ebook img

Jawapan Modul Aktiviti Pintar Bestari Matematik Tambahan Tingkatan 4 PDF

89 Pages·2017·0.69 MB·Indonesian
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jawapan Modul Aktiviti Pintar Bestari Matematik Tambahan Tingkatan 4

JAWAPAN BAB 1: FUNGSI C 1.1 1. Hubungan satu kepada satu A 2. Hubungan banyak kepada banyak 1. (a) Bahagi dengan 3 A B 3. Hubungan banyak kepada satu 3 1 D 6 2 1. (a) Hubungan satu kepada banyak 12 4 (b) {2, 3, 4, 5, 6} 15 5 (c) 7 17 6 (d) 5 dan 6 (b) {(3, 1), (6, 2), (12, 4), (15, 5)} 2. (a) Hubungan banyak kepada banyak (b) {(a, 1), (a, 2), (b, 5), (c, 3), (c, 5), (d, 3)} (c) Set B (c) {1, 2, 3, 5} 6 5 4 3. (a) (i) 36 2 (ii) { (2, 4), (4, 16), (6, 36), (8, 64), (y, y2)} 1 (b) y = –5 atau 5 Set A 3 6 12 15 17 2. (a) P Tambah 5 Q 1.2 A 7 12 Jenis hubungan Gambar rajah anak panah 8 13 9 14 a x 10 15 Satu kepada satu b y c z (b) { (7, 12), (8, 13), (9, 14), (10, 15)} (c) Set B a x Satu kepada y 15 banyak b z 14 13 12 Set A a x 7 8 9 10 Banyak kepada b y B satu c z 1. (a) {3, 6, 9, 12} (b) {15, 30, 45, 60, 70} (c) 3, 6, 9, 12 a x Banyak kepada (d) 15, 30, 45, 60} b y (e) 45 banyak c z (f) 12 (g) {15, 30, 45, 60} B 2. (a) {3, 4, 5, 6, 7} 1. Tatatanda fungsi: f : x → –x (b) {10, 20, 30, 40, 50} (a) –3, –4, –5, –k (c) 3, 4, 5, 6, 7 (b) –10 (d) 10, 30, 40, 50 (e) 50 2. Tatatanda fungsi: f : x → x – 3 (f) Tiada (a) 33, 44, 55, 68, k (g) {10, 30, 40, 50} (b) k = 73 © Sasbadi Sdn. Bhd. (139288-X) 1 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 C 2. f(x) = mx + n 1. f(4) = 3(4) – 5 = 7 f(1) = m(1) + n = 5 m + n = 5 ...... ➀ f(–10) = 3(–10) – 5 = –35 f(6) = m(6) + n = 15 2. f(3) = 32 + 4 = 13 6m + n = 15 ...... ➁ f(–7) = (–7)2 + 4 = 53 ➁ – ➀: 5m = 10 m = 2 D Gantikan m = 2 ke dalam ➀. 1. 3x + 5 = 11 2. 5 – 4x = 9 2 + n = 5 3x = 6 –4x = 4 n = 3 x = 2 x = –1 4 3x + 5 = –1 5 – 4x = –11 3. g(x) = – 10 x 3x = –6 –4x = –16 x = –2 x = 4 Apabila g(x) = 8 4 E – 10 = 8 x 1. (a) f(–4) = 2(–4) + 6 4 = 18 = –8 + 6 x = –2 x 1 = 4 18 (b) 2x + 6 = 10 4 2x = 4 x = 18 x = 2 2 x = 2. (a) f(2) = 10 9 3(2) – p = 10 –p = 10 – 6 1.3 –p = 4 A p = –4 1. fg(x) = f(2x + 8) (b) f(x) = 3x – (–4) = (2x + 8) + 3 f(x) = 3x + 4 = 2x + 11 f(x) = –5 gf(x) = g(x + 3) 3x + 4 = –5 = 2(x + 3) + 8 3x = –9 = 2x + 6 + 8 x = –3 = 2x + 14 3. (a) f(3) = g(2x) gf(6) = 2(6) + 14 2(3) + 4 = 2x – 2 = 12 + 14 10 = 2x – 2 = 26 12 = 2x x = 6 2. fg(x) = f(4x + 3) = 2(4x + 3) – 5 (b) f(x) + g(x) = 11 = 8x + 6 – 5 (2x + 4) + (x – 2) = 11 = 8x + 1 3x + 2 = 11 3x = 9 gf(x) = g(2x – 5) x = 3 = 4(2x – 5) + 3 = 8x – 20 + 3 F = 8x – 17 1. f(x) = ax + b fg(2) = 8(2) + 1 f(1) = a(1) + b = –3 = 16 + 1 a + b = –3 ...... ➀ = 17 f(4) = a(4) + b = 6 4a + b = 6 ...... ➁ ➁ – ➀: 3a = 9 a = 3 Gantikan a = 3 ke dalam ➀. 3 + b = –3 b = –6 © Sasbadi Sdn. Bhd. (139288-X) 2 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 3. hg(t) = h(t2 + 3) 5. f 2(x) = gf(x) = 4(t2 + 3) – 5 f(2 + 3x) = g(2 + 3x) = 4t2 + 12 – 5 2 + 3(2 + 3x) = 4 – 5(2 + 3x) = 4t2 + 7 2 + 6 + 9x = 4 – 10 – 15x 8 + 9x = –6 – 15x gh(t) = g(4t – 5) 24x = –14 = (4t – 5)2 + 3 = 16t2 – 40t + 25 + 3 x = – 14 = 16t2 – 40t + 28 24 7 hg(2) = 4(2)2 + 7 x = – 12 = 16 + 7 = 23 C 4. fg(x) = f(x + 2) 1. fg(x) = 37 – 8x = –(x + 2)2 – 3(x + 2) 2g(x) – 7 = 37 – 8x = –(x2 + 4x + 4) – 3x – 6 2g(x) = 44 – 8x = –x2 – 4x – 4 – 3x – 6 g(x) = 22 – 4x = –x2 – 7x – 10 2. fg(x) = 12x + 2 gf(x) = g(–x2 – 3x) 3g(x) + 5 = 12x + 2 = (–x2 – 3x) + 2 3g(x) = 12x – 3 = –x2 – 3x + 2 g(x) = 4x – 1 gf(3) = –(3)2 – 3(3) + 2 3. fg(x) = 4x2 – 4x + 9 = –9 – 9 + 2 2g(x) – 1 = 4x2 – 4x + 9 = –16 2g(x) = 4x2 – 4x + 10 g(x) = 2x2 – 2x + 5 B 1. fg(x) = 11 D f(4 – 2x) = 11 1 1. (a) fg(x) = x + 7 (4 – 2x) + 3 = 11 2 4 – 2x + 3 = 11 1 g(x) + 3 = x + 7 –2x = 4 2 x = –2 1 g(x) = x + 4 2 2. gf(2) = 25 (b) gf(x) = g(x + 3) g[2(2) + 3] = 25 1 g(7) = 25 = (x + 3) + 4 2 5(7) + h = 25 1 3 35 + h = 25 = x + + 4 2 2 h = –10 1 11 = x + 3. f 2(x) = 4 2 2 f(2x – 4) = 4 2. (a) fg(x) = 2x2 + 7 2(2x – 4) − 4 = 4 2g(x) + 1 = 2x2 + 7 4x – 8 − 4 = 4 2g(x) = 2x2 + 6 4x = 16 g(x) = x2 + 3 x = 4 g(x + 3) = (x + 3)2 + 3 4. gf(x) = 6x – 3 = x2 + 6x + 9 + 3 g(ax + 4) = 6x – 3 = x2 + 6x + 12 5 − 2(ax + 4) = 6x – 3 5 − 2ax − 8 = 6x – 3 (b) g(x) = x2 + 3 −2ax − 3 = 6x – 3 g(–1) = (–1)2 + 3 −2ax = 6x = 4 −2a = 6 3. fg(2) = 43 a = −3 2g(2) + 9 = 43 2g(2) = 34 g(2) = 17 © Sasbadi Sdn. Bhd. (139288-X) 3 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 E 3. f 2(x) = 4x – 4 f(b – ax) = 4x – 4 1. fg(x) = –2x – 6 b – a(b – ax) = 4x – 4 f(x + 5) = –2x – 6 b – ab + a2x = 4x – 4 Katakan y = x + 5 Maka, a2 = 4 Maka, x = y – 5 a = 2 (a (cid:2) 0) f(y) = –2(y – 5) – 6 dan f(y) = –2y + 10 – 6 f(y) = 4 – 2y b – ab = –4 b – 2b = –4 Maka, f(x) = 4 – 2x –b = –4 2. fg(x) = 2x2 + 9 b = 4 f(x2 + 4) = 2x2 + 9 4. (a) fg(4) = 2 Katakan y = x2 + 4 f(4 – 4) = 2 Maka, x2 = y – 4 f(0) = 2 a(0) + b = 2 f(y) = 2(y – 4) + 9 b = 2 f(y) = 2y – 8 + 9 gf(2) = 4 f(y) = 2y + 1 g(2a + b) = 4 Maka, f(x) = 2x + 1 g(2a + 2) = 4 (2a + 2) – 4 = 4 3. fg(x) = 25x + 34 2a = 6 f(5x + 6) = 25x + 34 a = 3 Katakan y = 5x + 6 (b) f(x) = 3x + 2 5x = y – 6 gf(–3) = g[3(–3) + 2] Maka, 25x = 5y – 30 = g(–7) f(y) = (5y – 30) + 34 = –7 – 4 f(y) = 5y – 30 + 34 = –11 f(y) = 5y + 4 fg(–5) = f(–5 – 4) Maka, f(x) = 5x + 4 = f(–9) = 3(–9) + 2 F = –25 1. fg(–2) = 7 6 f [2(–2) + 3] = 7 5. fg(x) = + 4 x + 1 f(–1) = 7 a(–1) + 3 = 7 3 6 = + 4 a(–1) = 4 g(x) + 1 x + 1 a = –4 6 + 4x + 4 = f(x) = –4x + 3 x + 1 gf(2) = g[–4(2) + 3] 4x + 10 = = g(–5) x + 1 = 2(–5) + 3 g(x) + 1 x + 1 = = –7 3 4x + 10 3x + 3 4x + 10 2. fg(x) = gf(x) g(x) = – 4x + 10 4x + 10 f(a – 2x) = g(2x + b) 2(a – 2x) + b = a – 2(2x + b) g(x) = –x – 7 , x ≠ – 5 2a – 4x + b = a – 4x – 2b 4x + 10 2 2a – a = –2b – b a = –3b © Sasbadi Sdn. Bhd. (139288-X) 4 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 1.4 Maka, f –1(x) = x + 3 4 A 2 + 3 1. f –1(14) = m f –1(2) = 4 f f –1(14) = f(m) 5 14 = f(m) = 4 14 = 2m + 6 1 2m = 8 = 1 4 m = 4 2. Katakan f –1(x) = y f –1(22) = n f f –1(22) = f(n) Maka, f f –1(x) = f(y) 22 = f(n) x = f(y) 22 = 2n + 6 1 x = y + 3 2n = 16 2 n = 8 y = 2(x – 3) Maka, f –1(x) = 2(x – 3) 2. f –1(6) = m f f –1(6) = f(m) f –1(4) = 2(4 – 3) 6 = f(m) = 2 1 6 = m + 4 2 3. Katakan f –1(x) = y 1 Maka, f f –1(x) = f(y) m = 2 2 x = f(y) m = 4 2y + 3 x = 4 f –1(9) = n 4x = 2y + 3 f f –1(9) = f(n) 4x – 3 9 = f (n) y = 2 1 9 = n + 4 2 Maka, f –1(x) = 4x – 3 1 2 n = 5 2 4(6) – 3 n = 10 f –1(6) = 2 21 3. f –1(8) = m = 2 f f –1(8) = f(m) 1 8 = f(m) = 10 2 8 = 10 – 2m 2m = 2 4. Katakan f –1(x) = y m = 1 Maka, f f –1(x) = f(y) f –1(0) = n x = f(y) f f –1(0) = f(n) 5 x = 0 = f(n) y + 2 0 = 10 – 2n xy + 2x = 5 2n = 10 xy = 5 – 2x n = 5 5 – 2x y = x B Maka, f –1(x) = 5 – 2x, x ≠ 0 1. Katakan f –1(x) = y x Maka, f f –1(x) = f(y) 5 – 2(2) x = f(y) f –1(2) = 2 x = 4y – 3 1 x + 3 = y = 2 4 © Sasbadi Sdn. Bhd. (139288-X) 5 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 C (a) hg–1(x) = h (cid:2)x + 1(cid:3) 3 1. (a) fg(x) = 2x – 2 (cid:2)x + 1(cid:3) g(x) + 3 = 2x – 2 = 2 + 3 3 g(x) = 2x – 5 2x + 2 = + 3 g –1(x) = y 3 x = g(y) 2x + 11 = x = 2y – 5 3 x + 5 y = 2 (b) gh–1(x) = g (cid:2)x – 3(cid:3) 2 x + 5 g –1(x) = (cid:2)x – 3(cid:3) 2 = 3 – 1 2 f g–1(x) = f (cid:2)x + 5(cid:3) 3x – 11 2 = 2 x + 5 = + 3 2 x + 11 Praktis Formatif: Kertas 1 = 2 1. (a) Julat = {a, b, d} (b) g –1f (x) = g –1(x + 3) (b) Hubungan banyak kepada satu = (x + 3) + 5 2. (a) {(–1, 5), (0, 2), (1, 5)} 2 (b) {–1, 0, 1} x + 8 = 2 3. f(6) = 10 6 – 2m = 10 2. (a) Katakan g –1(4) = y 2m = –4 4 = g(y) m = –2 4 4 = 3y – 2 4. (a) f(x) = x 3y – 2 = 1 2x – 4 = x 3y = 3 x = 4 y = 1 (b) f(3h – 1) = 3h Maka, g–1(4) = 1 2(3h – 1) – 4 = 3h 6h – 2 – 4 = 3h (b) Katakan f –1(x) = y 6h – 6 = 3h x = f(y) 3h = 6 x = y + 8 h = 2 y = x – 8 f –1(x) = x – 8 5. (a) 3 (b) f(2) = | 2 – 4(2) | f –1g(x) = f –1 (cid:2) 4 (cid:3) = | –6 | 3x – 2 = 6 = 4 – 8, x ≠ 2 (c) –1 (cid:3) x (cid:3) 2 3x – 2 3 6. hk(x) = 2mx + p 3. Katakan h–1(x) = y h(2x – 1) = 2mx + p x = h(y) m(2x – 1) + 3 = 2mx + p x = 2y + 3 2mx – m + 3 = 2mx + p x – 3 –m + 3 = p y = 2 m = 3 – p x – 3 Maka, h–1(x) = 2 7. (a) Fungsi f Katakan g–1(x) = y (b) g –1(c) = b x = g(y) 8. g f (2) = 8 x = 3y – 1 g(2 × 2) = 8 x + 1 y = g(4) = 8 3 k(4) + h = 8 x + 1 Maka, g–1(x) = 4k + h = 8 3 h = 8 – 4k © Sasbadi Sdn. Bhd. (139288-X) 6 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 9. (a) Katakan g–1(x) = y (ii) Berdasarkan rajah yang diberi, x = g(y) gf(x) = 12x – 5 x = 2y + 4 Maka, g(3x – 2) = 12x – 5 2y = x – 4 Katakan u = 3x – 2. y = x – 4 u + 2 Maka, x = 2 3 Maka, g–1(x) = x – 4 (cid:2)u + 2(cid:3) g(u) = 12 – 5 2 3 (b) fg(x) = 4x2 + 16x + 10 = 4u + 8 – 5 f(2x + 4) = 4x2 + 16x + 10 = 4u + 3 Katakan y = 2x + 4 Maka, g(x) = 4x + 3 y – 4 x = (b) fg(x) = 5x + 14 2 f(4x + 3) = 5x + 14 f(y) = 4(cid:2)y – 4(cid:3)2 + 16(cid:2)y – 4(cid:3) + 10 3(4x + 3) – 2 = 5x + 14 2 2 12x + 9 – 2 = 5x + 14 = (y – 4)2 + 8(y – 4) + 10 7x = 7 = y2 – 8y + 16 + 8y – 32 + 10 x = 1 = y2 – 6 Maka, f(x) = x2 – 6 2. (a) Diberi f(x) = 4x – 5. Katakan y = f–1(x) 10. (a) Katakan g–1(x) = y f(y) = x x = g(y) 4y – 5 = x x = 3y – 6 4y = x + 5 3y = x + 6 x + 5 y = x + 6 y = 4 3 x + 5 x + 6 Maka, f–1(x) = Maka, g–1(x) = 4 3 Lakaran graf f–1(x): (cid:2)2 (cid:3) (b) g2 p = 12 3 f –1(x) (cid:4) (cid:2)2 (cid:3) (cid:5) g 3 p – 6 = 12 5 3 4 g (2p – 6) = 12 3(2p – 6) – 6 = 12 x 6p – 18 – 6 = 12 –5 0 6p = 36 Domain x ialah semua nilai nyata. p = 6 (b) f–1g(x) = f –1 (cid:2)x – 2(cid:3) 4 Praktis Formatif: Kertas 2 (cid:2)x (cid:3) – 2 + 5 1. (a) (i) Fungsi yang memetakan set B kepada 4 = set A ialah f –1(x). 4 x + 12 Berdasarkan rajah yang diberi, = 16 f(x) = 3x – 2. (c) hg(x) = x – 8 Katakan y = f –1(x) Maka, f(y) = x h(cid:2)x – 2(cid:3) = x – 8 3y – 2 = x 4 x 3y = x + 2 Katakan u = – 2 4 x + 2 y = Maka, x = 4u + 8 3 x + 2 h(u) = (4u + 8) – 8 Maka, f –1(x) = 3 = 4u Maka, h(x) = 4x © Sasbadi Sdn. Bhd. (139288-X) 7 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 FOKUS KBAT (a) Bukan fungsi. Kerana hubungan yang memetakan set B kepada set A ialah hubungan satu kepada banyak. (b) f(x) = kx2 – 5x f(6) = –18 k(62) – 5(6) = –18 36k – 30 = –18 36k = 12 1 k = 3 18x (c) g–1(x) = x – 1 Katakan g(x) = y Maka, g–1(y) = x 18y = x y – 1 18y = xy – x xy – 18y = x y(x – 18) = x x y = x – 18 x 1 g(x) = dan f(x) = x2 – 5x x – 18 3 (cid:2)1 (cid:3) gf(x) = g x2 – 5x 3 1 x2 – 5x 3 = (cid:2)1 (cid:3) x2 – 5x – 18 3 x2 – 15x = x2 – 15x – 54 = x(x – 15) , x ≠ –3, 18 (x + 3)(x – 18) © Sasbadi Sdn. Bhd. (139288-X) 8 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 JAWAPAN BAB 2: PERSAMAAN KUADRATIK 3. –3x2 + 2x + 8 = 0 3x2 – 2x – 8 = 0 2.1 (3x + 4)(x – 2) = 0 A 3x + 4 = 0 atau x – 2 = 0 1. a = 2, b = –4, c = 5 x = – 4 x = 2 2. a = –3, b = 4, c = –7 3 3. a = 1, b = –6, c = 0 B 1. 3x2 + 10x + 6 = 0 B 1. Ya. Kerana kuasa tertinggi x ialah 2. x2 + 10x + 2 = 0 3 2. 5(x + 3) = x – 2 x2 + 10x = –2 5x + 15 = x – 2 3 4x + 17 = 0 x2 + 10x + (cid:2)5(cid:3)2 = –2 + (cid:2)5(cid:3)2 3 3 3 Bukan. Kerana kuasa tertinggi x bukan 2. (cid:2)x + 5(cid:3)2 = 7 3 9 3. 2 + x – 3 = 0 x2 x + 5 = ± 7 2x−2 + x – 3 = 0 3 9 Bukan. Kerana kuasa tertinggi x bukan 2. x = –53 ± 79 = –0.7847 atau –2.5486 C 1. Gantikan x = 3 ke dalam mx2 – 7x + 3 = 0. 2. –3x2 + 12x – 5 = 0 m(3)2 – 7(3) + 3 = 0 3x2 – 12x + 5 = 0 9m – 21 + 3 = 0 x2 – 4x + 5 = 0 9m = 18 3 m = 2 x2 – 4x = – 5 3 2. x = 2: a(2)2 – 5(2) + c = 0 x2 – 4x + (cid:2)4(cid:3)2 = – 5 + (cid:2)4(cid:3)2 2 3 2 4a + c = 10 …… ➀ (x – 2)2 = 7 x = 3: a(3)2 – 5(3) + c = 0 3 9a + c = 15 …… ➁ x – 2 = ± 7 ➁ – ➀: 5a = 5 dan 4(1) + c = 10 3 a = 1 c = 6 x = 2 ± 7 3 = 3.5275 atau 0.4725 2.2 A C 1. x2 + 4x – 5 = 0 1. a = 1, b = 5, c = –6 (x + 5)(x – 1) = 0 –5 ± 52 – 4(1)(–6) x = x + 5 = 0 atau x – 1 = 0 2(1) x = –5 x = 1 = –5 ± 7 2 2. 2x2 + x – 10 = 0 = –6 atau 1 (2x + 5)(x – 2) = 0 2x + 5 = 0 atau x – 2 = 0 2. a = –1, b = 4, c = –2 x = – 5 x = 2 x = –4 ± 42 – 4(–1)(–2) 2 2(–1) = –4 ± 8 –2 = 0.5858 atau 3.4142 © Sasbadi Sdn. Bhd. (139288-X) 1 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4 3. a = 4, b = –6, c = 1 3. –2x2 – 6x + 15 = 0 –(–6) ± (–6)2 – 4(4)(1) x2 + 6 x – 15 = 0 x = 2 2 2(4) x2 + 3x – 15 = 0 = 6 ± 20 2 8 x2 – (–3)x + (cid:2)– 15(cid:3) = 0 = 0.1910 atau 1.3090 2 Maka, HTP = –3 4. a = –2, b = 5, c = 8 15 HDP = – x = –5 ± 52 – 4(–2)(8) 2 2(–2) 4. 5x2 + 9x – 25 = 0 = –5 ± 89 –4 x2 + 9 x – 25 = 0 5 5 = –1.1085 atau 3.6085 x2 + 9 x – 5 = 0 D 5 1. (x – 2)(x + 4) = 0 x2 – (cid:2)– 9(cid:3) x + (–5) = 0 5 x2 + 4x – 2x – 8 = 0 x2 + 2x – 8 = 0 Maka, HTP = –9 5 2. (cid:2)x – 1(cid:3)(x – 3) = 0 HDP = –5 2 G x2 – 3x – 1x + 3 = 0 2 2 1. (a) x2 – 7x – k = 0 2x2 – 6x – x + 3 = 0 HTP = 7 2x2 – 7x + 3 = 0 Katakan r ialah punca yang satu lagi. 3. (x + 5)(x + 4) = 0 Maka, 6 + r = 7 x2 + 4x + 5x + 20 = 0 r = 1 x2 + 9x + 20 = 0 Jadi, punca yang satu lagi ialah 1. (b) HDP = –k E Maka, –k = 6 × 1 1. x2 – (p + q)x + pq = 0 k = –6 x2 – (–1)x + (–2) = 0 x2 + x – 2 = 0 2. x2 + kx + 8 = 0 x2 – (–k)x + 8 = 0 2. x2 – (p + q)x + pq = 0 x2 – 4x + (–5) = 0 HTP : m + (m – 2) = –k x2 – 4x – 5 = 0 2m – 2 = –k k = 2 – 2m 3. x2 – (p + q)x + pq = 0 HDP : m(m – 2) = 8 x2 – 3x + (cid:2)– 7(cid:3) = 0 m2 – 2m = 8 2 2 m2 – 2m – 8 = 0 x2 – 3x – 7 = 0 (m – 4)(m + 2) = 0 2 2 m = 4 atau –2 2x2 – 3x – 7 = 0 Apabila m = 4, k = 2 – 2(4) F = –6 1. x2 + 5x + 4 = 0 Apabila m = –2, k = 2 – 2(–2) x2 – (–5)x + 4 = 0 = 6 Maka, HTP = –5 Nilai k yang mungkin ialah –6 dan 6. HDP = 4 3. x2 + 5x + 3 = 0 2. x2 – 8x – 20 = 0 x2 – (–5)x + 3 = 0 x2 – 8x + (–20) = 0 α + β = –5 dan αβ = 3 Maka, HTP = 8 HDP = –20 © Sasbadi Sdn. Bhd. (139288-X) 2 PINTAR BESTARI SPM Matematik Tambahan Tingkatan 4

Description:
5 – 4x = 9. –4x = 4 x = –1. 5 – 4x = –11. –4x = –16 x = 4. E. 1. (a) f(–4) = 2(–4) + 6. = –8 + 6. = –2. (b) 2x + 6 = 10. 2x = 4 x = 2. 2. (a) f(2) = 10. 3(2) – p =
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.