ebook img

Jeroen De Backer borstelloze gelijkstroommachines Een aan-uit-stroomregeling zonder ... PDF

131 Pages·2012·4.02 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jeroen De Backer borstelloze gelijkstroommachines Een aan-uit-stroomregeling zonder ...

Een aan-uit-stroomregeling zonder positiesensoren voor borstelloze gelijkstroommachines Jeroen De Backer Promotoren: dr. ir. Frederik De Belie, prof. dr. ir. Jan Melkebeek Begeleider: dr. ir. Frederik De Belie Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: werktuigkunde-elektrotechniek Vakgroep Elektrische energie, Systemen en Automatisering Voorzitter: prof. dr. ir. Jan Melkebeek Faculteit Ingenieurswetenschappen en Architectuur Academiejaar 2011-2012 Een aan-uit-stroomregeling zonder positiesensoren voor borstelloze gelijkstroommachines Jeroen De Backer Promotoren: dr. ir. Frederik De Belie, prof. dr. ir. Jan Melkebeek Begeleider: dr. ir. Frederik De Belie Masterproef ingediend tot het behalen van de academische graad van Master in de ingenieurswetenschappen: werktuigkunde-elektrotechniek Vakgroep Elektrische energie, Systemen en Automatisering Voorzitter: prof. dr. ir. Jan Melkebeek Faculteit Ingenieurswetenschappen en Architectuur Academiejaar 2011-2012 Voorwoord Voorubevindtzichmijnthesisverslagovereensensorlozesturingvaneenborstellozegelijk- stroommotor. Aangezieninhoogperformante,compacteaandrijvingensteedsmeerdittype vanmotorwordtgebruikt,werdhierdevoorbijejarenreedsveelonderzoekopverricht. KlassiekgebruiktmenvoordesturingvaneenBLDCmotorhallsensoren. Hoewelhallsen- soren zeer goedkoopen betrouwbaar zijn zorgen ze voor complicaties bij de bouw van de motorenverminderenzedebetrouwbaarheid. Eensensorlozebepalingvanderotorpositie dringtzichdusop. DesensorlozesturingiseendoorontwikkelingvandereedsopeenBLACmotortoegepaste VASCO-sturing. Dezesturingwerdontworpendoormijnpromotorenbegeleiderdr.ir.F.De Belie. Ikwenshemdanooktebedankenvoorhetterbeschikkingstellenvanzijnalgoritme ensimulatiemodellen. Zonderzijn bijdragewas dezethesisniet mogelijkgeweest. Hijkon mesteedsmotiverenenzorgdevoordenodigeondersteuning. Ookwil ik mijn promotorProf. dr.ir. J. Melkebeekbedankenvoor hetmogelijk maken van deze thesis. Ik wil hem ookbedanken voor de substantie¨lebijdrage tot mijn opleiding. De kennisdiehijmijbijbrachttijdensdevakkenoverelektrischemachineswarenessentieelom bepaaldeproblementijdensmijnthesistedoorgrondenenoptelossen. Mijn medestudenten Pieter Jan Goedertier en Jan Van de Vyver wil ik bedanken voor de goedesfeerin hetlabo enhunsteuntijdensmijn thesis. Demedewerkersophetlabo Tony, StefaanenFransiscowilikbedankenvoordehulpbijhetrealiserenvanmijnopstelling. Tevenswilikmijnfamilieenvriendenbedankenvoorhunsteuntijdensmijnthesis. JeroenDeBacker,augustus2012 i Toelating tot bruikleen De auteur geeft de toelating deze scriptie voor consultatie beschikbaar te stellen en delen vandescriptietekopie¨renvoorpersoonlijkgebruik. Elk ander gebruik valt onder de beperkingen van het auteursrecht, in het bijzonder met betrekking tot de verplichting de bron uitdrukkelijk te vermelden bij het aanhalen van re- sultatenuitdezescriptie. JeroenDeBacker,augustus2012 ii Een aan-uit-stroomregeling zonder positiesensoren voor borstelloze gelijkstroommachines door JeroenDE BACKER Masterproefingediendtothetbehalenvandeacademischegraadvan MASTER IN DE INGENIEURSWETENSCHAPPEN: WERKTUIGKUNDE-ELEKTROTECHNIEK Academiejaar2011–2012 Promotor: Prof.Dr.Ir.Jan MELKEBEEK Promotor-Begeleider: Dr.Ir.FrederikDE BELIE FaculteitIngenieurswetenschappen UniversiteitGent VakgroepElektrischeenergie,systemenenautomatisering Voorzitter: Prof.Dr.Ir.Jan MELKEBEEK Samenvatting Vanuit de industrie bestaat al langer de vraag naar sensorloze sturingen voor BLDC mo- toren. Het vermijden van sensoren rechtsreeksop de motor vergroot de betrouwbaarheid, dit samengaand met een reductie van de productiekost. Alhoewel reeds vele sensorloze sturingenbestaan,isdewerkingbijstilstandenlagesnelheidnogsteedseenprobleem. DaaromzullenweeennieuwstuurschemavoorstellenomkoppelsturingopeenBLDCmo- tor te kunnen uitvoeren. Hiervoor hebben we een stroomregeling en een schatter voor de positie nodig. We zullen een voorspellende regelaar opstellen voor de stroomcontrole, en eenparameterlozepositieschattergebruikmakendvanhetuitspringendpoolkaraktervande motor. Opmerkelijk is dat we hierbij slechts zullen gebruik maken van e´e´n stroomsensor. Naast simulaties zullen we deze ookimplementeren op eenmicrocontroller omhun werk- ingnategaan. Trefwoorden BLDCmotor,borstellozegelijkstroommotor,PMSM,sensorlozesturing,stroomsturing,MBPC iii 1 Low-Speed Salient-Pole BLDC-Machine Control by Using a Single Sensor 1 Frederik De Belie , Jeroen De Backer, Araz Darba and Jan Melkebeek Dept. Electrical Energy, Systems & Automation, Ghent University, Sint-Pietersnieuwstraat 41, 9000 Gent, Belgium 1 corresponding author, tel: +32 9 264 79 14, fax: +32 9 264 35 82, e-mail : [email protected]. sensor vs,v d Abstract—This paper discusses an enhancement for salient- i pole brushless dc-drives using a single current sensor in the dc- s,v bus.Theimprovementismadebyreplacingthehallsensorswith q e a rotor-position estimator, increasing the reliability of the drive θr is,u V and reducing its cost. As a result, the BLDC-drive is controlled dc vs,u vs,v vs,w vs,u by using a single sensor only, requiring a minimum amount of electronics to process the measurements. The additional advan- sensor tageofapositionestimatorinBLDC-drivesisthehighresolution i in the rotor position information. This allows to use advanced vs,w s,w model-based controllers (e.g. programmed current control) and to extend the range of operation (e.g. higher speed by field i⋆ currentcontrol weakening). i I. INTRODUCTION PWM add currentprogrammedcontrol Recent advancements in electrical drives have reduced the n o nsseeunnmssoibnregsrtooorfassseeinnnssgoolrerlseo,sneseitmihneertthhbeoyddscre-[ld3inu].kciS[n2eg]lfto-hsreeeniastmhineogrubonyrtuossefinncsguorrsrleeelsnfs-t carrier commutati off/on θer estimatoωerr δicxy uv control refers to methods avoiding rotor-position sensor(s) testsignal δvc w positionestimator by using a rotor-position estimator. This paper discusses an enhancement for salient-pole BLDC-drives by using a single Fig. 1: Overall scheme of the sensorless current controller. current sensor in the dc-bus and by replacing the hall sensors with a rotor-position estimator. A contribution of this paper is the estimation of the rotor position from measurements programmed controller and requires values for stator resistor, obtainedfromasinglecurrentsensor,placedinthedc-bus.The rotorposition,inductanceandback-emf.Besides currentsam- additional advantage of a position estimator in BLDC-drives ples taken for current control, additional current samples are is the higherresolutionin the rotorposition informationcom- taken to measure the current ripple used in the rotor position pared to the hall-sensor output. This allows to use advanced estimator. A measurable current ripple is obtained by adding model-basedcontrollers(e.g.currentprogrammedcontrol)and signals to the current controller output. The estimator can to extend the range of operation (e.g. higher speed by field modify the PWM carrier in order to reconstruct the phase weakening).Thedisadvantageoftodaysrotor-positionestima- currents from samples taken by the single current sensor. torscomparedtopositionsensorsisthedecreasedaccuracyin A differentrotor-position estimator is used at low and high the rotor position and hence commutation instances, resulting rotor speed. At higher speed (above 10% of nominal speed), in a larger torque ripple. However, the back-emf in salient- it is advised to use the back-emf. An overview of back-emf pole BLDC-machines differs from the trapezoidal waveform. based sensorless methods for BLDC-drives can be found in As a result, a small deviation in the commutation moments [5]. As these estimation methods are well-known, this paper can be allowed as it has a small influence on the torque will deal with the low-speed estimation only. The estimator generationandpoweroutput.Therequirementofanestimator at low speed obtains the rotor position from measurements is a morepowerfulcontrollerasthe technologydemandshifts of the current ripple caused by the phase voltages switching from hardware (sensors) to software (estimator). between the positive and negative side of the dc-bus voltage. II. SENSORLESS CURRENT CONTROL For salient-pole machines this current ripple depends on the An overview of the sensorless salient-pole BLDC-drive is rotor position, the largest ripple amplitude for voltage vector given by the scheme shown in Fig. 1. A three-phase voltage- variations along the axis of smallest inductance which is the sourceinverterisusedasswitchingconverterto supplypower d-axis or axis of the permanent magnets. In order to estimate to the salient-pole brushless dc-machine. The controller has the rotorpositionwith sufficientaccuracythe currentrippleis two parts, a conventional current controller and the position increasedbyintroducingdeviationsinthecontrolleroutput.In estimator. The BLDC-drive is equipped with a single sensor [3],anenhancementisdiscussedforwhichthecurrentsamples in the dc-bus only, measuring the dc-current. The current of normal control aren’t affected by the controller output controller is a digital predictive current controller or current deviations. This method is referred to as seamless integration 2 period n period n+1 V e e e 24 a b c i(n+1) i(n) degrees 0 i(n-1) 50 100 150 200 250 300 350 qel -Vdc/2 d(n)Ts Ts Vdc/2 Fig. 4: Three-phase back-emf at nominal speed Fig. 2: Current programmed control: current and voltage mH i0 Tias i1 .a5veragei .5 ia iapredicted -.5 ip 9905 v 1.5 85 idc idc idc 80 qr 0 .25Ts .75Ts .25Ts .75Ts .25Ts .75Ts 2p/3 4p/3 2p (a) duringsteadystate (b) duringtransient, (c) duringtransient, Fig. 5: Current programmed control: inductance as a function of averagecurrentover predicted currentat rotor position PWM-period endPWM-period Fig. 3: dc-current idc and phase current ia, samples at 25% and 75% of PWM-period is closed (duty ratio equals one), while the upper transistor of another inverter leg switches in order to chop the dc-bus voltage to the desired phase voltage. In this paper, in order to of the sensorless method in the current control loop. reconstruct the three-phase currents from the dc-bus current, Particular attention is given to the current commutation. this conventional switching scheme is replaced by a centered Duringandafterthisperiodthecurrentripplecanbedistorted PWM scheme and by complementary switching of the lower due to a strong variation in the controller output. As the and upper transistor as is done in AC-drives. The duty ratio δ estimator is used to detect the commutation moments, an of the phase with positive currentequals the controller output estimation error affects on its turn the commutation current. (0.5≤δ ≤1), while the duty ratio of the phase with negative The problem is illustrated in Fig. 14(a), the 60 degrees com- current is given by the complementaryvalue δ⋆ =1−δ. The mutation threshold is crossed several times by the estimated resulting dc-currentand phase currentare shown in Fig. 3 for rotor position, resulting in a distorted current commutation a single PWM period T . Samples are taken of the dc-current s shown in Fig. 14(b). To solve this, during commutation, test at 25% and 75% of the PWM period from which the average signal injection will be removed. A commutation method phase current in that PWM period can be computed, used to will be discussed to reduce the current ripple distortion after compute the current ripple in the sensorless algorithm: commutation, resulting in a better position estimation. i (n+1)=.5i (n)+.5i (n) (1) v 0 1 A. Current Programmed Controller For the purpose of predictive currentcontrol, the value of the Insix step BLDC-drivesthe converteris steered in orderto current at the end of a PWM-period is predicted by have a current flowing in two phases only. After each rotor displacement of sixty degrees a phase commutation of the i (n+1)=1.5i (n)−.5i (n) (2) p 0 1 current occurs. The amplitude of the current is controlled in ordertogeneratethedesiredtorque.In[4],apredictivedigital The current at the end of the PWM-period can be written as current programmed controller for a single-phase switching the current at the end of previous PWM-period added with a converter is discussed. The current controller is applied here variation.Thisvariationiscausedbythevolt-secondvariation to BLDC-drives by taking into account the most important with respect to the steady-state voltage vr =Rir+em where harmonics in the back-emf, Fig. 4 as well as the magnetic R is the total stator resistor and em is the induced voltage of saliency in the machine on the current. As the latter two thetwophasesthroughwhichthesteady-statecurrentir flows. depend on the rotor speed and position, a sensor is often Asduringtheperiod(2δ−1)T thevoltageV isappliedand s dc applied, replaced here by position estimators. As the current during the remaining PWM-period (2−2δ)Ts the voltage is commutates between the phases, the phase inductance values zero over the two-phases, it follows that hastobeknownover120degreesonly,resultinginaperiodic functionoftherotorpositionasshowninFig.5.Theback-emf i(n+1)=i(n)+∆i(n) (3) isobtainedfromtheestimatedspeedandopen-circuitinduced where the current varation of PWM-period n is given by voltage at nominal speed, stored in a look-up table. To control the amplitude of a current flowing through two V −v v phases only, often the lower transistor of one inverter leg ∆i= dc 0(2δ(n)−1)Ts− 0(2−2δ)Ts. (4) L L 3 δic δvc τq,τd the synchronous time constants of q- and d-axis, can be approximated by d-axisNS γδ′ γqδ-axis δicI -2γδ−∆γδ−π/2 δicq = Lτqδvqc and δicd = Lτdδvdc, (7) S θr δvc independentof the stator resistor R as wellas rotorspeedΩ. s N u δicII Toestimatetherotorpositionθr,anauxiliaryangleisused: (a) Suppliedvoltage (b) Setofcurrentresponsesfortestsignalsδvc theangleγδ ofthevoltagevectorδvc(δvqc,δvdc)withrespectto deviation δvc and ofequal modulusanddifferent angleγδ. theq-axis,Fig.6(a).Asthesetvalueofthevoltagetestvector currentresponseδic in iscomputedbythecurrentcontroller,itsdirectionisknownin theqd-reference frame fixedtotherotor. the stationary αβ-reference frame and given by γδ′. From this and by estimating the auxiliary angle γ , an estimation of the δ Fig. 6: Average space vectors used in sensorless control rotor angle θ is obtained as θe = γ′ −γe where xe denotes r r δ δ the estimation of x. The set of current responses for test vectors of equal From this, the duty ratio δ(n) can be obtained which resulted modulus and for γ = 0...2π is shown in Fig. 6. This in PWM-periodn inthe currentvariation∆i(n)=i(n+1)− δ set of responses is positioned on a circle and is often used i(n) in sensorless methods to estimate the rotor angle θ . A L V −v r δ(n)= ∆i(n)+ dc 0. (5) parameterlessestimationmethodisused.Forthispurpose,the 2TsVdc 2Vdc current response on a second test vector is measured. From the first test period, a current response δic (δic ,δic ) is Using this equation for the duty ratio δ(n +1) of the next xy,I x,I y,I measured. The modulus of the second test vector deviation PWM-period, a system of two equations is obtained from δvc is choosen equal to the modulus of the first test vector which the current i(n) van be eliminated. Then, controlling II deviation δvc: ∆vc = ∆vc = ∆vc. However, the vector thecurrentsothati(n+1)equalsthedesiredvalueic,requires deviation δvcI hasIIa directiIon of γ + ∆γ . The auxiliary a duty ratio in PWM-period n+1 that equals II δ δ angle γ has been previously computed as a function of the δ δ(n+1)= L (i −i(n−1))+1−δ(n)+ v0 . (6) current responses and is given as c 2TsVdc vdc 1 δic −δic 2∆γ +π γb = arctan y,I y,II − δ . (8) δ 2 δic −δic 4 x,II x,I B. Estimation of the PMSM rotor position The sensorless methoddiscussed here can be used in many Inasalient-polePMSMthephaseinductancesvarystrongly ways.ApossibleimplementationisgiveninFig.7showingthe with the rotor position. As a result, the response of the phase duty ratios, resulting phase voltages and phase currents. The currents on a voltage deviation from the controller output dashed lines correspond to half a PWM-period. Each three dependsontherotorposition.Basedonthisvoltagedeviation, PWM-periods, test signals are avoided for a single PWM- in [1], a low-speed position estimator is implemented on a period during which the average current is measured. From voltage-sourceinverter(VSI)suppliedPMSM.Inpractice,the this average current value the predictive controller computes voltagedeviationsaregeneratedbymodifyingthewidthofthe the steady-state duty ratio for the next three PWM-periods. pulsedphasevoltages.Bymeasuringthecurrentripplecaused Duringthetwo PWM periodsthatfollowsthePWM in which by the average voltage deviation, an estimation of the rotor the average current is measured, test signals are added to the position is made for the purpose of vector control. steady-statedutyratio.Forthesix-stepBLDC-drive,onephase In the following, space vectors are used that correspond to has an average zero value as can be seen in this figure. The the average value over a time period τ. For sufficiently small current ripple due to the injection of test signals is clearly times, the linear small-signal machinemodelis valid by good visable.Anadvantageofthesensorlessmethoddiscussedhere, approximation. Hence, the current difference over a time τ is the negligible influence of the test signals on the average and caused by a pulsed test signal can be computed by the current. The current values before and after a test period in test signal average value over τ. The waveform of the test whichtestsignalsareinjectedarethesamewhichbenefitsthe signal has no influence on the current difference and in this controller as well as the estimator performances. paperapulsetrainisusedgeneratedbya switchingconverter. In case the test signals are generated by using a VSI with PWM, it is convenientto choose the PWM-period or half the C. Using a single sensor PWM-periodasperiodτ. Inthatcase, theaveragecomponent Test signals are applied in order to introduce a measurable of the test signal is controlledby the duty ratio that steers the ripple from which the position can be estimated. In Fig. 8(a), PWM. the phase current, dc-current and sampled dc-current at 25% In [1], average space voltage vectors, with components vc, and75%ofeachPWM-periodareshown.Fromthis,itfollows q vc in the synchronous qd-reference frame, are used in order that the dc-current amplitude corresponds to the amplitude d to represent the test signals. The voltage deviations δvc, δvc of a single phase only. To measure the three-phase current q d fromthesteady-statevoltagev ,v aredenotedbyδvc and ripple from samples taken by a sensor in the dc-bus only, a q,0 d,0 q δvc respectively. It is then shown that the resulting current modifiedPWM-schemecanbeused.BymodifyingthePWM- d variations δic, δic after a time τ << min(τ ,τ ), with modulation of one phase from centered to tailing edge, it q d q d 4 25 ia Dib Dib 25 ia 2.2 torque (Nm) 15 idc 15 idc 5 5 Dic 0 ic 0 ic -5 -5 2.1 -15 -15 Dia T s (A) -25 ib -25 ib 0.5 t (s) t (s) iA 0.0139 0.014 0.0141 0.0139 0.014 0.0141 0.4 (a) fixedsamplingmomentsat25% (b) modifiedsamplingmoments 0.3 and75%ofPWM-period duringtestPWMperiods 0.2 0.1 Fig. 8: Sampling of dc-current iC 0 -0.1 1 TA+ 1 TA+ 1 TA+ -0.2 0 0 0 1 TB+ 1 TB+ 1 TB+ -0.3 iB 0 0 0 -0.4 1 TC+ 1 TC+ 1 TC+ -0.5 0 0 0 1 TA- 1 TA- 1 TA- vA(V) 25 0 0 0 1 TB- 1 TB- 1 TB- 0 0 0 0 1 TC- 1 TC- 1 TC- -25 0 0 0 vB(V) 25 0 0.1 0.2 0.3 t (ms) 0.3 0.4 0.5 0.6 t (ms) 0.6 0.7 0.8 0.9 t (ms) 0 (a) devations along (b) devations along (c) devations along u-phase v-phase w-phase -25 vC(V) Fig. 9: Stearing signals to generate voltage vector deviations, 25 centered PWM 0 1 TA+ 1 TA+ 1 TA+ -25 0 0 0 1 TB+ 1 TB+ 1 TB+ 0.5 da 0 0 0 1 TC+ 1 TC+ 1 TC+ 0 0 0 0 -0.5 1 TA- 1 TA- 1 TA- 0 0 0 0.5 db 1 TB- 1 TB- 1 TB- 0 0 0 0 1 TC- 1 TC- 1 TC- 0 0 0 -0.5 0 0.1 0.2 0.3 t (ms) 0.3 0.4 0.5 0.6 t (ms) 0.6 0.7 0.8 0.9 t (ms) 0.5 dc (a) devations along (b) devations along (c) devations along u-phase v-phase w-phase 0 -0.5 Fig. 10: Stearing signals to generate voltage vector deviations, tailing edge PWM t (ms) 0 1 stearingsignalsforthesixtransistorsinthecaseofacentered Fig. 7: Waveforms of duty ratios, voltages and currents. PWM-methodandamodifiedPWM-method.Grayareasshow the differences between both strategies. followsthatthedc-currentcanbeusedtomeasuretwophases. D. Commutation Thisisshownin Fig. 8(b).Samplingthedc-currentat theend Previoussectionsdiscussedthesensorlesspredictivecurrent of the PWM-period results in a sample for the c-phase and controller for which the current is controlled to a given a-phase. As the sum of phase currentsis equal to zero, the b- value i . This section deals with the period during which the c phasecurrentcanbecomputed.Adisadvantageofthismethod currentcommutatesfrom one phase to another. As mentioned is the delay between samples taken for each phase. However, before, test-signal injection is avoided during commutation. signal-injection methods are mostly used at low speed for In most BLDC-drives, the commutation is done by using which the rotor position variation over several PWM-periods a duty ratio equal to one as the maximum voltage results can be neglected, introducing a small estimation error. in a fast commutation. However, such strategy affects the Many PWM-modifications can be developed in order to currents, resulting in an important torque transient. A smooth measurethe phasecurrentsfromasingle currentsensorin the transition is obtainedhere by computingthe duty ratio during dc-bus. One possible case is given in Figs. 9-10 showing the commutation. In that way the time gradient of the current

Description:
Dept. Electrical Energy, Systems & Automation, Ghent University, . Then, controlling the current so that i(n+1) equals the desired value ic, requires.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.