ebook img

Jam avoidance with autonomous systems PDF

1.1 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jam avoidance with autonomous systems

Jam avoidance with autonomous systems AntoineTordeuxandSylvainLassarre 6 1 0 2 n a J 8 Abstract Many car-following models are developed for jam avoidance in high- 2 ways.Twomechanismsareusedtoimprovethestability:feedbackcontrolwithau- ] tonomousmodelsandincreasingoftheinteractionwithincooperativeones.Inthis h paper,wecomparethelinearautonomousandcollectiveoptimalvelocity(OV)mod- p els. We observe that the stability is significantly increased by adding predecessors - c ininteractionwithcollectivemodels.Yetautonomousandcollectiveapproachesare o close when the speed difference term is taking into account. Within the linear OV s . models tested, the autonomous models including speed difference are sufficient to s maximisethestability. c i s y h 1 Introduction p [ 1 Recently, many car-following models have been developed for jam avoidance in v highways.Modelshaveequilibriumhomogeneoussolutionswhereallvehiclespeeds 3 and spacings are constant and equal. ‘Jam avoidance property’ is investigated 1 through analysis of the stability of such solutions. Most of the approaches are ex- 7 tended versions of the optimal velocity (OV) model [1]. The basic model is solely 7 0 based on the distance spacing with the predecessor (local next-neighbour interac- . tion). Several studies shown that speed and spacing feedback mechanisms in au- 1 0 tonomous OV models allow to improve the stability of the homogeneous solution 6 and to avoid jam formation [10, 9, 2, 16, 6]. Similar results are obtained with the 1 intelligentdriver(ID)modelforspecificparametervalues[8,7]. : v i X AntoineTordeux Ju¨lich Supercomputing Centre, Forschungszentrum Ju¨lich, Germany and Computer Simula- r tion for Fire Safety and Pedestrian Traffic, Bergische Universita¨t Wuppertal, Germany, e-mail: a [email protected] SylvainLassarre GRETTIA/COSYS–IFSTTAR,Francee-mail:[email protected] 1 2 AntoineTordeuxandSylvainLassarre Severalvehiclesintheneighbourhoodaretakenintheinteractionforcollective (or cooperative) systems. Many studies show improvements of the stability if the number of predecessors in interaction increases [11, 3, 15, 4]. Comparable results areobtainedwithsymmetricinteraction(interactionwithpredecessorsandfollow- ers,seeforinstance[13,12]).Oppositelytoautonomousmodelsforwhichthevari- ables can be directly measured, cooperative systems require that the vehicles are connectedtocommunicatetheirstates.Thismakesdifficulttheirimplementation. Inthispaper,autonomouslinearOVmodelsandextendedoneswithspeeddiffer- encetermarecomparedtotheircollectiveversionsincludingseveralpredecessorsin interaction.BothextendedandcollectiveOVmodelsdescribesignificantimprove- mentofthestability.Moreprecisely,weobservethatthenumberofpredecessorsin interactioninthecollectivemodelsandthespeeddifferencetermintheautonomous approacheshavesimilarrolesinthedynamics.Thepaperisorganizedasfollow.The linearjamavoidancemodelsareintroducedinsection2.Theresultsofsimulation experiment of a jam are presented in section 3, while the Lyapunov exponents of thedifferentautonomousandcollectivemodelsarecalculatedinsection4.Thesec- tion5givesconclusionandoutlook. 2 Linearjamavoidancemodels Theoptimalvelocitymodelis x¨ (t)= 1(cid:0)V(∆x (t)) x˙ (t)(cid:1), (1) n T n − n with x (t) the position of the vehicle n at time t, ∆x(t)=x (t) x (t) the dis- n n+1 n − tancespacingwithx >x thepredecessorposition(seefigure1),andT >0the n+1 n relaxation(orreaction)time[1].Ajamavoidanceshouldhavestablehomogeneous solution. More precisely it should be locally stable with no oscillation (LSNO) to avoidcollisionandgloballystable(GS),seeforinstance[14,Chapter15].Thecon- ditionsensureacollision-freeconvergenceofthesystemtothehomogeneoussolu- tionforanyinitialcondition.WithOVmodeltheOVmodel,thelinearLSNOand GSconditionsarerespectively: V < 1 and V < 1 . (2) (cid:48) 4T (cid:48) 2T Notethatthefirstconditionimpliesthesecond.Thefullvelocitydifference(FVD) isanextendedOVmodelincludingspeeddifferenceterm[5]: x¨ (t)= 1(cid:0)V(∆x (t)) x˙ (t)(cid:1)+ 1∆x˙ (t). (3) n T1 n − n T2 n ItincludestworelaxationtimesT >0andT >0.ThemodelisthesameastheOV 1 2 model at the limit T ∞. For the FVD model, the LSNO and GS conditions are 2 → respectively: Jamavoidancewithautonomoussystems 3 (cid:16) (cid:17)2 V < 1 1+T1 and V < 1 + 1. (4) (cid:48) 4T1 T2 (cid:48) 2T1 T2 These conditions are simplyV <1/T if T =T =T (the first inequality implies (cid:48) 1 2 the second if T <3T ). Clearly, the speed difference has a stabilization effect on 1 2 thedynamics.TheLSNOandGSconditionsalwaysholdatthelimitT 0. 2 → ∆x =x x n n+1 n − n n+1 n+2 x x x n n+1 n+2 Space Fig.1 Notationsused.xnisthepositionand∆xnisthespacingofthevehiclen. Themodels(1)and(3)areautonomousones:theyaresolelybasedondistance spacing and speed difference with the predecessor. Collective models depend on severalpredecessorsinfront.Generally,collectiveOVmodelshavetheformx¨ (t)= n ∑Kk=1Fk(cid:0)∆xn,k(t),x˙n(t),∆x˙n+k(t),whereKisthenumberofpredecessorstakinginto accountand∆x =x x isthedistancetothevehiclen+k.F representsthe n,k n+k k k − influenceofthevehiclek ontheaccelerationrateoftheconsideredvehicle.Inthe Multi-anticipative(MA)model[11],thisinfluenceis F = αk(cid:0)V(cid:0)∆x (t)/k(cid:1) x˙ (t)(cid:1). (5) k T n,k − n Thevelocitydifferencemulti-anticipative(VDMA)modelincludesspeeddifference terms F =α (cid:104)1(cid:0)V(cid:0)∆x (t)/k(cid:1) x˙ (cid:1)+ 1∆x˙ (t)(cid:105). (6) k k T1 n,k − n T2 n+k Herethepositivecoefficients(αk)aresuchthat∑kαk =1.Theyspecifytheinter- action with the predecessors. In the following we set α =1/K for all k (uniform k interaction)inordertomaximisethestability[11,3].NotethattheMAmodelisthe OVoneandtheVDMAmodelistheFVDoneforK=1,whiletheVDMAmodel istheMAoneatthelimitT ∞.Thetestedmodelsareresumedistable1. 2 → Name Acronym Type Parameter Optimalvelocity OV Autonomous V ,T (cid:48) Fullvelocitydifference FVD Autonomous V ,T,T (cid:48) 1 2 Multi-anticipative MA Collective V ,T,K (cid:48) Velocitydifferencemulti-anticipative VDMA Collective V ,T,T,K (cid:48) 1 2 Table1 Name,acronym,typeandparametersofthetestedmodels. 4 AntoineTordeuxandSylvainLassarre 3 Simulationofajam Inthissection,themodels(1),(3),(5)and(6)aresimulatedwithperiodicbound- ary conditions from jam initial conditions by using explicit Euler schemes with time step 0.001 s. N =20 vehicles are considered with the settings:V =1 s 1 , (cid:48) − T =T =0.25s(fix),andT =2,0.5,0.1s,K=2,4,10veh(tested).Thesettings 1 2 aredefinedsothattheLSNOandGSconditionsoccurforanymodel.Thetrajecto- riesobtainedwithOVandFVDautonomousmodelsarepresentedinfigure2.The convergence speed to the homogeneous solutions increases as T 0. The same 2 → phenomenonoccurswithMAmodelasK ∞,seefigure3.However,thereisno → clearimprovementsofthestabilitywiththeVDMAmodelifT issufficientlysmall 2 (seefigure4). 0 0 5 OVM 5 FVDM 40 40 T2=2 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 0 0 5 5 FVDM FVDM 40 T2=0.5 40 T2=0.1 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 Space(m) Space(m) Fig.2 TrajectorieswiththeOVandFVDmodelsfromjaminitialconfiguration. Thespeedofconvergenceofthesystemtotheuniformsolutioncanbequantified byspacingstandarddeviationsequence(Lyapunovfunction): (cid:113) σ∆x= N1 ∑Nn=1(∆xn−∆x¯n)2 with ∆x¯n= N1 ∑Nn=1∆xn. (7) Inthefigure5,thelogarithmsofthespacingstandarddeviationareplottedaccord- ingtothetimeforthedifferentmodels.Weobservelinearevolution,meaningthat thedeviationtendtozerowithexponentialspeed.Asexpected,theslopeofthelog- Jamavoidancewithautonomoussystems 5 0 0 5 OVM 5 MAM 0 0 K=2 4 4 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 0 0 5 5 MAM MAM 0 K=4 0 K=10 4 4 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 Space(m) Space(m) Fig.3 TrajectorieswiththeOVandMAmodelsfromjaminitialconfiguration. 0 0 5 5 FVDM VDMAM 40 T2=0.1 40 K=2 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 0 0 5 5 VDMAM VDMAM 0 K=4 0 K=10 4 4 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 Space(m) Space(m) Fig.4 TrajectorieswiththeFVDandVDMAmodelsfromjaminitialconfiguration. 6 AntoineTordeuxandSylvainLassarre arithm(i.e.theconvergencespeed)increasesasT decreaseswiththeautonomous 2 models (see figure 5, top left panel), while the speed depends on the number of predecessorsininteractionK withthecollectiveMAmodel(seefigure5,topright panel).Asweobservedpreviously,thespeeddoesnotchangesignificantlyifK in- creases with VDMA model (see figure 5, bottom left panel). In fact the speeds of convergenceofFVD,MA,andVDMAmodelsareclose(seefigure5,bottomright panel);theyarestronglyfasterthantheconvergencespeedofordinaryOVmodel. Suchresultssuggestthatspeeddifferencetermwiththeautonomousmodelsandthe numberofpredecessorsininteractionwiththecollectiveoneshavesimilarrolesin thedynamics.Theconvergencespeedtothehomogeneoussolutionismaximisedas T 0orasK ∞. 2 → → 4 4 2 2 ) x ∆ 0 0 σ ( g 2 2 o - OVM - OVM l 4 FVDM T2=2 4 MAM K=2 - FVDM T2=0.5 - MAM K=4 6 FVDM T2=0.1 6 MAM K=10 - - 0 10 20 30 40 50 0 10 20 30 40 50 4 4 2 2 ) x ∆ 0 0 σ ( g 2 2 lo 4- FVVDDMMAM TK2==20.1 4- OFVVDMM T2=0.1 - VDMAM K=4 - MAM K=10 6 VDMAM K=10 6 VDMAM K=10 - - 0 10 20 30 40 50 0 10 20 30 40 50 Time(s) Time(s) Fig.5 SequencesofthespacingstandarddeviationlogarithmwithOV,FVD,MAandVDMA models. 4 Lyapunovexponents Thesolutionofthelinearsystemsarelinearcombination(LC)ofexponentialterms (cid:0) (cid:1) x (t)=LC exp(λt),texp(λt) (8) n l l with(λ)theLyapunovexponentsofthesystem(i.e.theeigenvaluesofthesystem l Jacobian matrix). In our stable case, all the exponents have strictly negative real parts,exceptedoneequaltozero.Moreover,wecanexpectthantheconvergenceto thehomogeneoussolutiongetsfasterastheexponentsgotheleftoftheimaginary axis.Withtheoptimalvelocityweinvestigate,theexponentsare: Jamavoidancewithautonomoussystems 7 λl = 12∑Kk=0βkιlk±12(cid:104)(cid:0)∑Kk=0βkιlk(cid:1)2−4∑Kk=1αk(1−ιlk)(cid:105)1/2 (9) with ιl = exp(2iπl/N), l = 1,...N, N being the vehicles number, αk = k1T1VK(cid:48), β = 1 1 and β = 1 for all k =1,...N. The Lyapunov exponents are 0 −T1 − T2 k −KT2 plottedinfigure6forthedifferentmodels.Weobservethattheyconvergetoadou- ble mode pattern as T 0 with the autonomous FVD model, and K ∞ with 2 → → the MA collective model. They remain double mode with the collective VDMA modelasK increases.Suchresultsconfirmqualitativelytheonesobservedbysim- ulation.Thespeeddifferencebehaveinthedynamicsasthenumberofpredecessors ininteraction.Alsoincreasingtheinteractionseemsnotnecessarytomaximisethe stability. 2 OVM 1.5 FVDM T2=2 FVDM T2=0.5 10 FVDM T2=0.1 (λ)l=1-10 -0.50.5 0.01.0 05 -2 -1.5 -1.5 -10 -4 -3 -2 -1 0 -4 -3 -2 -1 0 -7 -5 -3 -1 -20 -10 -5 0 OVM MAM K=2 MAM K=4 MAM K=10 2 1.0 0.4 0.2 )1 (λl0 0.0 0.0 0.0 = -2-1 -1.0 -0.4 -0.2 -4 -3 -2 -1 0 -4 -3 -2 -1 0 -4 -3 -2 -1 0 -4 -3 -2 -1 0 FVDM T2=0.1 VDMAM K=2 VDMAM K=4 VDMAM K=10 10 )5 5 5 5 (λl0 0 0 0 = -10 -5 -5 -5 -20 -10 -5 0 -20 -15 -10 -5 0 -15 -10 -5 0 -15 -10 -5 0 (λ) (λ) (λ) (λ) < l < l < l < l Fig.6 LyapunovexponentsforOV,FVD(toppanels),MA(middlepanels)andVDMA(bottom panels)modelswithN=100. 5 Conclusion TheconvergencestothehomogeneoussolutionoflinearjamavoidanceOVmodels arecompared.WeobservedthatextendingtheOVmodelwithspeeddifferenceterm significantlyimprovesthestability.Inasimilarway,theaddingofneighboursinin- teractiongivesstabilityenhancements.However,increasingtheinteractiondoesnot improvethestabilitywiththeextendedOVmodel.Thissuggeststhatboththenum- berofpredecessorsininteractioninthecollectivemodelsandthespeeddifference termintheautonomousapproachesallowtomaximisetheconvergencespeedtoho- 8 AntoineTordeuxandSylvainLassarre mogeneoussolutions.Also,theconnectionbetweenthevehicles,hardtoimplement, maynotbenecessarytooptimisethestabilityandefficientlyavoidjamformation. Further investigations remain to be carried out to validate this hypothesis. For in- stance,theinfluenceofthegeometry,initialconditionsorvehicledensityhavetobe investigated. The shape of the Lyapunov exponents and their impact on the stabil- ityarenotexplicit.Furthermore,non-linearmodelsmaypresentbetterconvergence speed than the basic linear models we analysed. These subjects will the topic of futureworks. References 1. Bando,M.,Hasebe,K.,Nakayama,A.,Shibata,A.,Sugiyama,Y.:Dynamicalmodeloftraffic congestionandnumericalsimulation. Phys.Rev.E51(2),1035–1042(1995) 2. Davis, L.C.: Effect of adaptative cruise control systems on traffic flow. Phys. Rev. E 69, 066,110(2004) 3. Hasebe,K.,Nakayama,A.,Sugiyama,Y.:Dynamicalmodelofacooperativedrivingsystem forfreewaytraffic. Phys.Rev.E68,026,102(2003) 4. Hu,Y.,Ma,T.,Chen,J.:Anextendedmulti-anticipativedelaymodeloftrafficflow. Commu- nicationsinNonlinearScienceandNumericalSimulation19(9),3128–3135(2014) 5. Jiang,R.,Wu,Q.,Zhu,Z.:Fullvelocitydifferencemodelforacar-followingtheory. Phys. Rev.E64,017,101(2001) 6. Jin,Y.,Hu,H.:Stabilizationoftrafficflowinoptimalvelocitymodelviadelayed-feedback control. CommunNonlinearSciNumerSimul18(4),1027–1034(2013) 7. Kesting,A.,Treiber,M.,Scho¨nhof,M.,Helbing,D.:Adaptivecruisecontroldesignforactive congestionavoidance. Transport.Res.C-Emer.16(6),668–683(2008) 8. Kesting,A.,Treiber,M.,Scho¨nhof,M.,Kranke,F.,Helbing,D.:Jam-avoidingadaptivecruise control (ACC) and its impact on traffic dynamics. In: Traffic and Granular Flow ’05, pp. 633–643(2007) 9. Konishi,K.,Kokame,H.,Hirata,K.:Decentralizeddelayed-feedbackcontrolofanoptimal velocitytrafficmodel. Eur.Phys.J.B15(4),715–722(2000) 10. Konoshi, K., Kokame, H., Hirata, H.: Coupled map car-following model and its delayed- feedbackcontrol. Phys.Rev.E60,4000–4007(1999) 11. Lenz,H.,Wagner,C.,Sollacher,R.:Multi-anticipativecar-followingmodel. Eur.Phys.J.B 7(2),331–335(1999) 12. Monteil,J.,Billot,R.,Sau,J.,ElFaouzi,N.E.:Linearandweaklynonlinearstabilityanalyses ofcooperativecar-followingmodels. IntelligentTransportationSystems,IEEETransactions on15(5),2001–2013(2014) 13. Nakayama,A.,Sugiyama,Y.,Hasebe,K.:Effectoflookingatthecarthatfollowsinanoptimal velocitymodeloftrafficflow. Phys.Rev.E65,016,112(2001) 14. Treiber,M.,Kesting,A.:TrafficFlowDynamics. Springer,Berlin(2013) 15. Wilson,R.,Berg,P.,Hooper,S.,Lunt,G.:Many-neighbourinteractionandnon-localityin trafficmodels. Eur.Phys.J.B39(3),397–408(2004) 16. Zhao,X.,Gao,Z.:Controllingtrafficjamsbyafeedbacksignal. Eur.Phys.J.B43(4),565– 572(2005)

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.