ebook img

Jacaranda Maths Quest Units 1&2 Specialist Mathematics 11 for Queensland PDF

610 Pages·2018·17.414 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Jacaranda Maths Quest Units 1&2 Specialist Mathematics 11 for Queensland

i i “FMPrelims_print” — 2018/9/22 — 7:28 — page i — #1 i i JACARANDA MATHS QUEST UNITS SPECIALIST 11 1& 2 MATHEMATICS FOR QUEENSLAND CATHERINE SMITH | NICK SIMPSON | RAYMOND ROZEN CONTRIBUTING AUTHORS Pauline Holland | Paula Evans | Steven Morris | Margaret Swale i i i i Firstpublished2018by i i “FMPrelims_print” — 2018/9/22 — 7:28 — page ii — #2 i i Firstpublished2018by JohnWiley&SonsAustralia,Ltd 42McDougallStreet,Milton,Qld4064 Typesetin11/14ptTimesLTStd ©JohnWiley&SonsAustralia,Ltd2018 Themoralrightsoftheauthorshavebeenasserted. ISBN:978-0-7303-5720-9 Reproductionandcommunicationforeducationalpurposes TheAustralianCopyrightAct1968(theAct)allowsamaximumofonechapteror10%ofthepagesofthiswork,whicheveristhe greater,tobereproducedand/orcommunicatedbyanyeducationalinstitutionforitseducationalpurposesprovidedthatthe educationalinstitution(orthebodythatadministersit)hasgivenaremunerationnoticetoCopyrightAgencyLimited(CAL). Reproductionandcommunicationforotherpurposes ExceptaspermittedundertheAct(forexample,afairdealingforthepurposesofstudy,research,criticismorreview),nopartofthis bookmaybereproduced,storedinaretrievalsystem,communicatedortransmittedinanyformorbyanymeanswithoutprior writtenpermission.Allinquiriesshouldbemadetothepublisher. Trademarks Jacaranda,theJacPLUSlogo,thelearnON,assessONandstudyONlogos,WileyandtheWileylogo,andanyrelatedtradedressare trademarksorregisteredtrademarksofJohnWiley&SonsInc.and/oritsaffiliatesintheUnitedStates,Australiaandinother countries,andmaynotbeusedwithoutwrittenpermission.Allothertrademarksarethepropertyoftheirrespectiveowners. Frontcoverimage:©antishock/Shutterstock Illustratedbyvariousartists,diacriTechandWileyCompositionServices TypesetinIndiabydiacriTech PrintedinSingaporeby MarkonoPrintMediaPteLtd 10 9 8 7 6 5 4 3 2 1 i i i i i i “FMPrelims_print” — 2018/9/22 — 7:28 — page iii — #3 i i CONTENTS Aboutthisresource................................................................................................................................................................................................. vii AbouteBookPLUSandstudyON....................................................................................................................................................................... x Acknowledgements................................................................................................................................................................................................. xi UNIT 1 COMBINATORICS, VECTORS AND PROOF 1 TOPIC 1 Combinatorics 1 Permutations and combinations 1 1.1 Overview...................................................................................................................................................................................... 1 1.2 Countingtechniques............................................................................................................................................................... 2 1.3 Factorialsandpermutations................................................................................................................................................ 14 1.4 Permutationswithrestrictions............................................................................................................................................. 21 1.5 Combinations............................................................................................................................................................................. 29 1.6 Applicationsofpermutationsandcombinations......................................................................................................... 38 1.7 Pascal’striangleandthepigeon-holeprinciple........................................................................................................... 45 1.8 Review:exampractice........................................................................................................................................................... 52 Answers................................................................................................................................................................................................... 54 REVISION UNIT 1 Combinatorics, vectors and proof TOPIC 1 Combinatorics ........................................................................................................... 57 TOPIC 2 Vectors in the plane 2 Vectors in the plane 58 2.1 Overview...................................................................................................................................................................................... 58 2.2 Vectorsandscalars................................................................................................................................................................. 59 2.3 Positionvectorsintheplane............................................................................................................................................... 67 2.4 Scalarmultiplicationofvectors.......................................................................................................................................... 77 2.5 Thescalar(dot)product......................................................................................................................................................... 81 2.6 Theprojectionofvectors—scalarandvectorresolutes........................................................................................ 88 2.7 Review:exampractice........................................................................................................................................................... 94 Answers................................................................................................................................................................................................... 97 3 Applications of vectors in the plane 100 3.1 Overview......................................................................................................................................................................................100 3.2 Displacementandvelocity....................................................................................................................................................101 3.3 Forceandthetriangleofforces..........................................................................................................................................107 3.4 Forceandthestateofequilibrium.....................................................................................................................................116 3.5 Relativevelocity........................................................................................................................................................................127 3.6 Review:exampractice...........................................................................................................................................................131 Answers...................................................................................................................................................................................................134 i i i i i i “FMPrelims_TOC_print” — 2018/9/28 — 5:23 — page iv — #2 i i rfooter REVISION UNIT 1 Combinatorics, vectors and proof TOPIC 2 Vectors in the plane ................................................................................................136 PRACTICE ASSESSMENT 1 Problem solving and modelling task 137 .............................................................................. TOPIC 3 Introduction to proof 4 Introduction to proof 140 4.1 Overview......................................................................................................................................................................................140 4.2 Numbersystemsandwritingpropositions....................................................................................................................141 4.3 DirectproofsusingEuclideangeometry.........................................................................................................................158 4.4 Indirectmethodsofproof......................................................................................................................................................166 4.5 Proofswithrationalandirrationalnumbers...................................................................................................................170 4.6 Review:exampractice...........................................................................................................................................................176 Answers...................................................................................................................................................................................................179 5 Circle geometry 181 5.1 Overview......................................................................................................................................................................................181 5.2 Reviewofcongruenttriangletests....................................................................................................................................182 5.3 Circleproperties1—anglesinacircleandchords...................................................................................................184 5.4 Circleproperties2—tangents,secantsandsegments..........................................................................................194 5.5 Circleproperties3—cyclicquadrilaterals....................................................................................................................202 5.6 Geometricproofsusingvectors.........................................................................................................................................208 5.7 Review:exampractice...........................................................................................................................................................217 Answers...................................................................................................................................................................................................220 REVISION UNIT 1 Combinatorics, vectors and proof TOPIC 3 Introduction to proof ..............................................................................................221 PRACTICE ASSESSMENT 2 Unit 1 examination 222 ................................................................................................................... UNIT 2 COMPLEX NUMBERS, TRIGONOMETRY, FUNCTIONS AND MATRICES 227 TOPIC 1 Complex numbers 1 6 Complex numbers 227 6.1 Overview......................................................................................................................................................................................227 6.2 Introductiontocomplexnumbers.....................................................................................................................................228 iv CONTENTS i i i i i i “FMPrelims_TOC_print” — 2018/9/22 — 10:36 — page v — #1 i i rfooter 6.3 Basicoperationsusingcomplexnumbers.....................................................................................................................233 6.4 Complexconjugatesanddivisionofcomplexnumbers..........................................................................................238 6.5 Thecomplexplane(theArgandplane)............................................................................................................................244 6.6 Complexnumbersinpolarform.........................................................................................................................................252 6.7 Basicoperationsoncomplexnumbersinpolarform................................................................................................263 6.8 Rootsofequations...................................................................................................................................................................272 6.9 Review:exampractice...........................................................................................................................................................276 Answers...................................................................................................................................................................................................278 REVISION UNIT 2 Complex numbers, trigonometry, functions and matrices TOPIC 1 Complex numbers 1 ...............................................................................................284 TOPIC 2 Trigonometry and functions 7 Sketching graphs 285 7.1 Overview......................................................................................................................................................................................285 7.2 Sketchinggraphsofy=|f(x)|andy=f(|x|)fromy=f(x)...................................................................................286 7.3 Sketchinggraphsofreciprocalfunctions.......................................................................................................................295 7.4 Sketchinggraphsofrationalfunctions............................................................................................................................305 7.5 Review:exampractice...........................................................................................................................................................325 Answers...................................................................................................................................................................................................327 8 Trigonometric functions 345 8.1 Overview......................................................................................................................................................................................345 8.2 Reviewoftrigonometry..........................................................................................................................................................346 8.3 Solvingtrigonometricequations........................................................................................................................................369 8.4 Thetangentfunction...............................................................................................................................................................379 8.5 Thereciprocalfunctions........................................................................................................................................................389 8.6 Modellingperiodicfunctions...............................................................................................................................................404 8.7 Review:exampractice...........................................................................................................................................................414 Answers...................................................................................................................................................................................................417 9 Trigonometric identities 436 9.1 Overview......................................................................................................................................................................................436 9.2 Pythagoreanidentities............................................................................................................................................................437 9.3 Compoundangleformulas...................................................................................................................................................447 9.4 Multipleangleformulas..........................................................................................................................................................455 9.5 Product–sumidentities..........................................................................................................................................................465 9.6 Convertacos(x)+b sin(x)toR cos(x±𝛼)orR sin(x±𝛼)..................................................................................472 9.7 Review:exampractice...........................................................................................................................................................478 Answers...................................................................................................................................................................................................480 CONTENTS v i i i i i i “FMPrelims_TOC_print” — 2018/9/22 — 10:36 — page vi — #2 i i REVISION UNIT 2 Complex numbers, trigonometry, functions and matrices TOPIC 2 Trigonometry and functions ................................................................................485 TOPIC 3 Matrices 10 Matrix arithmetic 486 10.1 Overview......................................................................................................................................................................................486 10.2 Addition,subtractionandscalarmultiplicationofmatrices....................................................................................487 10.3 Matrixmultiplication................................................................................................................................................................495 10.4 Determinantsandinverses...................................................................................................................................................502 10.5 Matrixequationsandsolving2×2linearequations..................................................................................................511 10.6 Review:exampractice...........................................................................................................................................................520 Answers.....................................................................................................................................................................................................523 11 Matrix transformations 527 11.1 Overview......................................................................................................................................................................................527 11.2 Translations.................................................................................................................................................................................528 11.3 Reflectionsandrotations......................................................................................................................................................535 11.4 Dilations........................................................................................................................................................................................549 11.5 Combinationsoftransformations......................................................................................................................................555 11.6 Review:exampractice...........................................................................................................................................................564 Answers.....................................................................................................................................................................................................567 REVISION UNIT 2 Complex numbers, trigonometry, functions and matrices TOPIC 3 Matrices ........................................................................................................................570 PRACTICE ASSESSMENT 3 Unit 2 examination 571 ................................................................................................................... PRACTICE ASSESSMENT 4 Units 1 & 2 examination 575 ........................................................................................................ Glossary...................................................................................................................................................................................................................... 583 Index............................................................................................................................................................................................................................. 593 vi CONTENTS i i i i i i “FMPrelims_TOC_print” — 2018/9/22 — 10:36 — page vii — #3 i i ABOUT THIS RESOURCE JacarandaMathsQuest11SpecialistMathematicsUnits1&2forQueenslandisexpertlytailoredtocomprehensivelyaddressthe intentandstructureofthenewsyllabus.TheJacarandaMathsQuestforQueenslandseriesprovideseasy-to-followtextandis supportedbyabankofresourcesforbothteachersandstudents.AtJacarandawebelievethateverystudentshouldexperience successandbuildconfidence,whilethosewhowanttobechallengedaresupportedastheyprogresstomoredifficultconceptsand questions. Preparing students for exam success (cid:31) (cid:31) “c01PermutationsAndCombinations”—2018/6/28—6:54—page1—#1 (cid:31) (cid:31)2.TtNwhhoieletlesagc:nriTveseehwneae.crdaaelpccipumelaaatrlosron 3deccisim𝜋𝜋4al=pl2a.c1e2s1)+2.121i(to3 2.Tthheesacnresewne.rappearson 3cis𝜋𝜋4=3√22+3√22i answer,notanexact answer. CHAPTER 1 Each subtopic Chapter openers place mathematics Permutationsandcombinations CUomnitpsle1x&nu2mbersArineap4olarforSmeqSuuemnmcear1yscreCeonnacnedpptr5acticequestions concludes with in real‑world carefully graded contexts to drive 1.1Overview Exercise6.6Complexnumbersinpolarform Technology free and engagement. (cid:31) (cid:31) 1Ebtchoev.efue1onrer.txe“i1snpcingye0Icro4tnieeueIctnnyhrsctontoreaouirqddotuewufuedcescctrosiaeotcurihennaooTtbionsonumlgiP,l.taryoluTloophufcoe_hnshpieilarndivs,naeitmefi”hvpeael—lddne2018/9/20—8:43—page169—#30 (cid:31) (cid:31)TIenxe12pc..thrhbaeenWs..fosEoRCel2lod1ealogplacwFyrsueiiaflnsnaredgectneoetqthmtuzheeme=mseotio4xnodan+mucstl8uugdilsitivoisopetnfalaenaerncaogecfA(ho𝜋𝜋zr)fo.gofzarntfhrAdoerdmgfioa(tlgzhlor)eawcmooirnr.irgge.icnt.t(oD3odneoctimusaelypolaucrecsawlchuelaretotrh.)eanglecannotbeeasily Tqeucehsntioolnosg.y active EceqaCauFssatwsyccuotttooxsnnounnRuvoiuuuot auddrennfieEhmStdddarlm r cc s i Etlmi—Cyyeyycepemtleo,u OO ixuv ovpoplca ir edalplreeNNiimehcunrtesaxmel,arlvcamsev . r yspcc—ai.fi ep ins a csfp lthltwseatltciiimelo ocreaotasxmolail uwenrptpe sa iuc htl di .sitiotslratc ei ie ia tfirc rhdo ,ree, e rd (cid:31)(cid:31)(cid:31)(cid:31) TEe12345678x56c ..........IhnebbdbbaIFfWIAnUfDaacaaUdTAadnnofoWWWs..........errnstsi12iosllohoprg5rodiubHcmiabtpfateEEE1ASso321ctisleleAAIIIIIIWPnnruu11toeithinsfemoo...lr111feseilaiupihffffffstcaptomfigelarsmsrorapiv678elaewwtHIhllbdiIIIacFwLemhmhuaa.vegttioolnyatAxnnsir.1nnctllffngolep11111111r....onne..povm,eutyueipaaEymtwfante27viiioO∠glhblannftPpy........th&qleiornn,iieDDWDeodembICUongtvsrh∠∠tml12345678gelyecbAowtlotsstoyAeehBeuu=dtiesn12eoubitggeleaethpeieheeetaif2AAofi2oniahsontjfbgshl.iarRitmmBacnttttewgaa22,faoyrycsehOCFPCAPRjfilaeld=sro.eeae4ucnmhOheanEuynllscoelimeacRiiy1vnbgiDdeaBmitcaorrtrnoiepaNyeweoontosvcmmestaebbeFoomucmmmmcDrisneea9ne0ctytctup.ordarsribvbp,tesgtumsplecnynlwshiieea=oumlknI,ntrigs,e“i4sftiitaciiiiet0c.tsrrsruufdlinoaeN?aploatb.beloycnnnnstidetirraaccausevMcbonnj,tiaoyhstcqaoiui,enttrrn3?llueeeewhesss0erAemsede12ovptuiaoIsgocmitielJGeoltattaeaiotet3n2iiunn’itas5netgrtnoahIcru.∠∠∠rsiifrttu:cas33esemounonc,ootlwhmptcs°ogbiaCf.eppeefaantilctlitretel’toepottoOrss,CAOhPconnteontstorffhiSsofimtektouipraeimqohiditllerabpcnotxhrtdiisrahnruronstlOWaoimeeEBoediandaeufnahnsruttoarucaEiaaeiaeDelytntwiooyt3tpsssiunahhnenneaenBcncliln,DDapgottiisidonmrnd.asasooonefhcenceQetixd12ssotoasdsiNhsdsnheetttoee.oy.wpgcitf4niG..eiterseuanurtffeiordeawut.:h44nnatvsndtepmfcdn,taiilrCoUpoS4cr=edAhPpalffeermdlen.scuioiser35peatsifaitrastiqwieerboogionntetuttxa(eewisamrsEnnahoaotneehhealtei,,ecfpmuob1hramaecyrrfms2ott1dsravtumeiSacfrmxotnrseoobbteoEmwoNrrmmetteaeatscxrel6nartevmm,eoe0eteamhhmie−elat..dlen12auatpfsmdesaPisroatplhctuv2nsl5mCrcrac.reoqhidssaeeunmtsit55alrn∠Eeraasamtdaytieib3d62opeloaotwtesoeu’tbnAasyunnhtwuemogiapEturv,n_oFrshstlAesac–eymnncfttmmyacptbiie2eicyxt,agAaevmippcbcimilFntpmnaanoi1zCittlehotmntotlliiorw+sraatlOb‘elti+thcgeipbosleye=tenairtiriei6nehniaosDynpccoIlnnnbmoions.bioe12ioioitnieiBmtisnaas’eaxbf6sfgmgr6aunreentgntin1s-nng.speooes1r66t”eynvycsEto1ei,le2nhpnprlnatAoagrsetfsereo.on1ophseothat?tooauntt.a)tgootrstlya—irfAnt’rnrpohvaoonoemlrfAonshennrdIsu>ertlAwlaioormetafaocatdataefeeheteaceda-Rs∈rhendsd.rbpmbnetcthanisrrDnn12oi1e2hadfeeihcptectm.cd7ctijtispDaiielsstrloopgdseg0eush77dC0ecosndaZoilausrNooppfoslcoolrrn1opegrtil,ncielet.etcmsatpososmsiiOanvuorhennTi8rteid+dwAuthiiBtrimdrttCttmoornwrornpikoss/aeCct---ctohoaE.abumaicc;9egbeorcvarsbnosiehelpcoreipe/irefiena12tysejeinee1fnnspseiObOnamdetk8uhp,unngoss,,mpcfi‘a988pcdcpsrefs.ct?ne=BolB5dentsasestfntoeaiohtieii.rtnhpiadhdtra—dilcn.cadaoesss4vpeiptett∈altqDga∠l∈ea0eryconefep−ihiii?esratolumytotcn.sfrihCneoero12enii2nnedoNux9snvoeNIimOmoi.1ep99tis.dotretotlrnaneht:s.nhiDtleo.i‘ft0afFiscst.osotaoeteIti>du1ystyphDashftwrntoiaoiCs.C,irhamlcefsten—u√fexa1230Ttyaoniiaeccpsrofno,bi000ts.lsfoosouhna’oeh=aegnsypqmBntunlfiteetseulbhnahhrutlyo,irp‘e∈0gcmmr-eeteeoeTlalfisreieis≤dkbfivoorhcunephsmsaZPseu2reeoapnqeterL,si,1.tlaiapeinnoeuriednUo7ctstcoeextschahC+udeandnS2ordnaitw—t.eetgaaHemoitmimaiotmintvbnrdomohA∠thonoebpbeopwinneP#Caa2nce,loeoiCr3trlTntwtoDnxshetmexnnifr7wsEHsocp:awy,A’e2yeit+Raa,Atdti.h.otttionjfii−∈llhhwAiPanuav1rf4gecedefirTtfteiopiylyZceeireelEdwrPlnis2soisgrulBknR≠+tenuedasosoers=rois.nmt.tismcft,r4uepoebw7itoucoagbrlkcasu1m.dsrtc’oPloonfeetIa.onh.imfrtmsLlraotctitoououhrUeoonsobiprn.itenSomcf.disiu‘sonedAluIitwatabusnaannucentsittaftrssidnioimfsdtoytoaicuctrronesaoeiintohmvrecilatmaisooesstflpnehbn.ltpooaieseandxrwps(cid:31),aoariicmtiofpvnicsfohfreaghnoiaorrtsa1bieehfr(cid:31)e6acnit(cid:31)5d1ss--9t(cid:31)(cid:31)(cid:31) (cid:31)(cid:31)(cid:31)(cid:31) (cid:31)(cid:31) TIMCf(cid:31)(cid:31)afhocCwuF*PSUTUTintoosQooDcRTMWWWWsC4F*S*E*C*TSnlnesropAAAARptuoluhopivocreuroaiitwtieeeeiiissss45673•••••ebtheitslaccdranlepssirmteeeee1Aassssveoecme.....maelsfooekkkku:seeueen1letcisgocfedlfmtrnmuohCssuitssssCinr:tpabbbboadiaaaacckrtiis1234toicoiloheaiirsssslo4lmCaWutiseremssoa.............d.apcnenepemmmmtn(snTrian.oiamotio(eeEatCCpianredlh11111111endieteaCiSCIIIEEIoonvaisafeeeezzmoni)nHIstud2ceus8901234675isbhnrffffgoosqWsCvcnnnnnent.Ccrcrruip)h2vv..........tstaotaabei===eaenommseiittttneuuldaerttaatadEhmttufocaatllggiasCDCDvt1hdfCImTArtAattWaoaAaip1rttAhhBBAArAtrazoooonpEeholncelcciMMMhhhhnhh2,,nrfeadrppschwtsvllwIpraeinr0Miiutvihca........−bbbbeet−5oabh.raemrbpotesaeeeceehceuu3uuodCCCfiminco−nneîllorphrsci0Hhbbneanleteempeuajjjjeiglualnltaruibah5coeeeeeyDDDDttN~roaaAaecraeillepsswltoai0c“bp3eccvim+“rgzeaeelo,txxlhhinlosolrtatnnpivllaauelOOihauĵeccccanclcurbarlttSOGIttebco.∈heefw,sraooceeoiiiiopnNaeeeWhiwiieifarhdeemfrmrrlyleeg−i/y3ttttttSdcssssiscee−lcfu=0nrsttosiiTmpleaoinpgastteiiii0hnneoapfit1mmctdeeean..uptppesln2evvvv,vvnat~siesvve3dohtneaflthaeeepersĵhpthgrrytgetnrltt&RimdtmttlllSoor5eeeee∈lvh62eeevtftoetapcoAni.faabnrsepfnh“oaaabihhn6otta.eaoirr3asrppeoesseccteossseanGiuvwrgnShuherrPdthheaAreCicccct+o1eerl3erwxrstae=oiipiupoeeiEnenttrthbfhtclillmasaenakagosdpneeee3mr6nscoom114nm5,Riih+eeirtte12ceazpr,eeeffasesaraeirhtrllvlcvoetm,mmhirsnrlae√eoa7vtsrrn,,,d°ie2eoeaaîeloslSxtt1nhltScmiiqcexxae,eiete+renieveueoofil.ieaalm°dchmtd265îtlqt+n22aprdlrriueeeesotonsvc2airasdclshtlmillhliv2OueWaehsceosota,dyrrsmS,+teeoveg,c~~nnnaauoslessatennoggf8niitemplnoettartorymdoaeeyetoanrnfpeh5mem1eowtttteocoiaaoaart°yorn.tbea.uuwra++ei,,,rAsiphpivz3oMAhcpluaaprtsbioet1acĵtteErnxvolisereieczgbocm,iIoeufg~vsvtbnoatcĵmminer.ooriiuesnntdrm1ofdnl.hwrinfokttwa33p2avc=Lantmorieeasfooestittgaaneni=sornmuygoatxog5tffs,ehsahinrîmEth~~eeeibboilllnoBmtainbbphirnnf,iaffnOisxtmnoortriAniiufuooslmMWM47542Tbe.etfn:eatNekenictrqkpmmnttnetdoonlsr..t/f−ssoriieegccneNduorn~hnn0mahvehhdy4eftttoxhmsaeussuovltuocmp.zwrciinoariiP+aVftshha4rr,m~sdpuvectssz..1tttoiaaitertheetmt1aoottdppfduaaht=etrolss/nyydzethîeufheT−hceobeuoleeinncF=iotfhlmyockazepsfroĵuraaaois,,xndernt3.(eeee+ecerkzurntettcrdtmer+s.ianruu=anrro1psesdpr2toraoffeu.leinitoHtenrrnsttmaet1taapxed6c3Ottooos,lolb1tedohaoîmcriayripntiidĵaendaihdhiaall_nbdoptebo=ahriposurr,−n==rraeaasPili~lif3ll,−.dnannrereiepecc1seml.grobeerpaantaweSlrstaowtreelnnrie+i,22egelIiwrheearhrspesolle,bAznlannteslappnca3einau,d,raaSt−aeaesrî0l,sigg−3ecnnnoottwa4dcnlirtgteeansocaeĵceTlptecegaoopt:+r0eohmoi_tmantmdbuuovll.racdeahtdtnoghai3”ctachrpe2tg−othdpnieeolroabiyitfketthpge.ertdc,5liaintfnasit2ulnewhhnfhhaeogbeeepmbetne=vgcreafe—ouosp+rlueds+uroslĵegttdePioweearahn1oa.dhs4scea.o,ekamewseuwhhhpipna6oramcaivtorltrezcd5~ienbyinvppnxytmnr=siaelhmtnsrin0ins3o0waaerohfaiar5eMf,e0zthe2it,--t.zznhaorrtndlxpt+at°idlon=odetaae)ttt/cofiawllesi0°−r.igiCinlvmf”aehdtuErhalse+olarexx,ineta−n==a,td1breAlavahtHtegiiwvw_e1niweki..ctnl−dotdol,hnhiigased8ok1ssvrwcclc.osiuauzplrssg0.eeAierit2eeemfiennw−h/i—eqneepotvdt3lif8ngn2zrtw√√∈9th,mcA−mncoywnffaulgti.cela+pNshienîh4r0ir/Nflble==too+nncreeaa6iev4atgtcelwa===eatnir+e-oiî0osw=rt𝜃𝜃orhohet?tadoaas53olrrt0adt.sudhRngho”fb−gcf3lgii°,eatit.oanmm—tcmmeios°5W2vtĵ4−q.neernfWedtatrtitfi=5ae2h:a,flsW.inubw:le−hhnsl−+e—Wĵsskkaio0v~eedahv0yenaeen(hlme4rfGntedmyrivaotnsy.+o-eawia07toob1(dnw−h4eddertt(3pdhsmotatyebh,n√baa2nhr:edlrlghgnd+aeh8al4xvemefjnfhh2leauecfidgnosll1+aeatiiu5obb+ta+loe4ndreyinbee0aeans/onasNnoeannltseee.xnno2fr9hirrriyymdao11r+itnrgtti.id+asetvs:doiofein,.n1—m.tas:uiemmr18hnld/p,Dfiuae2oifnhipeFdk/rtti2g20Sr/ezogeotndsct2sdoousohh9nemou3eiimul°ebcb3etvre0ainerpriml.acit/wioeerfgnDrtn.isdadetee2mda<Roeiitnihro)=ioildvrn)g0om.aoTstsdpwsdy2ccemett—reerer?nrer𝜃𝜃qhĵeha0.soooamedlharS—i7ldevylbu0rus+<e1nellcimmtyei,oetpi0nn3tlhreeayolc+nlbtrduloet7a9gl1durrtppze2twthenicpsybs0hgaeeane60tslltod5rP—uro°eecibgeenae:asnvest:twRrcri0avofxxhphvy5ltdgmeire2rn0Aotenaeaael#mesoeih4al0dyniCnnletnt1n)epmnrt1eus,n—hthdhciTctpuu9edseovertfdwiek—oIoaahatvlmmoesCavtioaevnnzcheanrn1mlfpcidnifElexdl4nee.o.bb.tfmIIanomtiu1oylnnhrrws.pgAtspeerad,Cao.e=pednmdaizzeaBoStilirrrmwcg(cwaisnHeraiuezvssserStgvoiespt==gniei19ingixAamsiacEoeidtt+irssduul3hbittflenPnOtSulfdeoa+ihu2aeniob−(osooaoSpnTaxr==nwt.a2rucwnrfebhlnepMse2rEc4—Iil0vae/vmrnfi,cyyteao6+teR3−gnE41ire2hlh+îfwucp4ogarNar40b2oepsoaat#o6+fmiil1iourTbtdrnefn)3arnsa7ug8tr+)raood2dr3q—1rbna.p,6i3mhnoawCsttĵuieked04hfi5tsuognur.ae.tisaalmhss1osritt#nfah=n3qetcp.u8dn7aeluoleuidar=amxzinsneur2eien+iepuaagtuaslsmumbenac,+enxbidnogee,iebvdmmntutrsaisht,t,,emslheuni.e2uoat(cid:31)6(cid:31)(cid:31)stne1 (cid:31)(cid:31)(cid:31) (cid:31)CaaMKopcakFTpmgfafirwpn(cid:31)ooewnnnronufrrure(cid:31)hocsorre aoaododaimcl onalrdpl (cid:31)drcstvcuylkw ao eza pyeoatitapeecd edlaugialswltil nccllsoreegidqele’ndcnnieseestssmddon druohieieh des v tt.grea—a aeqn isep oas ikfvaEtdosernro tun lxliee—ans euase x n drresoruwd nd teentsee — tsiein Qtt osvoe d miatiti tolrnsiniasnCi hsoisaspmmeeec,si Ana eorldvth aeyesatstnAa ei r n s ro yl ore,etns fs t. . (cid:31) (cid:31) 132JacarandaMathsQuest11SpecialistMathematicsUnits1&2forQueensland (cid:31) (cid:31) examples in the (cid:31) (cid:31) CHAPTER5Circlegeometry217 (cid:31) (cid:31) (cid:31)WIfOzR=K3E+D5Ei,XwAM=P4L−E27iandv=6+10i,evaluate: (cid:31) Think/Write format Features of th(cid:31) e Maths Quest series(cid:31) a.3z+w b.2z−v c.4z−3w+2v. provide guidance THINK WRITE (cid:31) (cid:31) “c10MatrixArithmetic_print”—2018/9/8—14:58—page494—#9 (cid:31) (cid:31) a.12..CUfoasrlecztuahlneadtreuw3le.zf+orwadbdyisnugbcsotimtuptilnegxvalues a.3z+w===((399(3+++41)55+ii))++(15((44−−−222)iii)) aqnude satrioen lsin.ked to numbers. =13+13i(or13(1+i)) Questions and topics 9.IfA=[−1342],B=[43−52]andO=[0000],determinethematrixCgiventhefollowing. b.1.Cfoarlczualnadtev2.z−vbysubstitutingvalues b.2z−v=2(3+5i)−(6+10i) aloaornfwe dc eso crem otqonpu cleheenixgpcithteyse;d rai dflrereeov amesls 1101..aGaImf..iaAvt33erAA=inx+t=[Che2xCCifm−−tah−2te2r3xBBifc]o+elaslon4AwdI==iBng[O=a−[p13p2yly.42−]3y,]B,d=et[er43min−e52th]e,bbvO..al=C4uAe[+s−00o3fCAx00−+a]n23daBBny−d=gI2iOv=Ie=n[tO10hef01ol]lo,wdeitnegr.minethe c.122...vUnCUruauassllmeleeucebtttuhhoseleearfsstoirae.murd4lzdpez,iltif−wifooyr3na.snwrudub+lvter.2aavcntbdioytnhseuobfsusctboittmuratpicnlteigxon c.4z−3w===+0062++v01===i0i411−(223++6+−42560i1ii)0−−i31(24+−62ii+)+122(+62+0i10i) Sedxeeamlemcoptnelsedts rwa toer ktheed lacasotnallguordidewc fqeauinnulllltgyey ts deogteiv roaaevncdersyhelo idaepr,ve eed 111234...bbaIaaaf......DaGFFFACiiiij=innn+v==ddde[BnDtttihhh−A+=eee+13=222j[E+×××79[421222−f4221mmm−o]raaa52ttti34rrr]=iiixxx]anjBAAw.driwwEifthheb=oo1d1sso[ee=w21eenll3ee,tmmh−beee421nn2vttass=l−aau−rre43ees2]aa,o,iifjjdba==e21t1bbe12i=..r,i+maB3−−ij1Dn32−jfe,o+faArotahnr2i2e=d1Cj<ma≠b[=nj2a,−−di2ta4ra14a=iiEnjx2d=25C.−.aigi16j−i]=vje+nijtf1hoefrofjro=ill>oi.wjinangd. cT.I1|.TRsnNPVpzOcl3HitourrnAeoo=n+eIemmepNrtsRseaee53sspabK:,aiCtsleEC+hTtte:rhaNtetTsheel5hceTRcwniitu.sohEsLtlmayesyaR,ntmtppeetodhetpnlbroeevt‘otpxrn.zsolyat’piogarrceenea,sdns WRITE Cc.A1S.RtwNfSPtEOc3IhhOooHrXeon+eeueamptn|InsEnecaeF5Tspdd:otaiTRtlHytmTotebvhpuItt0.hyeNpseehn.etliKps-ot‘esMhtZsrrxoyeese’rastnmeeezasturpninbb=imntxdoutrgoblyt3spteicosrl+rrietcnsnoesa,5eersnenia.b,se:WRITE Fsucoasreellcue uot iflofua nntlloosyr ns wa‑.CorerA kSe d success. T1e5c.hTnhoelotrgayceacotfivaematrixAdenotedbytr(A)isequaltothesumofleadingdiagonalelements.For2×2 btheef𝜋𝜋oubnudttboyn.pressing provided, enabling Agmisln oap sterhsoxeavtmeridyna esotdiifvc eian l pterrinmt s 16.bmIBWacf...a=AhCIItiarss.=i[atcttlirrt43ecsr⎡⎢⎢⎣((su(A2t,11lAhAai824−e+f)te+52AoBtr11]h3=d+602eBear[nfC−odoaa1)lf412lC840=o11AC⎤⎥⎥⎦w=B)tari?aa=nn[(12gAd22152.)]Bt+rt(=−hAtrei42)i⎡⎢⎢⎣n.(+B]1tt)245rr3(+(⎤⎥⎥⎦tABr,t)()ruB=(s)Ce−a)y1?o14ut+rr(acCa2)2lc.?uCloatnosridtioeiir.ctathrlec(uCflo)altleowAi×ngBm.atrices:A=[−2134], (cid:31) (cid:31)(cid:31) (cid:31) 234JacaECr1xanehadrcaaRiTSsMp===eat{{{1ht333.s2e000,,,Q—r“333uc532e0,,,C11s433Pto064e1u,,,r—1433mn596Stu},,itpna43et28giPco,,int44aese50lAic},snhr4td2MnmC,ia4oqt4muhu}beeimsntaaattioictnsis_oUWnnSit_sps1rin&ta”C2H—nfoArdP2QT0u1Ee8cRe/7no1/s1l2Pamen—rdmbu4t:a5it7nio—nasatpnaigdoecon1m—sbin#a1tions•EXERCISE1.2 1 (cid:31) (cid:31)swwihlne(cid:31)tehha utlreepdh(cid:31)nrt eeheain n etctg trlhtsa hiea ssteytos c hpr ngorooieetomiientcm dteah loe—i.ot lf,pr afenadtu arse ain h tohvee r‑over RRSR∩∩∩∩TSST∩===T{{{323=040,,,{43435000},}}42} Answers are provided 494JacarandaMathsQuest11SpecialistMathematicsUnits1&2forQueensland R S at the end of each eBookPLUS. (cid:31) (cid:31) (cid:31) (cid:31) 3234384440 433206 453339 cahnadp otefflri nine tPhDe Fp.rint 35 T ABOUT THIS RESOURCE vii i i i i i i “FMPrelims_TOC_print” — 2018/9/22 — 10:36 — page viii — #4 i i eBookPLUS features 2.TtNhhoeetesac:nrTesehwnee.craalpcpuelaatrosron d3ecciism𝜋𝜋4al=pl2a.c1e2s1)+2.121i(to3 2.Tthheesacnresewne.rappearson 3cis𝜋𝜋4=3√22+3√22i willgiveadecimal answer,notanexact Fully worked solutions for every question Concept summary links to studyON for answer. study, revision and exam practice Units1&2 Area4 Sequence1 Concept5 ComplexnumbersinpolarformSummaryscreenandpracticequestions Digital documents: downloadable SkillSHEETS to support skill development Exercise6.6Complexnumbersinpolarform and SpreadSHEETS to explore Technologyfree mathematical relationships and concepts Ienx1p.thrbaees..fsoRCeldealoplacwrsueialsnaegctneoqtmtuzheme=seoti4xnoan+mcst8ugdilitivoispetnalaenarncogefA(o𝜋𝜋zr)f.gozarnfrAdordmgia(tgzhr)eacmoorr.irgeicnt.t(oD3odneoctimusaelypolaucrecsawlchuelaretotrh.)eanglecannotbeeasily 2.WE21Findthemodulusofeachofthefollowing. a.z=5+12i b.z= 5−2i c.z=−4+7i Chapter summaries in downloadable format 3.diW..Ez2r2=epI−rfe3zse−=nt63ei+acih,owf=the4f−ol3loiwanindgeu.o=nza−=n2√√A+r3g5a+intdh√edn2ia:igram f.z=(2+i)2 to assist in study and exam preparation 4.aii..anW.cuaEmzl2cb3−uelrSwahpteolawtnheet.hmeapbgo.niniuttu+sdzez1i=ne−a3ch+cc0a.si,ew.z2−=u2+5i,zd3.=w7++z5iandz4e.=z9++w0−iounthefc.omz2plex b.Calculatetheareaoftheshapeformedwhenthefourpointsareconnectedbystraightlinesegments A downloadable PDF of the entire chapter 5.ba..iSCnhatolhcweulotahrtedeeptrhoezi1nattrsoezaz2=ofto−th1ze3+ttroi3aizn,4gu.le=p3roadnudcewd=by3jo+in1i2nigotnhethtehrceoemppolienxtsnwumithbesrtrpaliagnhet.linesegments. of the print text 6.a.tIhfethceocmopmlepxlenxunmubmebrevr.su=3−4i,u,vandvformasquarewithanareaof64squareunits,evaluate b.Iefvathlueactoemthpelecxomnupmlebxenrsumub=er−v2.+5i,u,vandvformarectanglewithanareaof60squareunits, Interactivities and video eLessons placed 7.ac..oIEvfrv=iaag,li−unbac,Ote−c.t∈bhieRaa+nr,deeavv.oafluthateettrhiaenagrleeathoaftthisefroercmtaendgbleyftohremceodmbpyletxhencuommbpelresxun=um4b+er3siuan=daiu+abnid,uth,e at the point of learning to enhance b.EorviagliunaOte.theareaofthetrianglethatisformedbythecomplexnumbersu=12+5iandiuandthe understanding and correct common c.Iafnad,thbe∈orRig+i,nevOa.luatetheareaofthetrianglethatisformedbythecomplexnumbersu=a+bi,iu misconceptions CHAPTER6Complexnumbers261 (cid:31) (cid:31) In the Prelims section of (cid:31) (cid:31) your eBooKPLUS A downloadable PDF of the entire solutions manual, containing worked solutions for every question in the text A set of four practice assessments: a problem solving and modelling task and three examination‑style assessments FREE copies of the Maths Quest Manual for the TI‑Nspire CAS calculator and the Maths Quest Manual for the Casio Classpad II calculator A downloadable PDF of the entire print text Additional resources for teachers available in the eGuidePLUS In the Resources tab of every chapter there are two topic tests in downloadable, customisable Word format with worked solutions. In the Prelims section of the eGuidePLUS Work programs are provided to assist with classroom planning. Practice assessments: in addition to the four provided in the eBookPLUS, teachers have access to a further four quarantined assessments. Modelled on QCAA guidelines, the problem solving and modelling tasks are provided with exemplary responses while the examination‑style assessments include annotated worked solutions. They are downloadable in Word format to allow teachers to customise as they need. viii ABOUT THIS RESOURCE i i i i i i “FMPrelims_print” — 2018/8/21 — 16:38 — page v — #5 i i studyON — an invaluable exam preparation tool studyON provides a complete study solution. An interactive and highly visual online study, revision and exam practice tool, it is designed to help students and teachers maximise exam results. Concept summary screens Direct links from the The studyON question hierarchy allows students in the and interactivities summarise eBookPLUS help scaffold Continue Studying feature to revise across the entire key concepts and help prevent students’ understanding and course, or to drill down to concept level for a more granular misconceptions. study practices. set of questions. studyON prepares students for actual exams: studyON’s built‑in progress tracker enables • The Sit Exams feature allows students to sit timed practice exams. self‑diagnosis of strengths and weaknesses at • Exam‑style questions have been authored by our team of highly qualiḀed teachers. a topic and concept level, so students know • From 2020, offcial past QCAA exam questions will be available for Units 3 & 4 with exemplary exactly what needs extra revision and can sit worked solutions to provide feedback for every question. their exams with confidence. studyON Teacher edition is a powerful diagnostic tool Enables teachers to assign Allows teachers to monitor students’ Alignment with the Jacaranda text helps activities for extra revision and activities and results to pinpoint with planning, and instant feedback saves practice, and track progress strengths and weaknesses. Armed with marking time. Built‑in reporting functionality at an individual, group evidence‑based insights, teachers can lets teachers easily schedule, export and print and classroom level intervene at the right time. reports in Excel. ABOUT THIS RESOURCE ix i i i i i i “FMPrelims_print” — 2018/9/16 — 7:39 — page xii — #10 i i About eBookPLUS and studyON Access your online Jacaranda STEP 1 Go to www.jacplus.com.au resources anywhere, anytime, from and create a user account. STEP 2 Enter your registration code. any device in three easy steps: STEP 3 Instant access! eBookPLUS is an electronic version of the studyON is an interactive and highly visual online textbook, together with a targeted range of study, revision and exam practice tool designed to help supporting multimedia resources. students and teachers maximise exam results. eBookPLUS features:  studyON features: • eBook — the entire textbook in • Concept summary screens provide concise electronic format explanations of key concepts, with relevant examples. • Digital documents designed for easy • Access exam questions that have been written customisation and editing by experienced examiners for practice at a concept, area or entire course level, and receive immediate • Interactivities to reinforce and enhance feedback. From 2020, QCAA questions will be students’ learning included with exemplary worked solutions. • eLessons — engaging video clips and • Sit past QCAA exams (Units 3 & 4) or topic tests supporting material (Units 1 & 2) in exam-like situations. • Weblinks to relevant support material on • Video animations and interactivities the internet demonstrate concepts to provide a deep eGuidePLUS features assessment and understanding (Units 3 & 4 only). curriculum material to support teachers. • All results and performance in practice and sit questions are tracked to a concept level to pinpoint strengths and weaknesses. NEED HELP? Go to www.jacplus.com.au Minimum requirements and select the Help link. JacarandaPLUS requires you to use a • Visit the JacarandaPLUS Support Centre at supported internet browser and version, http://jacplus.desk.com to access a range of step-by-step otherwise you will not be able to access user guides, ask questions or search for information. your resources or view all features and • Contact John Wiley & Sons Australia, Ltd. upgrades. Please view the complete list of Email: [email protected] JacPLUS minimum system requirements at Phone: 1800 JAC PLUS (1800 522 7587) http://jacplus.desk.com. i i i i

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.