ebook img

JEE Main - 2018 Paper - 2 (B.Arch.) Code R Code PDF

33 Pages·2017·2.31 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview JEE Main - 2018 Paper - 2 (B.Arch.) Code R Code

Hkkx Part-I / -I xf.kr Mathematics / 1. If f(x) + 2f(1(cid:150)x) = x2 + 1, xR, then the range of f is :  1  1   1 1  , (2)  , (3)  , (4)  (1)  3  3   3 3 1,  ;fn f(x) + 2f(1(cid:150)x) = x2 + 1, lHkh xR, ds fy, rks f dk ifjlj gS: 3   1  1   1 1  , (2)  , (3)  , (4)  (1)  3  3   3 3 1,  3  Ans. (2) Sol. f(x) + 2f(1 (cid:150) x) = x2 (cid:150) 1 (cid:133)(i) x  1 (cid:150) x; f(1 (cid:150) x) + 2f(x) = (1 (cid:150) x)2 + 1 (cid:133)(ii) Solving (i) & (ii) f(x) + 2f(1 (cid:150) x) = x2 + 1 2f(x) + f(1 (cid:150) x) = (1 (cid:150) x)2 + 1) (cid:215) 2 (cid:150) (cid:150) (cid:150) (cid:150)3f(x) = (x2 + 1) (cid:150) 2[(1 (cid:150) x)2 + 1] = (x2 + 1) (cid:150) 2(1 + x2 (cid:150) 2x + 1) (cid:150)3f(x) = (cid:150) x2 + 4x (cid:150) 3 f(x) = (cid:150)x2 + 4x (cid:150) 3 f(x)= 1/3(x2 (cid:150) 4x + 3)  f(x) [(cid:150) 1/3, ) 2. Let A {zC: |z| = 25) and B = {z C : |z + 5 + 12i| = 4}. Then the minimum value of |z (cid:150)for zA and B, is : (1) 6 (2) 7 (3) 8 (4) 9 ekuk rFkk gS] rks rFkk ds fy, dk A {zC: |z| = 25) B = {z C : |z + 5 + 12i| = 4}. zA B |z (cid:150) U;qure eku gS% (1) 6 (2) 7 (3) 8 (4) 9 Ans. (3) Sol. ((cid:150)5 (cid:150)12i) min.  |Z (cid:150) w| = 8 min. ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..11 3. If the product of the roots of the equation x2 (cid:150) 5kx + 2e2loge|k| (cid:150)1 = 0 is 49, then the sum of the squares of the roots of the equation is : (1) 525 (2) 527 (3) 576 (4) 627 ;fn lehdj.k x2 (cid:150) 5kx + 2e2loge|k| (cid:150)1 = 0 ds ewyksa dk xq.kuQy 49 gS] rks lehdj.k ds ewyksa ds oxksZ dk ;ksx gS% (1) 525 (2) 527 (3) 576 (4) 627 Ans. (2) Sol. x2 (cid:150) 5kx + 2e2logek (cid:150)1 = 0 x2 (cid:150) 5kx + (2k2 (cid:150) 1) = 0  (, )  +  = 5k  = 2k2 (cid:150)1 = 49  k = –5  2 + 2 = ( + )2 (cid:150) 2 = (25)2 (cid:150) 98 = 527 2 52 152   4. If A = 4 106 358 , then the determinant of the matrix adj (2A) is equal to :   6 162 620   2 52 152 ;fn   gS] rks vkO;wg dk lkjf.kd cjkcj gS% A = 4 106 358 , adj (2A) (Determinant)   6 162 620   (1) 64 (2) 256 (3) 2048 (4) 4096 Ans. (4) Sol. adj(2A)  2An1 = 2n(n-1). An1 A 8  adj(2A) 26.82 = 212 = 4096 5. Let S be the set of all real values of  for which the system of linear equations x + y + z = 5 2x + 2y (cid:150) z = 1 3y + z = 9 has infinitely many solutions. Then S; (1) equals R (2) is a singleton. (3) contains exactly two elements (4) is an empty set ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..22 ;fn ds lHkh okLrfod ekuksa dk leqPp; gS ftuds fy, jSf[kd lehdj.k fudk;  S x + y + z = 5 2x + 2y (cid:150) z = 1 3y + z = 9 ds vuar gy gSa] rks S : ds cjkcj gSA ,d leqPp; gSA (1) R (2) (singleton) esa ek=k nks vo;o gSA ,d fjDr leqPp; gSA (3) (4) Ans. (4) Sol. x + y + z = 5  2x + 2y (cid:150) z = 1 3y + z = 9 These is no such value of '' for which  = x =y =z = 0. Hence, S is an empty set. 6. In order to get through in an examination of nine papers a candidate has to pass in more papers than the number of papers in which he fails. The number of ways in which he can fail, in this examination is : iz’u i=kksa dh ,d ijh{kk ikl djus ds fy,] ,d ijh{kkFkhZ dks mu iz’uksa i=kksa dh la[;k ftlesa og ikl ugha 9 gS] mlls vf/kd iz’u i=kksa esa ikl gksuk vko’;d gSA bl ijh{kk esa vuq(cid:217)kh.kZ gksus ds rjhdksa dh la[;k gS% (1) 128 (2) 255 (3) 256 (4) 9 (8)! Ans. (3) Sol. Number of ways in which he can fail = 9C + 9C + 9C + 9C + 9C 5 6 7 8 9 = 126 + 84 + 36 + 9 + 1 = 256 125 7. Let T denote the rth term in the binomial expansion of (a+1)50. If T + T = T then the sum r 25 27 26 52 of all the values of a is : (a+1)50 ds f}in izlkj esa ekuk r oka in T gSA ;fn T + T = 125 T gS] rks a ds lHkh ekuksa dk ;ksx gS% r 25 27 26 52 1 3 5 (1) (2) (3) 2 (4) 2 2 2 Ans. (4) Sol. T = 50C .a51(cid:150)r r r-1 125 T +T = .T 25 27   26  52  ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..33  50C24.a26 + 50C26.a24 = 12550C25.a25  52   a2 + 1 = 152255500CC2254.a 5a  a2 + 1 = 2 5  2a2 (cid:150) 5a +2 = 0  (a , a )  a + a = 1 2 1 2 2 8. In an ordered set of four numbers, the first 3 are in A.P and the last 3 are in G.P. whose common ratio is 7/4. If the product of the first and fourth of these number is 49, then the product of the second and third of these is : pkj la[;kvksa ds ,d dfFkr leqPp; esa izFke lekarj Js.kh esa gS rFkk vafre xq.kks(cid:217)kj Js.kh esa gS ftldk 3 3 lkoZvuqikr gSA ;fn blesa ls izFke rFkk pkSFkh la[;kvksa dk xq.kuQy gS] rks nwljh rFkk rhljh la[;kvksa 7/4 49 dk xq.kuQy gS% (1) 60 (2) 112 (3) 128 (4) 144 Ans. (2) 16 28 49 Sol. Let a, , ,  four numbers a a a  A.P. 32 28  a  a2 + 28 = 32  a2 = 4 a a  product of 2nd and 3rd = 1628 = 1628 = 112  a  a  4 9. If e(sin2xsin4xsin6x.....adinf.)loge2 0 x  satisfies the equation y2(cid:150)5y+4 = 0, then  2 sinx is equal to : cosxsinx ;fne(sin2xsin4xsin6x.....adinf.)loge2 0 x lehdj.k y2(cid:150)5y+4 = 0, dks larq"V djrk gS] rks  2 sinx cjkcj gS% cosxsinx     (1)  2 2 (2)  21 (3) 2 (cid:150)1 (4) 2 + 2 Ans. (1) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..44 Sol. esin2xsin4xsin6x......loge2  sin2x  = e1(cid:150)sin2x.log 2 = etan2x.loge2 = 2tan2x e y2 (cid:150) 5y + 4 = 0 (y (cid:150) 1) (y (cid:150) 4) = 0 y = 1, 4  2tan2x = 20, 22 tan2x = 0, 2 tan x = 2 [ x  (0, /2)] sinx tanx 2      (cid:150) 2 2 cosx(cid:150)sinx 1(cid:150)tanx 1(cid:150) 2 1 10. Let f(x) = x for all x()R where for each tR, [t] denotes the greatest integer less than or   x equal to t. Then: ekuk lHkh ds fy, 1 tgk¡ izR;sd ds fy, lcls cM+k iw.kkZd n’kkZrk gS tks ds x()R f(x) = x tR [t] t   x cjkcj vFkok ls NksVk gS% t (1) lim f(x)0 (2) lim f(x)1 (3) lim f(x)1 (4) lim f(x)1 x0 x1 x1 x2 3 2 Ans. (2) 1 1 1  Sol. f(x) = x x = xx x = 1xx 1 = lim f(x)1, lim f(x)1, lim f(x) , lim f(x)0 x0 x1/3 x1 2 x2 2 72x 9x 8x 1  11. If f(x) =  2 1cosx is a continuous function in the interval [0, 2), then k is equal to :  k 2loge2loge3,x 0 72x 9x 8x 1 ;fn  varjky esa larr Qyu gS] rks cjkcj gS% f(x) =  2 1cosx [0, 2), k  k 2loge2loge3,x 0 (1) 4 (2) 18 (3) 24 (4) 36 Ans. (3) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..55  9x 18x 1  ;x 0 Sol. f(x) = 2 1cosx  k 2.loge2.loge3; x 0 9x 18x 1 9x 18x 1  x  x    =lim = lim . 2 1cosx x0 2 1cosx x0 1cosx  x2    k 2 n2. n3= 2(n9) (n8)  2 2 k = 24 12. If y = y(x) is an implicit function of x given by ycosx + xcosy =  ; then y"(0) is equal to : ;fn esa ,d vLi"V Qy gS tks }kjk izn(cid:217)k GS] rks cjkcj gS% y = y(x) x (implicit) ycosx + xcosy =  y"(0) (1)  (2) (cid:150) (3) 0 (4) 2 Ans. (1) Sol. y.cosx + x.cosy =  ; y (0) =   y'. cosx + y ((cid:150)sinx) + x.((cid:150)siny).y1 + cosy = 0 put, x = 0 y' + cosy = 0 y' = 1 (cosx (cid:150) x.siny)y' = sinx.y (cid:150) cosy  (cosx (cid:150) x.siny)y'' + ((cid:150)sinx (cid:150) x.cosy.y' (cid:150) siny) y' = cosx.y + sinx.y' + siny.y' put, x = 0; y''(0) =  13. For each x  R , let f(x) = |x (cid:150) 1|, |x (cid:150) 1|, g(x) = cosx and (x) = f(g(2sinx) (cid:150) g(f(x)). Then  is : (1) differnentaible at each point of R (2) not differentiable at 0    (3) not differentiable at 1 (4) differentiable only in (cid:150) ,   2 2 lHkh ds fy, ekuk rFkk gS] rks x  R f(x) = |x (cid:150) 1|, |x (cid:150) 1|, g(x) = cosx (x) = f(g(2sinx) (cid:150) g(f(x))  ds izR;sd fcUnq ij vodyuh; gSA ij vodyuh; ugha gSA (1) R (2) 0 ij vodyuh; ugha gSA dsoy    esa vodyuh; gSA (3) 1 (4) (cid:150) ,   2 2 Ans. (1) Sol. f(x)=|(cid:215)(cid:150)1| g(x) = cosx (x) = f (g(2sinx)) (cid:150)g (f(x)) = cos(sinx)(cid:150)1(cid:150)cos|x(cid:150)1| 1(cid:150)cos(2sinx)(cid:150)cos |x(cid:150)1| differentiable at each point of R. ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..66 14. If f(x) = |x2 (cid:150) 16| for all xR, then the total number of points of R at which f : RR attains local extreme values is : ;fn lHkh x  R ds fy, f(x) = |x2 (cid:150) 16| gS] rks R ds mu fcanqvksa dh la[;k tgk¡ f : R  R LFkkuh; ije eku ysrk gS] gS (1) 1 (2) 2 (3) 3 (4) 4 Ans. (1) Sol. f(x) = |x2 (cid:150) 16| extreme value (cid:150)4 4 15. Let ex e(cid:150)x I =  dx, dx, then J (cid:150) i equals : e4x e2x 1 e(cid:150)4x e(cid:150)2x 1 ekuk ex e(cid:150)x gS] rks cjkcj gS % I =  dx, dx J (cid:150) i e4x e2x 1 e(cid:150)4x e(cid:150)2x 1 1 e4x (cid:150)e2x 1 1 e2x ex 1 (1) log + C (2) log + C 2 e e4x e2x 1 2 e e2x (cid:150)ex 1 1 e2x (cid:150)ex 1 1 e4x (cid:150)e2x 1 (3) log + C (4) log + C 2 e e2x ex 1 2 e e4x (cid:150)e2x 1 Ans. (3) ex Sol.    e4x e2x 1 e(cid:150)x   dx e(cid:150)4x e(cid:150)2x 1 e3x   dx e4x ex 1 e3x (cid:150)ex J(cid:150)   dx e4x e2x 1 ex(e2x (cid:150)1) J(cid:150)   dx e4x e2x 1 ex = t ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..77 t2 (cid:150)1 J(cid:150)   dt t4 t2 1 1 1(cid:150) t2 J(cid:150)   dt 1 t2 1 t2  1  1(cid:150) dt  t2  J(cid:150)   2  1 t  (cid:150)1  t 1 t z t  1  1(cid:150) dt dz  t2 dz J(cid:150)   z2 (cid:150)1 1 z(cid:150)1  In c 2 z1 1 t (cid:150)1 1 t  In c 2 1 t 1 t 1 t2 (cid:150)t1  In c 2 t2 t1 1 e2x (cid:150)ex 1  In c 2 e2x ex 1 1x2 16. If x5 dx = m + n, then the ordered pair (m,n) is equal to 1(cid:150)x2 ;fn x5 1x2 dx = m + n, gS] rks (cid:216)fer ;qXe (m,n) cjkcj gS % 1(cid:150)x2 1 1 1 2 1 1 1 1 (1) , (2) , (3) , (4) ,         3 8 8 3 4 3 8 3 Ans. (4) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..88 Sol. Use formula   41cos4 4cos6(cid:150)3cos2 =  d +  d 2 4 0 0  1 = + = m + n 8 3 1 1 (m, n) = , option (4)   8 3 17. The area (in sq. units ) of the region bounded by the curve , 12y = 36 (cid:150) x2 and the tangents drawn to it at the points , where the curve intersects the x-axis is o(cid:216) 12y = 36 (cid:150) x2 rFkk ml ij mu fcUnqvksa] tgk¡ o(cid:216) x-v{k d izfrPNsn djrh gS] ij [khaph xbZ Li’kZjs[kk ds chp f?kjs dk {ks=kQy …oxZ bdkb;ksa esa‰ gS % (1) 12 (2) 18 (3) 27 (4) 6 Ans. (1) Sol x2 = 36 (cid:150) 12 y x2 = (cid:150) 12 (y (cid:150) 3) (0, 6) (0, 3) (-6, 0) (6, 0) Required Area = 1 636x2   1  216 = 2 266 12 dx = 2 1812366 3  0  1  = 2 18 21672= 2 (18 (cid:150) 12) = 12  12  18. Let y = y(x) be the solution of the differential equation : dy xlogex + y = 3x log x, (x > 1) If y(e) = 0, then y(e2) is equal to e dx ekuk vody lehdj.k y = y(x) xlogexdy + y = 3x log x, (x > 1) dk gy gSA ;fn y(e) = 0 gS] rks y(e2) cjkcj gS % e dx 1 3 (1) e2 (2) e2 (3) e2 (4) 3e2 2 2 Ans. (3) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..99 dy Sol. xlnx + y = 3xlnx dx dy 1 + y = 3 dx xlnx 1  dx IF = e xlnx = lnx y.lnx = 3.lnx dx  6 y.lnx = 3.x(lnx(cid:150)1) + 6 y(e) = 0 0 = 3e(0) + 1 C = 0 ylnx = 3x(lnx (cid:150) 1) y(e2) = ? 2y = 3e2(2 (cid:150) 1) 3 y = e2 2 19. Let the straight lines , 5x (cid:150) 3y + 15 = 0 and 5x + 3y (cid:150) 15 form a triangle with the x-axis. Then the radius of the circle circumscribing this triangle is ekuk js[kk,sa rFkk rFkk v{k ds lkFk ,d f=kHkqt cukrs gS] rks f=kHkqt ds 5x (cid:150) 3y + 15 = 0 5x + 3y (cid:150) 15 = 0 x- ifjo‘(cid:217)k dh f=kT;k gS % 8 17 12 16 (1) (2) (3) (4) 5 5 5 5 Ans. (4) Sol. 5x (cid:150) 3y + 15 = 0 5x + 3y (cid:150) 15 = 0 A (0, 5) B ((cid:150)3, 0) C ((cid:150)3, 0) Circumcentre (0, 9/5) 16 Radius = 5 ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..1100

Description:
Tel:+91-120-4616500. JEE Main - 2018. Paper - 2 (B.Arch.) Code R (1) Remo fernandes (2) Arundhati Roy. (3) Satish Gujral. (4) B.V. Doshi !1g1!)!
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.