresults √ of jetmeasurements obtained using ALICEdetector in ppcollisions at s= 2.76, 7TeV, in p–Pb √ √ collisionsat s =5.02TeVandinPb–Pbcollisionsat s =2.76TeV. NN NN 2. Datasample,eventselection,trackselection,andjetreconstruction The data used in this analysis were collected during the LHC run in 2010 for pp collisions at 7 TeV, in 2011 for pp collisions at 2.76 TeV, in fall of 2010 for Pb–Pb collisions, and in the beginning of 2013 for p–Pb collisions using the ALICE detector [4, 5]. Minimum bias events are selected based on information from Silicon Pixel Detector (SPD) [6] and V0 [7] detectors (V0A, V0C) [8, 9, 10, 11]. The Electromagnetic Calorimeter (EMCal) [12] is used in addition to select EMCal triggered events [8]. Information from the Time Projection Chamber (TPC) [13] and Inner Tracking System (ITS) [6] are used to select charged tracks using a hybrid approach as discussed in [8]. The reconstruction of neutral particles is performed using the Electromagnetic Calorimeter (EMCal) [8]. Charged tracks with transverse momentum ptrack > 0.15 GeV/c at T midrapidity(|ηtrack| <0.9)areusedasinputtojetreconstruction. Inaddition,forjetsincluding neutral particles, EMCal clusters with energy greater than 0.3 GeV/c are considered. Jets are reconstructedusingtheinfraredcollinearsafesequentialrecombinationalgorithmanti-k [14]. In T p–Pb and Pb–Pb collisions, the k [15, 16] algorithm is used for the estimation of background. T JetsarereconstructedwithseveralvaluesoftheresolutionparameterRintherange0.2–0.6. Jets reconstructed using charged particles only as input are referred to as ‘charged jets’ whereas jets reconstructedusingbothchargedandneutralparticlesasinputareknownas‘fulljets’hereafter. 3. Correctionfordetectoreffectsandbackground Measureddistributionsarecorrectedfortheinstrumentaleffectsandpresentedatparticlelevel. Corrections for the instrumental effects, such as limited track reconstruction efficiency and finite momentumresolution,areperformedusingtheunfoldingtechniques[17,18]forjetcrosssections whereasjetshapeandfragmentationobservablesarecorrectedusingabin-by-bintechnique. Afull detectorsimulationisperformedusingthePYTHIA6.425[19]eventgeneratorandGEANT3[20] particle transport package. All observables are also corrected for the contamination from the sec- 2 Jetsinpp,p–Pb,andPb–PbusingALICE S.K.Prasad ondary particles 1 and background 2. The method for estimation and correction of background is however different in pp to that in p–Pb and Pb–Pb collisions (see [8, 9, 10, 11] for details). In caseofp–PbandPb–Pbevents,regiontoregionfluctuationsoftheestimatedaveragebackground density arising due to fluctuations in the particle multiplicity and momentum, elliptic flow etc., areconsiderable. Backgroundfluctuationsarecorrectedforonanstatisticalbasisusingunfolding techniques (see Sec. 2 of [11]). The corrected results are compared to that obtained from various MCeventgeneratorse.g. PYTHIA(tunePerugia-0,Perugia-2011,AMBT1),HERWIG,PHOJET andNLOpQCDcalculations. 4. Results 4.1 Jetmeasurementsinppcollisions c/GeV)10 3 anti kT, R A=L 0IC.2E, |ηp|p< 0.s5 = 2.76 TeV: Lint = 13.6 nb 1 c/GeV)10 3 anti kT, R A=L 0IC.4E, |ηp|p< 0.s5 = 2.76 TeV: Lint = 13.6 nb 1 mb 10 4 Systematic uncertainty mb 10 4 Systematic uncertainty (dη10 5 (dη10 5 pT pT /dσ10 6 NLO (N. Armesto) /dσ10 6 NLO (N. Armesto) 2d NLO (G. Soyez) 2d NLO (G. Soyez) 10 7 NLO + Hadronization (G. Soyez) 10 7 NLO + Hadronization (G. Soyez) data1.52 data1.52 O/ 1 O/ 1 NL0.5 NL0.5 data1.5220 40 60 80 100 120 data1.5220 40 60 80 100 120 O/ 1 O/ 1 NL0.5 NL0.5 20 40 60 80 100 120 20 40 60 80 100 120 p (GeV/c) p (GeV/c) ALI−PUB−46771 T,jet ALI−PUB−46767 T,jet Figure1: (Coloronline)Fulljetproductioncrosssectionsasafunctionofjet p comparedtoNLOpQCD √ T calculationsinppcollisionsat s=2.76TeVforjetsreconstructedwithR=0.2(left)and0.4(right). ALI-PUB-90009 Figure2: (Coloronline)Chargedjetcrosssectionsasafunctionofjet p comparedtoMCmodelsinpp √ T collisionsat s=7TeVforjetsreconstructedwithR=0.2(left),0.4(middle)and0.6(right). 1Particlesproducedbyweakdecaysandinteractionsofprimaryparticleswithdetectormaterialandbeampipe. 2Particlesinaneventwhicharenotproduceddirectlybyhardscatteringofpartons. 3 Jetsinpp,p–Pb,andPb–PbusingALICE S.K.Prasad The full jet production cross sections as a function of jet p compared to NLO pQCD calcu- √ T lations[21]areshowninFig.1[8]forppcollisionsat s=2.76TeVforjetsreconstructedwithR = 0.2 (left) and 0.4 (right). The NLO calculations reproduce the full jet cross sections reasonably wellwhenhadronizationeffectsareincluded. ThechargedjetcrosssectionscomparedtoMCpre- √ dictions, are shown in Fig. 2 for pp collisions at s = 7 TeV for R = 0.2 (left), 0.4 (middle) and 0.6 (right). None of the models can explain the data in the entire p range, the discrepancy being T largerforlargerR. Thejetshapeobservablesasdefinedbytheradialtransversemomentumdensity distributionsaboutthejetaxisasafunctionofdistance‘r’,jetconstituentsmultiplicityandaverage radiuscontaining80%ofjet p asafunctionofleadingjet p ,andthefragmentationdistributions T T are,however,ingeneralreasonablywellreproducedbythesemodels(figuresnotshown,see[9]). 4.2 Resultsfromp–PbandPb–Pbcollisions ch jetspPb1.82 ALICE p Pb sNN = 5.02 TeV R Charged jets, anti k , |η | < 0.5 1.6 T lab Reference: Scaled pp jets 7 TeV 1.4 Global normalization uncertainty 1.2 1 0.8 0.6 0.4 0.2 Resolution parameter R = 0.2 Resolution parameter R = 0.4 0 20 40 60 80 100 120 20 40 60 80 100 120 p (GeV/c) p (GeV/c) T, ch jet T, ch jet √ Figure3: (Coloronline)Jetnuclearmodificationfactors(R )inp–Pbcollisionsat s =5.02TeVfor pPb NN chargedjetsreconstructedwithR=0.2(left)and0.4(right). √ The jet nuclear modification factor R 3 is shown in Fig. 3 for p–Pb collisions at s = pPb NN 5.02 TeV for charged jets reconstructed with R = 0.2 (left) and 0.4 (right). It is found to be con- sistent with unity in the measured p range indicating the absence of large modifications of the T initial parton distribution or strong final state effects on jet production. The charged jet nuclear modification factor, R 4 is shown in Fig. 4 as a function of jet p for three centrality bins for CP T √ Pb–Pbcollisionsat s =2.76TeV.Alargejetsuppressionisobservedinmostcentral(0–10%) NN Pb–Pb collisions indicating the formation of a dense medium in such collisions. It is found to be centralityand p dependent. Theleft(right)panelofFig.5showsratiosofspectra(crosssections) T √ forjetsmeasuredwithR=0.2and0.4(0.2and0.3)inp–Pb(Pb–Pb)collisionsat s =5.02TeV NN (2.76 TeV) compared to that obtained in pp collisions (PYTHIA). The ratio of jet spectra is sen- sitive to the collimation of particles around the jet axis and serves as an indirect measure of jet 3R isdefinedastheratioofp spectrainp–Pbnormalizedbythenuclearoverlapfunction(cid:104)T (cid:105)obtainedfrom pPb T √ AA Glaubermodelandppcrosssectionextrapolatedto s =5.02TeV. NN 4R isdefinedastheratioofjet p spectraincentralandperipheralPb–Pbcollisionsnormalizedby(cid:104)T (cid:105)for CP T AA eachcentralityclass. 4 Jetsinpp,p–Pb,andPb–PbusingALICE S.K.Prasad CP 11..42 CPeerniptrhael:r 0a l:1 500% 80% PCbh aPrgbe ds JNeNt=s2.76 TeV R 1 Anti kT R = 0.3 ALICE ptrack > 0.15 GeV/c 0.8 LeTading track p > 5 GeV/c 0.6 T 0.4 0.2 shape uncertainty correlated uncertainty CP 11..40220 CPeern3ipt0rhael:r 1a0l: 543000 %80%50 60 70 80 90 R 1 0.8 0.6 0.4 0.2 shape uncertainty correlated uncertainty CP11..40220 CPeern3ipt0rhael:r 3a0l: 545000 %80%50 60 70 80 90 R 1 0.8 0.6 0.4 0.2 shape uncertainty correlated uncertainty 020 30 40 50 60 70 80 90 p (GeV/c) ALI−PUB−64273 T,ch jet Figure 4: (Color online) Charged jet nuclear modification factors (R ) in Pb–Pb collisions at √ CP s =2.76TeVfor0–10%(top),10–30%(middle)and30–50%(bottom)centralityclasses. NN ) 2 4) 1 .31.8 ALICE Pb Pb 0 10% ℛ(0.2,0.000...789 Charged jets, anti-kT σR=0(111...462 PApLetTbnraa tciPd kk bi>nT g0 s.t1rNa5Nc= Gk2 .ep7VT6 / >cT 5e VGeV/c PPbY TPHbI A50 80% 0.6 )/ 1 2 0.5 .0.8 0 0.4 ALICE p-Pb sNN = 5.02 TeV, |ηlab| < 0.5 =0.6 0.3 ALICE pp s = 7 TeV, |ηlab| < 0.3 R0.4 NLO pQCD calculations 5.02 TeV (boosted) ( correlated uncertainty 0.2 POWHEG+PYTHIA8 with CTEQ6.6+EPS09 σ 0.2 shape uncertainty 0.1 PYTHIA6 Perugia 2011 5.02 TeV 0 0 20 40 60 80 100 20 30 40 50 60 70 80 90 100 110 120 p (GeV/c) p (GeV/c) T, ch jet ALI−PUB−64303 T,ch jet Figure5: (Coloronline)TheratiosofjetspectrameasuredwithR=0.2tothatobtainedwithlargerR(0.4 forp–Pband0.3forPb–Pb)asafunctionofjet p inp–Pb(left)andPb–Pb(right)collisionsat5.02and T 2.76TeVrespectively. structure. In minimum bias p–Pb collisions the ratio of jet spectra is found to be compatible with thatinppcollisions,PYTHIAandNLOpQCDcalculations,andthecrosssectionratiosinPb–Pb is found to be similar for most central and peripheral collisions and compatible with PYTHIA in- dicatingthatthecoreofthejetwithinthemeasuredR,remainsunmodifiedinminimumbiasp–Pb, peripheralPb–PbandeveninmostcentralPb–Pbcollisions. 5. Summaryandconclusions We reported jet measurements for pp, p–Pb and Pb–Pb collisions at various centre-of-mass 5 Jetsinpp,p–Pb,andPb–PbusingALICE S.K.Prasad energies using the ALICE detector. Jets are measured at midrapidity using the anti-k jet finding T algorithm with several values of the jet resolution parameter (R in the range 0.2 to 0.6). Full jet √ cross sections are well reproduced by NLO pQCD calculations in pp collisions at s = 2.76 TeV. √ NoneoftheMCmodelsunderstudycanexplainthechargedjetcrosssectionsinppcollisionsat s =7TeV,howeverjetshapeobservablesandfragmentationdistributionsareratherwellreproduced bythesemodels. Thejetnuclearmodificationfactorforminimumbiasp–Pbcollisionsisfoundto beconsistentwithunitywhereasalargejetsuppressionisobservedforcentralPb–Pbeventswith respecttoperipheraleventsindicatingthepresenceofadensemediuminthesecollisions. Thejet spectra(orcrosssection)ratiosindicatethatthecoreofthejetremainsunmodifiedeveninthemost centralPb–Pbcollisions. References [1] S.D.Ellis,Z.KunsztandD.E.Soper,Phys.Rev.Lett.693615(1992). [2] K.C.Zapp,F.KraussandU.A.Wiedemann,JHEP1303080(2013). [3] A.MajumderandM.VanLeeuwen,Prog.Part.Nucl.Phys.A6641(2011). [4] ALICECollaboration,JINST3S08002(2008). [5] ALICECollaboration,Int.J.Mod.Phys.A291430044(2014). [6] ALICECollaboration,JINST5P03003(2010). [7] ALICECollaboration,CERN-LHCC-2004-025https://cds.cern.ch/record/781854(2004). [8] ALICECollaboration,Phys.Lett.B722262(2013). [9] ALICECollaboration,Phys.Rev.D91112012(2015). [10] ALICECollaboration,Phys.Lett.B749,68(2015). [11] ALICECollaboration,JHEP03,013(2014). [12] ALICECollaboration,CERN-LHCC-2008-014https://cds.cern.ch/record/1121574(2008). [13] J.Alme,Y.Andres,H.Appelshauser,S.Bablok,N.Bialas,etal.,Nucl.Instrum.Meth.A622316 (2010). [14] M.Cacciari,G.P.SalamandG.Soyez,JHEP0804063(2008). [15] S.Catani,Y.L.Dokshitzer,M.SeymourandB.Webber,Nucl.Phys.B406187(1993). [16] S.D.EllisandD.E.Soper,Phys.Rev.D483160(1993). [17] G.DAgostini,Nucl.Instrum.Meth.A362487(1995). [18] A.HockerandV.Kartvelishvili,Nucl.Instrum.Meth.A372469(1996). [19] T.Sjostrand,S.MrennaandP.Z.Skands,JHEP0605026(2006). [20] R.Brun,F.CarminatiandS.Giani,CERN-W5013,CERN-W-5013, https://cds.cern.ch/record/1082634. [21] G.Soyez,Phys.Lett.B69859(2011). 6