Jam avoidance with autonomous systems AntoineTordeuxandSylvainLassarre 6 1 0 2 n a J 8 Abstract Many car-following models are developed for jam avoidance in high- 2 ways.Twomechanismsareusedtoimprovethestability:feedbackcontrolwithau- ] tonomousmodelsandincreasingoftheinteractionwithincooperativeones.Inthis h paper,wecomparethelinearautonomousandcollectiveoptimalvelocity(OV)mod- p els. We observe that the stability is significantly increased by adding predecessors - c ininteractionwithcollectivemodels.Yetautonomousandcollectiveapproachesare o close when the speed difference term is taking into account. Within the linear OV s . models tested, the autonomous models including speed difference are sufficient to s maximisethestability. c i s y h 1 Introduction p [ 1 Recently, many car-following models have been developed for jam avoidance in v highways.Modelshaveequilibriumhomogeneoussolutionswhereallvehiclespeeds 3 and spacings are constant and equal. ‘Jam avoidance property’ is investigated 1 through analysis of the stability of such solutions. Most of the approaches are ex- 7 tended versions of the optimal velocity (OV) model [1]. The basic model is solely 7 0 based on the distance spacing with the predecessor (local next-neighbour interac- . tion). Several studies shown that speed and spacing feedback mechanisms in au- 1 0 tonomous OV models allow to improve the stability of the homogeneous solution 6 and to avoid jam formation [10, 9, 2, 16, 6]. Similar results are obtained with the 1 intelligentdriver(ID)modelforspecificparametervalues[8,7]. : v i X AntoineTordeux Ju¨lich Supercomputing Centre, Forschungszentrum Ju¨lich, Germany and Computer Simula- r tion for Fire Safety and Pedestrian Traffic, Bergische Universita¨t Wuppertal, Germany, e-mail: a [email protected] SylvainLassarre GRETTIA/COSYS–IFSTTAR,Francee-mail:[email protected] 1 2 AntoineTordeuxandSylvainLassarre Severalvehiclesintheneighbourhoodaretakenintheinteractionforcollective (or cooperative) systems. Many studies show improvements of the stability if the number of predecessors in interaction increases [11, 3, 15, 4]. Comparable results areobtainedwithsymmetricinteraction(interactionwithpredecessorsandfollow- ers,seeforinstance[13,12]).Oppositelytoautonomousmodelsforwhichthevari- ables can be directly measured, cooperative systems require that the vehicles are connectedtocommunicatetheirstates.Thismakesdifficulttheirimplementation. Inthispaper,autonomouslinearOVmodelsandextendedoneswithspeeddiffer- encetermarecomparedtotheircollectiveversionsincludingseveralpredecessorsin interaction.BothextendedandcollectiveOVmodelsdescribesignificantimprove- mentofthestability.Moreprecisely,weobservethatthenumberofpredecessorsin interactioninthecollectivemodelsandthespeeddifferencetermintheautonomous approacheshavesimilarrolesinthedynamics.Thepaperisorganizedasfollow.The linearjamavoidancemodelsareintroducedinsection2.Theresultsofsimulation experiment of a jam are presented in section 3, while the Lyapunov exponents of thedifferentautonomousandcollectivemodelsarecalculatedinsection4.Thesec- tion5givesconclusionandoutlook. 2 Linearjamavoidancemodels Theoptimalvelocitymodelis x¨ (t)= 1(cid:0)V(∆x (t)) x˙ (t)(cid:1), (1) n T n − n with x (t) the position of the vehicle n at time t, ∆x(t)=x (t) x (t) the dis- n n+1 n − tancespacingwithx >x thepredecessorposition(seefigure1),andT >0the n+1 n relaxation(orreaction)time[1].Ajamavoidanceshouldhavestablehomogeneous solution. More precisely it should be locally stable with no oscillation (LSNO) to avoidcollisionandgloballystable(GS),seeforinstance[14,Chapter15].Thecon- ditionsensureacollision-freeconvergenceofthesystemtothehomogeneoussolu- tionforanyinitialcondition.WithOVmodeltheOVmodel,thelinearLSNOand GSconditionsarerespectively: V < 1 and V < 1 . (2) (cid:48) 4T (cid:48) 2T Notethatthefirstconditionimpliesthesecond.Thefullvelocitydifference(FVD) isanextendedOVmodelincludingspeeddifferenceterm[5]: x¨ (t)= 1(cid:0)V(∆x (t)) x˙ (t)(cid:1)+ 1∆x˙ (t). (3) n T1 n − n T2 n ItincludestworelaxationtimesT >0andT >0.ThemodelisthesameastheOV 1 2 model at the limit T ∞. For the FVD model, the LSNO and GS conditions are 2 → respectively: Jamavoidancewithautonomoussystems 3 (cid:16) (cid:17)2 V < 1 1+T1 and V < 1 + 1. (4) (cid:48) 4T1 T2 (cid:48) 2T1 T2 These conditions are simplyV <1/T if T =T =T (the first inequality implies (cid:48) 1 2 the second if T <3T ). Clearly, the speed difference has a stabilization effect on 1 2 thedynamics.TheLSNOandGSconditionsalwaysholdatthelimitT 0. 2 → ∆x =x x n n+1 n − n n+1 n+2 x x x n n+1 n+2 Space Fig.1 Notationsused.xnisthepositionand∆xnisthespacingofthevehiclen. Themodels(1)and(3)areautonomousones:theyaresolelybasedondistance spacing and speed difference with the predecessor. Collective models depend on severalpredecessorsinfront.Generally,collectiveOVmodelshavetheformx¨ (t)= n ∑Kk=1Fk(cid:0)∆xn,k(t),x˙n(t),∆x˙n+k(t),whereKisthenumberofpredecessorstakinginto accountand∆x =x x isthedistancetothevehiclen+k.F representsthe n,k n+k k k − influenceofthevehiclek ontheaccelerationrateoftheconsideredvehicle.Inthe Multi-anticipative(MA)model[11],thisinfluenceis F = αk(cid:0)V(cid:0)∆x (t)/k(cid:1) x˙ (t)(cid:1). (5) k T n,k − n Thevelocitydifferencemulti-anticipative(VDMA)modelincludesspeeddifference terms F =α (cid:104)1(cid:0)V(cid:0)∆x (t)/k(cid:1) x˙ (cid:1)+ 1∆x˙ (t)(cid:105). (6) k k T1 n,k − n T2 n+k Herethepositivecoefficients(αk)aresuchthat∑kαk =1.Theyspecifytheinter- action with the predecessors. In the following we set α =1/K for all k (uniform k interaction)inordertomaximisethestability[11,3].NotethattheMAmodelisthe OVoneandtheVDMAmodelistheFVDoneforK=1,whiletheVDMAmodel istheMAoneatthelimitT ∞.Thetestedmodelsareresumedistable1. 2 → Name Acronym Type Parameter Optimalvelocity OV Autonomous V ,T (cid:48) Fullvelocitydifference FVD Autonomous V ,T,T (cid:48) 1 2 Multi-anticipative MA Collective V ,T,K (cid:48) Velocitydifferencemulti-anticipative VDMA Collective V ,T,T,K (cid:48) 1 2 Table1 Name,acronym,typeandparametersofthetestedmodels. 4 AntoineTordeuxandSylvainLassarre 3 Simulationofajam Inthissection,themodels(1),(3),(5)and(6)aresimulatedwithperiodicbound- ary conditions from jam initial conditions by using explicit Euler schemes with time step 0.001 s. N =20 vehicles are considered with the settings:V =1 s 1 , (cid:48) − T =T =0.25s(fix),andT =2,0.5,0.1s,K=2,4,10veh(tested).Thesettings 1 2 aredefinedsothattheLSNOandGSconditionsoccurforanymodel.Thetrajecto- riesobtainedwithOVandFVDautonomousmodelsarepresentedinfigure2.The convergence speed to the homogeneous solutions increases as T 0. The same 2 → phenomenonoccurswithMAmodelasK ∞,seefigure3.However,thereisno → clearimprovementsofthestabilitywiththeVDMAmodelifT issufficientlysmall 2 (seefigure4). 0 0 5 OVM 5 FVDM 40 40 T2=2 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 0 0 5 5 FVDM FVDM 40 T2=0.5 40 T2=0.1 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 Space(m) Space(m) Fig.2 TrajectorieswiththeOVandFVDmodelsfromjaminitialconfiguration. Thespeedofconvergenceofthesystemtotheuniformsolutioncanbequantified byspacingstandarddeviationsequence(Lyapunovfunction): (cid:113) σ∆x= N1 ∑Nn=1(∆xn−∆x¯n)2 with ∆x¯n= N1 ∑Nn=1∆xn. (7) Inthefigure5,thelogarithmsofthespacingstandarddeviationareplottedaccord- ingtothetimeforthedifferentmodels.Weobservelinearevolution,meaningthat thedeviationtendtozerowithexponentialspeed.Asexpected,theslopeofthelog- Jamavoidancewithautonomoussystems 5 0 0 5 OVM 5 MAM 0 0 K=2 4 4 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 0 0 5 5 MAM MAM 0 K=4 0 K=10 4 4 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 Space(m) Space(m) Fig.3 TrajectorieswiththeOVandMAmodelsfromjaminitialconfiguration. 0 0 5 5 FVDM VDMAM 40 T2=0.1 40 K=2 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 0 0 5 5 VDMAM VDMAM 0 K=4 0 K=10 4 4 ) (s 30 30 e m 0 0 Ti 2 2 0 0 1 1 0 0 -200 -100 0 100 200 -200 -100 0 100 200 Space(m) Space(m) Fig.4 TrajectorieswiththeFVDandVDMAmodelsfromjaminitialconfiguration. 6 AntoineTordeuxandSylvainLassarre arithm(i.e.theconvergencespeed)increasesasT decreaseswiththeautonomous 2 models (see figure 5, top left panel), while the speed depends on the number of predecessorsininteractionK withthecollectiveMAmodel(seefigure5,topright panel).Asweobservedpreviously,thespeeddoesnotchangesignificantlyifK in- creases with VDMA model (see figure 5, bottom left panel). In fact the speeds of convergenceofFVD,MA,andVDMAmodelsareclose(seefigure5,bottomright panel);theyarestronglyfasterthantheconvergencespeedofordinaryOVmodel. Suchresultssuggestthatspeeddifferencetermwiththeautonomousmodelsandthe numberofpredecessorsininteractionwiththecollectiveoneshavesimilarrolesin thedynamics.Theconvergencespeedtothehomogeneoussolutionismaximisedas T 0orasK ∞. 2 → → 4 4 2 2 ) x ∆ 0 0 σ ( g 2 2 o - OVM - OVM l 4 FVDM T2=2 4 MAM K=2 - FVDM T2=0.5 - MAM K=4 6 FVDM T2=0.1 6 MAM K=10 - - 0 10 20 30 40 50 0 10 20 30 40 50 4 4 2 2 ) x ∆ 0 0 σ ( g 2 2 lo 4- FVVDDMMAM TK2==20.1 4- OFVVDMM T2=0.1 - VDMAM K=4 - MAM K=10 6 VDMAM K=10 6 VDMAM K=10 - - 0 10 20 30 40 50 0 10 20 30 40 50 Time(s) Time(s) Fig.5 SequencesofthespacingstandarddeviationlogarithmwithOV,FVD,MAandVDMA models. 4 Lyapunovexponents Thesolutionofthelinearsystemsarelinearcombination(LC)ofexponentialterms (cid:0) (cid:1) x (t)=LC exp(λt),texp(λt) (8) n l l with(λ)theLyapunovexponentsofthesystem(i.e.theeigenvaluesofthesystem l Jacobian matrix). In our stable case, all the exponents have strictly negative real parts,exceptedoneequaltozero.Moreover,wecanexpectthantheconvergenceto thehomogeneoussolutiongetsfasterastheexponentsgotheleftoftheimaginary axis.Withtheoptimalvelocityweinvestigate,theexponentsare: Jamavoidancewithautonomoussystems 7 λl = 12∑Kk=0βkιlk±12(cid:104)(cid:0)∑Kk=0βkιlk(cid:1)2−4∑Kk=1αk(1−ιlk)(cid:105)1/2 (9) with ιl = exp(2iπl/N), l = 1,...N, N being the vehicles number, αk = k1T1VK(cid:48), β = 1 1 and β = 1 for all k =1,...N. The Lyapunov exponents are 0 −T1 − T2 k −KT2 plottedinfigure6forthedifferentmodels.Weobservethattheyconvergetoadou- ble mode pattern as T 0 with the autonomous FVD model, and K ∞ with 2 → → the MA collective model. They remain double mode with the collective VDMA modelasK increases.Suchresultsconfirmqualitativelytheonesobservedbysim- ulation.Thespeeddifferencebehaveinthedynamicsasthenumberofpredecessors ininteraction.Alsoincreasingtheinteractionseemsnotnecessarytomaximisethe stability. 2 OVM 1.5 FVDM T2=2 FVDM T2=0.5 10 FVDM T2=0.1 (λ)l=1-10 -0.50.5 0.01.0 05 -2 -1.5 -1.5 -10 -4 -3 -2 -1 0 -4 -3 -2 -1 0 -7 -5 -3 -1 -20 -10 -5 0 OVM MAM K=2 MAM K=4 MAM K=10 2 1.0 0.4 0.2 )1 (λl0 0.0 0.0 0.0 = -2-1 -1.0 -0.4 -0.2 -4 -3 -2 -1 0 -4 -3 -2 -1 0 -4 -3 -2 -1 0 -4 -3 -2 -1 0 FVDM T2=0.1 VDMAM K=2 VDMAM K=4 VDMAM K=10 10 )5 5 5 5 (λl0 0 0 0 = -10 -5 -5 -5 -20 -10 -5 0 -20 -15 -10 -5 0 -15 -10 -5 0 -15 -10 -5 0 (λ) (λ) (λ) (λ) < l < l < l < l Fig.6 LyapunovexponentsforOV,FVD(toppanels),MA(middlepanels)andVDMA(bottom panels)modelswithN=100. 5 Conclusion TheconvergencestothehomogeneoussolutionoflinearjamavoidanceOVmodels arecompared.WeobservedthatextendingtheOVmodelwithspeeddifferenceterm significantlyimprovesthestability.Inasimilarway,theaddingofneighboursinin- teractiongivesstabilityenhancements.However,increasingtheinteractiondoesnot improvethestabilitywiththeextendedOVmodel.Thissuggeststhatboththenum- berofpredecessorsininteractioninthecollectivemodelsandthespeeddifference termintheautonomousapproachesallowtomaximisetheconvergencespeedtoho- 8 AntoineTordeuxandSylvainLassarre mogeneoussolutions.Also,theconnectionbetweenthevehicles,hardtoimplement, maynotbenecessarytooptimisethestabilityandefficientlyavoidjamformation. Further investigations remain to be carried out to validate this hypothesis. For in- stance,theinfluenceofthegeometry,initialconditionsorvehicledensityhavetobe investigated. The shape of the Lyapunov exponents and their impact on the stabil- ityarenotexplicit.Furthermore,non-linearmodelsmaypresentbetterconvergence speed than the basic linear models we analysed. These subjects will the topic of futureworks. References 1. Bando,M.,Hasebe,K.,Nakayama,A.,Shibata,A.,Sugiyama,Y.:Dynamicalmodeloftraffic congestionandnumericalsimulation. Phys.Rev.E51(2),1035–1042(1995) 2. Davis, L.C.: Effect of adaptative cruise control systems on traffic flow. Phys. Rev. E 69, 066,110(2004) 3. Hasebe,K.,Nakayama,A.,Sugiyama,Y.:Dynamicalmodelofacooperativedrivingsystem forfreewaytraffic. Phys.Rev.E68,026,102(2003) 4. Hu,Y.,Ma,T.,Chen,J.:Anextendedmulti-anticipativedelaymodeloftrafficflow. Commu- nicationsinNonlinearScienceandNumericalSimulation19(9),3128–3135(2014) 5. Jiang,R.,Wu,Q.,Zhu,Z.:Fullvelocitydifferencemodelforacar-followingtheory. Phys. Rev.E64,017,101(2001) 6. Jin,Y.,Hu,H.:Stabilizationoftrafficflowinoptimalvelocitymodelviadelayed-feedback control. CommunNonlinearSciNumerSimul18(4),1027–1034(2013) 7. Kesting,A.,Treiber,M.,Scho¨nhof,M.,Helbing,D.:Adaptivecruisecontroldesignforactive congestionavoidance. Transport.Res.C-Emer.16(6),668–683(2008) 8. Kesting,A.,Treiber,M.,Scho¨nhof,M.,Kranke,F.,Helbing,D.:Jam-avoidingadaptivecruise control (ACC) and its impact on traffic dynamics. In: Traffic and Granular Flow ’05, pp. 633–643(2007) 9. Konishi,K.,Kokame,H.,Hirata,K.:Decentralizeddelayed-feedbackcontrolofanoptimal velocitytrafficmodel. Eur.Phys.J.B15(4),715–722(2000) 10. Konoshi, K., Kokame, H., Hirata, H.: Coupled map car-following model and its delayed- feedbackcontrol. Phys.Rev.E60,4000–4007(1999) 11. Lenz,H.,Wagner,C.,Sollacher,R.:Multi-anticipativecar-followingmodel. Eur.Phys.J.B 7(2),331–335(1999) 12. Monteil,J.,Billot,R.,Sau,J.,ElFaouzi,N.E.:Linearandweaklynonlinearstabilityanalyses ofcooperativecar-followingmodels. IntelligentTransportationSystems,IEEETransactions on15(5),2001–2013(2014) 13. Nakayama,A.,Sugiyama,Y.,Hasebe,K.:Effectoflookingatthecarthatfollowsinanoptimal velocitymodeloftrafficflow. Phys.Rev.E65,016,112(2001) 14. Treiber,M.,Kesting,A.:TrafficFlowDynamics. Springer,Berlin(2013) 15. Wilson,R.,Berg,P.,Hooper,S.,Lunt,G.:Many-neighbourinteractionandnon-localityin trafficmodels. Eur.Phys.J.B39(3),397–408(2004) 16. Zhao,X.,Gao,Z.:Controllingtrafficjamsbyafeedbacksignal. Eur.Phys.J.B43(4),565– 572(2005)