Hkkx Part-I / -I xf.kr Mathematics / 1. If f(x) + 2f(1(cid:150)x) = x2 + 1, xR, then the range of f is : 1 1 1 1 , (2) , (3) , (4) (1) 3 3 3 3 1, ;fn f(x) + 2f(1(cid:150)x) = x2 + 1, lHkh xR, ds fy, rks f dk ifjlj gS: 3 1 1 1 1 , (2) , (3) , (4) (1) 3 3 3 3 1, 3 Ans. (2) Sol. f(x) + 2f(1 (cid:150) x) = x2 (cid:150) 1 (cid:133)(i) x 1 (cid:150) x; f(1 (cid:150) x) + 2f(x) = (1 (cid:150) x)2 + 1 (cid:133)(ii) Solving (i) & (ii) f(x) + 2f(1 (cid:150) x) = x2 + 1 2f(x) + f(1 (cid:150) x) = (1 (cid:150) x)2 + 1) (cid:215) 2 (cid:150) (cid:150) (cid:150) (cid:150)3f(x) = (x2 + 1) (cid:150) 2[(1 (cid:150) x)2 + 1] = (x2 + 1) (cid:150) 2(1 + x2 (cid:150) 2x + 1) (cid:150)3f(x) = (cid:150) x2 + 4x (cid:150) 3 f(x) = (cid:150)x2 + 4x (cid:150) 3 f(x)= 1/3(x2 (cid:150) 4x + 3) f(x) [(cid:150) 1/3, ) 2. Let A {zC: |z| = 25) and B = {z C : |z + 5 + 12i| = 4}. Then the minimum value of |z (cid:150)for zA and B, is : (1) 6 (2) 7 (3) 8 (4) 9 ekuk rFkk gS] rks rFkk ds fy, dk A {zC: |z| = 25) B = {z C : |z + 5 + 12i| = 4}. zA B |z (cid:150) U;qure eku gS% (1) 6 (2) 7 (3) 8 (4) 9 Ans. (3) Sol. ((cid:150)5 (cid:150)12i) min. |Z (cid:150) w| = 8 min. ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..11 3. If the product of the roots of the equation x2 (cid:150) 5kx + 2e2loge|k| (cid:150)1 = 0 is 49, then the sum of the squares of the roots of the equation is : (1) 525 (2) 527 (3) 576 (4) 627 ;fn lehdj.k x2 (cid:150) 5kx + 2e2loge|k| (cid:150)1 = 0 ds ewyksa dk xq.kuQy 49 gS] rks lehdj.k ds ewyksa ds oxksZ dk ;ksx gS% (1) 525 (2) 527 (3) 576 (4) 627 Ans. (2) Sol. x2 (cid:150) 5kx + 2e2logek (cid:150)1 = 0 x2 (cid:150) 5kx + (2k2 (cid:150) 1) = 0 (, ) + = 5k = 2k2 (cid:150)1 = 49 k = –5 2 + 2 = ( + )2 (cid:150) 2 = (25)2 (cid:150) 98 = 527 2 52 152 4. If A = 4 106 358 , then the determinant of the matrix adj (2A) is equal to : 6 162 620 2 52 152 ;fn gS] rks vkO;wg dk lkjf.kd cjkcj gS% A = 4 106 358 , adj (2A) (Determinant) 6 162 620 (1) 64 (2) 256 (3) 2048 (4) 4096 Ans. (4) Sol. adj(2A) 2An1 = 2n(n-1). An1 A 8 adj(2A) 26.82 = 212 = 4096 5. Let S be the set of all real values of for which the system of linear equations x + y + z = 5 2x + 2y (cid:150) z = 1 3y + z = 9 has infinitely many solutions. Then S; (1) equals R (2) is a singleton. (3) contains exactly two elements (4) is an empty set ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..22 ;fn ds lHkh okLrfod ekuksa dk leqPp; gS ftuds fy, jSf[kd lehdj.k fudk; S x + y + z = 5 2x + 2y (cid:150) z = 1 3y + z = 9 ds vuar gy gSa] rks S : ds cjkcj gSA ,d leqPp; gSA (1) R (2) (singleton) esa ek=k nks vo;o gSA ,d fjDr leqPp; gSA (3) (4) Ans. (4) Sol. x + y + z = 5 2x + 2y (cid:150) z = 1 3y + z = 9 These is no such value of '' for which = x =y =z = 0. Hence, S is an empty set. 6. In order to get through in an examination of nine papers a candidate has to pass in more papers than the number of papers in which he fails. The number of ways in which he can fail, in this examination is : iz’u i=kksa dh ,d ijh{kk ikl djus ds fy,] ,d ijh{kkFkhZ dks mu iz’uksa i=kksa dh la[;k ftlesa og ikl ugha 9 gS] mlls vf/kd iz’u i=kksa esa ikl gksuk vko’;d gSA bl ijh{kk esa vuq(cid:217)kh.kZ gksus ds rjhdksa dh la[;k gS% (1) 128 (2) 255 (3) 256 (4) 9 (8)! Ans. (3) Sol. Number of ways in which he can fail = 9C + 9C + 9C + 9C + 9C 5 6 7 8 9 = 126 + 84 + 36 + 9 + 1 = 256 125 7. Let T denote the rth term in the binomial expansion of (a+1)50. If T + T = T then the sum r 25 27 26 52 of all the values of a is : (a+1)50 ds f}in izlkj esa ekuk r oka in T gSA ;fn T + T = 125 T gS] rks a ds lHkh ekuksa dk ;ksx gS% r 25 27 26 52 1 3 5 (1) (2) (3) 2 (4) 2 2 2 Ans. (4) Sol. T = 50C .a51(cid:150)r r r-1 125 T +T = .T 25 27 26 52 ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..33 50C24.a26 + 50C26.a24 = 12550C25.a25 52 a2 + 1 = 152255500CC2254.a 5a a2 + 1 = 2 5 2a2 (cid:150) 5a +2 = 0 (a , a ) a + a = 1 2 1 2 2 8. In an ordered set of four numbers, the first 3 are in A.P and the last 3 are in G.P. whose common ratio is 7/4. If the product of the first and fourth of these number is 49, then the product of the second and third of these is : pkj la[;kvksa ds ,d dfFkr leqPp; esa izFke lekarj Js.kh esa gS rFkk vafre xq.kks(cid:217)kj Js.kh esa gS ftldk 3 3 lkoZvuqikr gSA ;fn blesa ls izFke rFkk pkSFkh la[;kvksa dk xq.kuQy gS] rks nwljh rFkk rhljh la[;kvksa 7/4 49 dk xq.kuQy gS% (1) 60 (2) 112 (3) 128 (4) 144 Ans. (2) 16 28 49 Sol. Let a, , , four numbers a a a A.P. 32 28 a a2 + 28 = 32 a2 = 4 a a product of 2nd and 3rd = 1628 = 1628 = 112 a a 4 9. If e(sin2xsin4xsin6x.....adinf.)loge2 0 x satisfies the equation y2(cid:150)5y+4 = 0, then 2 sinx is equal to : cosxsinx ;fne(sin2xsin4xsin6x.....adinf.)loge2 0 x lehdj.k y2(cid:150)5y+4 = 0, dks larq"V djrk gS] rks 2 sinx cjkcj gS% cosxsinx (1) 2 2 (2) 21 (3) 2 (cid:150)1 (4) 2 + 2 Ans. (1) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..44 Sol. esin2xsin4xsin6x......loge2 sin2x = e1(cid:150)sin2x.log 2 = etan2x.loge2 = 2tan2x e y2 (cid:150) 5y + 4 = 0 (y (cid:150) 1) (y (cid:150) 4) = 0 y = 1, 4 2tan2x = 20, 22 tan2x = 0, 2 tan x = 2 [ x (0, /2)] sinx tanx 2 (cid:150) 2 2 cosx(cid:150)sinx 1(cid:150)tanx 1(cid:150) 2 1 10. Let f(x) = x for all x()R where for each tR, [t] denotes the greatest integer less than or x equal to t. Then: ekuk lHkh ds fy, 1 tgk¡ izR;sd ds fy, lcls cM+k iw.kkZd n’kkZrk gS tks ds x()R f(x) = x tR [t] t x cjkcj vFkok ls NksVk gS% t (1) lim f(x)0 (2) lim f(x)1 (3) lim f(x)1 (4) lim f(x)1 x0 x1 x1 x2 3 2 Ans. (2) 1 1 1 Sol. f(x) = x x = xx x = 1xx 1 = lim f(x)1, lim f(x)1, lim f(x) , lim f(x)0 x0 x1/3 x1 2 x2 2 72x 9x 8x 1 11. If f(x) = 2 1cosx is a continuous function in the interval [0, 2), then k is equal to : k 2loge2loge3,x 0 72x 9x 8x 1 ;fn varjky esa larr Qyu gS] rks cjkcj gS% f(x) = 2 1cosx [0, 2), k k 2loge2loge3,x 0 (1) 4 (2) 18 (3) 24 (4) 36 Ans. (3) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..55 9x 18x 1 ;x 0 Sol. f(x) = 2 1cosx k 2.loge2.loge3; x 0 9x 18x 1 9x 18x 1 x x =lim = lim . 2 1cosx x0 2 1cosx x0 1cosx x2 k 2 n2. n3= 2(n9) (n8) 2 2 k = 24 12. If y = y(x) is an implicit function of x given by ycosx + xcosy = ; then y"(0) is equal to : ;fn esa ,d vLi"V Qy gS tks }kjk izn(cid:217)k GS] rks cjkcj gS% y = y(x) x (implicit) ycosx + xcosy = y"(0) (1) (2) (cid:150) (3) 0 (4) 2 Ans. (1) Sol. y.cosx + x.cosy = ; y (0) = y'. cosx + y ((cid:150)sinx) + x.((cid:150)siny).y1 + cosy = 0 put, x = 0 y' + cosy = 0 y' = 1 (cosx (cid:150) x.siny)y' = sinx.y (cid:150) cosy (cosx (cid:150) x.siny)y'' + ((cid:150)sinx (cid:150) x.cosy.y' (cid:150) siny) y' = cosx.y + sinx.y' + siny.y' put, x = 0; y''(0) = 13. For each x R , let f(x) = |x (cid:150) 1|, |x (cid:150) 1|, g(x) = cosx and (x) = f(g(2sinx) (cid:150) g(f(x)). Then is : (1) differnentaible at each point of R (2) not differentiable at 0 (3) not differentiable at 1 (4) differentiable only in (cid:150) , 2 2 lHkh ds fy, ekuk rFkk gS] rks x R f(x) = |x (cid:150) 1|, |x (cid:150) 1|, g(x) = cosx (x) = f(g(2sinx) (cid:150) g(f(x)) ds izR;sd fcUnq ij vodyuh; gSA ij vodyuh; ugha gSA (1) R (2) 0 ij vodyuh; ugha gSA dsoy esa vodyuh; gSA (3) 1 (4) (cid:150) , 2 2 Ans. (1) Sol. f(x)=|(cid:215)(cid:150)1| g(x) = cosx (x) = f (g(2sinx)) (cid:150)g (f(x)) = cos(sinx)(cid:150)1(cid:150)cos|x(cid:150)1| 1(cid:150)cos(2sinx)(cid:150)cos |x(cid:150)1| differentiable at each point of R. ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..66 14. If f(x) = |x2 (cid:150) 16| for all xR, then the total number of points of R at which f : RR attains local extreme values is : ;fn lHkh x R ds fy, f(x) = |x2 (cid:150) 16| gS] rks R ds mu fcanqvksa dh la[;k tgk¡ f : R R LFkkuh; ije eku ysrk gS] gS (1) 1 (2) 2 (3) 3 (4) 4 Ans. (1) Sol. f(x) = |x2 (cid:150) 16| extreme value (cid:150)4 4 15. Let ex e(cid:150)x I = dx, dx, then J (cid:150) i equals : e4x e2x 1 e(cid:150)4x e(cid:150)2x 1 ekuk ex e(cid:150)x gS] rks cjkcj gS % I = dx, dx J (cid:150) i e4x e2x 1 e(cid:150)4x e(cid:150)2x 1 1 e4x (cid:150)e2x 1 1 e2x ex 1 (1) log + C (2) log + C 2 e e4x e2x 1 2 e e2x (cid:150)ex 1 1 e2x (cid:150)ex 1 1 e4x (cid:150)e2x 1 (3) log + C (4) log + C 2 e e2x ex 1 2 e e4x (cid:150)e2x 1 Ans. (3) ex Sol. e4x e2x 1 e(cid:150)x dx e(cid:150)4x e(cid:150)2x 1 e3x dx e4x ex 1 e3x (cid:150)ex J(cid:150) dx e4x e2x 1 ex(e2x (cid:150)1) J(cid:150) dx e4x e2x 1 ex = t ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..77 t2 (cid:150)1 J(cid:150) dt t4 t2 1 1 1(cid:150) t2 J(cid:150) dt 1 t2 1 t2 1 1(cid:150) dt t2 J(cid:150) 2 1 t (cid:150)1 t 1 t z t 1 1(cid:150) dt dz t2 dz J(cid:150) z2 (cid:150)1 1 z(cid:150)1 In c 2 z1 1 t (cid:150)1 1 t In c 2 1 t 1 t 1 t2 (cid:150)t1 In c 2 t2 t1 1 e2x (cid:150)ex 1 In c 2 e2x ex 1 1x2 16. If x5 dx = m + n, then the ordered pair (m,n) is equal to 1(cid:150)x2 ;fn x5 1x2 dx = m + n, gS] rks (cid:216)fer ;qXe (m,n) cjkcj gS % 1(cid:150)x2 1 1 1 2 1 1 1 1 (1) , (2) , (3) , (4) , 3 8 8 3 4 3 8 3 Ans. (4) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..88 Sol. Use formula 41cos4 4cos6(cid:150)3cos2 = d + d 2 4 0 0 1 = + = m + n 8 3 1 1 (m, n) = , option (4) 8 3 17. The area (in sq. units ) of the region bounded by the curve , 12y = 36 (cid:150) x2 and the tangents drawn to it at the points , where the curve intersects the x-axis is o(cid:216) 12y = 36 (cid:150) x2 rFkk ml ij mu fcUnqvksa] tgk¡ o(cid:216) x-v{k d izfrPNsn djrh gS] ij [khaph xbZ Li’kZjs[kk ds chp f?kjs dk {ks=kQy …oxZ bdkb;ksa esa‰ gS % (1) 12 (2) 18 (3) 27 (4) 6 Ans. (1) Sol x2 = 36 (cid:150) 12 y x2 = (cid:150) 12 (y (cid:150) 3) (0, 6) (0, 3) (-6, 0) (6, 0) Required Area = 1 636x2 1 216 = 2 266 12 dx = 2 1812366 3 0 1 = 2 18 21672= 2 (18 (cid:150) 12) = 12 12 18. Let y = y(x) be the solution of the differential equation : dy xlogex + y = 3x log x, (x > 1) If y(e) = 0, then y(e2) is equal to e dx ekuk vody lehdj.k y = y(x) xlogexdy + y = 3x log x, (x > 1) dk gy gSA ;fn y(e) = 0 gS] rks y(e2) cjkcj gS % e dx 1 3 (1) e2 (2) e2 (3) e2 (4) 3e2 2 2 Ans. (3) ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..99 dy Sol. xlnx + y = 3xlnx dx dy 1 + y = 3 dx xlnx 1 dx IF = e xlnx = lnx y.lnx = 3.lnx dx 6 y.lnx = 3.x(lnx(cid:150)1) + 6 y(e) = 0 0 = 3e(0) + 1 C = 0 ylnx = 3x(lnx (cid:150) 1) y(e2) = ? 2y = 3e2(2 (cid:150) 1) 3 y = e2 2 19. Let the straight lines , 5x (cid:150) 3y + 15 = 0 and 5x + 3y (cid:150) 15 form a triangle with the x-axis. Then the radius of the circle circumscribing this triangle is ekuk js[kk,sa rFkk rFkk v{k ds lkFk ,d f=kHkqt cukrs gS] rks f=kHkqt ds 5x (cid:150) 3y + 15 = 0 5x + 3y (cid:150) 15 = 0 x- ifjo‘(cid:217)k dh f=kT;k gS % 8 17 12 16 (1) (2) (3) (4) 5 5 5 5 Ans. (4) Sol. 5x (cid:150) 3y + 15 = 0 5x + 3y (cid:150) 15 = 0 A (0, 5) B ((cid:150)3, 0) C ((cid:150)3, 0) Circumcentre (0, 9/5) 16 Radius = 5 ------------------------------------------------------------------- Transweb Educational Services Pvt. Ltd www.askiitians.com | Email: [email protected] Tel:+91-120-4616500 PPaaggee NNoo..1100
Description: