ebook img

Itinerant electrons in the Coulomb phase PDF

1.4 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Itinerant electrons in the Coulomb phase

Itinerantelectrons inthe Coulombphase L. D. C. Jaubert,1 Swann Piatecki,1,2 Masudul Haque,1 and R. Moessner1 1Max-Planck-Institut fu¨r Physik komplexer Systeme, 01187 Dresden, Germany. 2Laboratoire de Physique Statistique, E´cole Normale Supe´rieure, UPMC, Universite´ Paris Diderot, CNRS, 24 rue Lhomond, 75005 Paris, France. (Dated:January4,2012) We study the interplay between magnetic frustration and itinerant electrons. For example, how does the coupling to mobile charges modify the properties of a spin liquid, and does the underlying frustration favor 2 insulatingorconductingstates? SupportedbyMonteCarlosimulations,ourgoalisinparticulartoprovidean 1 analytical picture of the mechanisms involved. The models under considerations exhibit Coulomb phases in 0 2 twoandthreedimensions,wheretheitinerantelectronsarecoupledtothelocalizedspinsviadoubleexchange interactions. Because of the Hund coupling, magnetic loops naturally emerge from the Coulomb phase and n serveasconductingchannelsforthemobileelectrons,leadingtodoping-dependentrearrangementsoftheloop a ensembleinorder tominimizetheelectronickineticenergy. Atlowelectrondensityρ, thedoubleexchange J coupling mainly tends to segment the very long loops winding around the system into smaller ones while it 3 graduallyliftstheextensivedegeneracyoftheCoulombphasewithincreasingρ.Forhigherdoping,theresults arestronglylatticedependent,displayingloopcrystalswithagivenlooplengthforsomespecificvaluesofρ, ] h whichcanmelt intoanother loop crystal byvarying ρ. Finally, wecontrast thistothequalitativelydifferent c behaviorofanalogousmodelsonkagomeortriangularlattices. e m I. INTRODUCTION Ourapproachtotheproblemconsidersaregimewherethe - t effectsoffrustrationareparticularlystrongbutwhereconsid- a erable progresstowards a detailed description is nonetheless t The combination of magnetism and itinerant electrons is s possible by analytical (or simple numerical) means. That a . a multi-faceted field in the physics of correlated electrons, t (non-trivial)regimewherethisispossibleexistsatallisapri- a where our understanding is still remarkably patchy: even in m thecaseofasquarelatticeHubbardmodel,welackconsensus orinotobvious,andwefindthatweneedtorestrictanumber ofparameterstolimitingvalues:westudythelimitwherethe - onadetailedphasediagraminthedoping-temperatureplane. d Besides the cuprate superconductors, there are plenty of magneticenergyscalesaremuchlargerthanthehoppinginte- n gralt,sothattheresultingproblemisoneofelectronshopping other settings in which interesting questions arise, not least o onaclassicalbackgroundspinconfiguration.Wedonotneed popularizedoflatebyquestionsraisedbythepnictidesuper- c to restrict the electron density to be small, although for that [ conductors,wheremagneticfrustrationandaccidentaldegen- case,wehavethemostdetailedsetofresults. eracieshavestartedtobeconsidered. 1 Wefindthatthelow-densitybehaviourcanbemappedonto More broadly, there has been increased interest in the in- v teractionoffrustratedmagnetismwithitinerantelectrons1–11. astudyofaclassicalloopmodelwithnon-trivialweightsaris- 7 ingfromtheadditionofelectronsHund’scoupledtothespins 7 Here, we take up the spirit of this thread of work and study in the Coulomb phase. This results in phenomenasuch as a 6 itinerantelectronsonahighlyfrustratedlattice,thepyrochlore 0 lattice. We consider both three and two dimensions, the lat- transitionfroma(intwodimensions,critical)percolationsit- 1. tercasealsobeingknownasthesquarelatticewithcrossings, uationtooneinwhichtheloopsacquireanexponentiallength distribution,therebyremovingallconductingpathsacrossthe 0 planarpyrochlore,orcheckerboardlattice. sample.Asthedopingisincreasedfurther,wefindasequence 2 Westartwithanexoticfrustratedphaseofamagneticinsu- 1 lator,theCoulombphase,whichhasbeenextensivelystudied of density-dependentpreferredlooplengths, which lead to a v: recently12–17. Thisphasehasanumberofunusualproperties, tendencytoformloopcrystalswhichmay,however,befrus- tratedbythelatticegeometry. i includingalgebraicspincorrelationsandtheemergenceofex- X tendedone-dimensionaldegreesoffreedom18–20,thenatureof The organization of this article, and our main results, are r whichisanindependentlyinterestingproblem21. summarizedbelow. a Especiallythe latter willplay animportantrole in thefol- lowing analysis, given the ability of electronsto provideev- idence for non-local structures through properties related to A. SummaryandOverview transport phenomena. Indeed, it is the marriage of the lo- cal constraints imposed by frustration with the ‘non-local’ We restrict ourselves to the limit of large exchange cou- physicsdescribingmobileparticleswhichmakesupformuch pling interactions so that the ice-rules (see figure 1) them- oftheinterestinthisfield. selvesarenevercompromised. Wemakeextensiveuseofthe TheIsing-doubleexchangemodelwhichwestudyherehas loop picture encodingthe ice rules.20 The loopsserve as 1D many parameters: electron density, ρ, temperature T, Ising channelsfor the electrons. The problemis thus transformed anisotropy,Hund’scoupling,J ,magneticexchange,J,and to entropyand energyconsiderationsofpossible loopcover- H electronhoppingintegral,t. Afullstudyofgeneralparameter ings,withloopssupportingvaryingnumbersofelectron.This choicesiswell-nighimpossibleinanydetailanalytically. “loop framework” for describing conduction electrons is in- 2 troducedinSectionII. Ref.20hasdescribedinsomedetailtheloopdistributions forboth2Dand3Dintheabsenceofelectrons.Onceelectrons areadded,withineachloopelectronscanoccupystateswhose energyisgivenbya1Ddispersion. Thedispersionminimum is independentof loop length, so the first electron in a loop has the same energy in all loops. As a result, there is a low dopingregimewhereitispossibletofitatmostoneelectron perloop. Allsuchconfigurationshavethesameenergy. This istheentropicregime,becauseentropicargumentsdetermine favorableconfigurationswithinanequal-energymanifold. When the density of electrons ρ is larger, a sub-extensive FIG.1: IntheCoulombphase,eachfrustratedunit(crossedsquares number of states, possibly even a unique one, tend to be fa- in2Dcheckerboard,left,andtetrahedrain3Dpyrochlore,right)pos- vored, because they manage to minimize the kinetic energy; sessestwoupandtwodownspins,respectivelycoloredinblueand thiswetermtheenergeticregime. red. Thosearetheso-calledice-rulesordivergencefreeconditions. Connectingspinsofthesamecolorformsanetworkofloops,asillus- In Section III, we presententropic considerationsrelevant tratedforthecheckerboard. Thismodelisequivalenttothenearest to the regime of low doping. The total entropy contribution neighbourspinicemodel. comesfromboththeloops(withparametersextractednumer- ically),andtheelectrons(derivedanalytically). Inparticular, thepresenceofelectronsactslikeacutoffonthetotalnumber II. THESYSTEMANDTHELOOPFRAMEWORK ofloopsinthesystem. In3D,forbiddingconfigurationswith less loops than electrons suppresses the formation of exten- siveloops(presentin thepeakofthe probabilitydistribution A. Themodel function (PDF), see e.g. figure 5), but does not modify the exponentsof thePDF. On theotherhandin 2D,thereisevi- We will focus primarily on the checkerboard and py- denceforavariationintheexponentofthepowerlawofthe rochlore lattices, which are two lattices where a Coulomb loopdistribution. phasecanappear(seefigure1). Thelocalizedmagneticmo- Oncetheelectronicdensitygetstoolargeforloopstobere- ments are Ising spins Si all parallel to a global axis, while strictedtoatmostoneelectron,weneedtoconsiderenerget- itinerantelectronscanhoponthe lattice sites. TheHamilto- ics. Section IV presentsthese energyconsiderationsand the nianis phase diagram obtained thereby. Ignoringlattice constraints onloopcoverings,weuseenergycalculationsandaMaxwell H = J Si·Sj − t(c†i,αcj,α + c†j,αci,α) constructiontoobtainthephasediagramofFigure9. Wever- hXi,ji hiX,ji,α ify some of these results through Monte Carlo simulations. J c† (σ S )c (1) Wealsopresentconstraintsimposedbythelatticesundercon- − h i,α α,β · i i,β i,α,β siderationsandidentifyloopcrystalsarisingasthedopingis X varied. wheretisthehoppingintegralbetweentwoneighboringsites, Withperiodicboundaryconditions,loopsspanningthesys- c† (c ) are creation (annihilation) operators of itinerant i,α i,α temcanbedividedintosegmentsconnecting“opposite”faces, electronsofspinαonsitei,andσ arethePaulimatrices.In α,β which we call filaments. Because the transmission of elec- orderofappearance,thetermsinequation(1)aretheantifer- trons through the system can only occur via these conduct- romagneticnearest-neighbourexchangebetweenthelocalized ing channels, section V is dedicated to their statistics, as a spinsincorporatingmagneticfrustration,thehoppingtermal- function of dopingρ and dimension. In absence of itinerant lowingmovementofitinerantelectrons,whosespinsinteract electrons,thenumberoffilamentsgrowslinearlywith(cubic) with the localized magnetic momentsthroughferromagnetic system size in 3D but remains constant and of (1) in 2D. Hundcoupling(lastterm). O While these behaviors are qualitatively not modified at low In this work, we focus on the limit t J J. In h doping,theconductingchannelsturnouttovanishatinterme- ≪ ≪ thislimit,thehighlydegenerategroundstateofthefrustrated diatevaluesofρ. systemservesasbackgroundforthemotionoftheelectrons. Aseparatefinalsectionisdevotedtoanoutlookwhichalso Magneticexcitations(violationsoficerules)arenotpresentin containssomewordsonthebehaviourofanalogousmodelson thislimit. Electronscanonlyhopbetweennearestneighbour the triangular and kagomelattices, which turn out to exhibit spinshavingthesameorientation. qualitatively different properties both from the pyrochlores Atzero temperature,a Ne´el orferromagneticorderwould andfromeachother: wefindamagneticconductingsolidas give rise to an insulating or metallic state respectively, but a wellasaninsulatingcooperativeparamagnet. spinliquidprovidesanetworkofconductingpathsforitiner- The numerical component of our work involves Monte antelectrons. Thepresentworkunveilsthe geometryofthis Carlosimulationsofseveraltypes;somedetailsareprovided network, as it is influencedby both the lattice and the mini- intheAppendix. mizationofthehoppingenergy. 3 B. Emergenceofloops The pyrochlore and checkerboard lattices are made of corner-sharingunitswithfourspins;respectivelythetetrahe- dron and the square with crossings. The antiferromagnetic couplings impose the so-called “ice-rules” with zero mag- netization per unit, obtained with two spins pointing up and twospinspointingdown22. Inabsenceofitinerantelectrons, 2t 2t this ground state is highly degenerate with 6 possible con- figurations per unit. It correspondsto the 6-vertex model in 2 dimensions23 and can be mapped onto the nearest neigh- Ek bor spin ice modelin 3 dimensions24,25. These spin systems es, k k gi −π π −π π serveasbackgroundfortheemergentphysicsoftheso-called er Coulombphase16,agaugetheorywherethediscreteice-rules en under coarse-grained lead to the emergence of a divergence freeflux. −2t −2t Joiningspinsofthesameorientationineveryunit,oneob- tainsloopsofup spinsandloopsofdownspins(see Fig. 1). FIG.2: Single-particleenergylevelsofitinerantelectronsconfined TheCoulombphasecanthusbedescribedasanensembleof toloopsoflengthℓ=8(left)andℓ=12(right),duetothehopping possibleloopcoverings. Theresultingloopmodelpossesses terminHamiltonian(1).Therearenondegeneratelevelsatthehigh- twoflavors(loopsofupanddownspins),whereeverysiteof estandlowestenergies,±2t,independent oflooplength; theother thepremediallattice16 isoccupiedbytwoloops,oneofeach levelsaredoublydegenerate. flavor,andeverybondisvisitedbyonelooponly.Inprevious work by some of the authors20, a detailed account has been givenofthestatisticsanddistributionoftheseloops,bothfor thetotalnumberofloopsinagivenconfigurationNℓ = • the2Dand3Dcases. ihi; In the limit of large J , all up (down) electrons are only h Ptheaveragelooplengthforagivenconfiguration allowedtohopalonganup(down)loop,andareconstrained • toremainwithinthisloop.Thisreducestheelectrondynamics ℓ = ihiℓi = N ; tobeone-dimensionalwhateverthedimensionofthelattice. h N P i i ℓ The 1D hopping restriction allows us to describe electron dynamics in terms of the dispersion of a 1D tight-binding thestatPisticalaveragelooplength ℓ overallloopcon- • h i problem, E = 2tcosk, with k the 1D momentum along figurations; k − the loop. The 1D momentumalongthe loop, k = 2πq/ℓ, is thestatisticalaveragenumberofloops N ; discreteforaloopoffinitelengthℓ(q = ℓ/2,...,ℓ/2 1). • h ℓi − − Anup(down)loopoflengthℓcancontainbetween0toℓup thenumberoffilaments(seesectionV). (down)electrons. Notethatdoubleoccupancydoesnotoccur • inthelimitweareconsidering. Thelowestandhighestsingle-particlelevelsinthedisper- III. LOWDOPINGREGIME sion have energy 2t, independent of the loop length (fig- ± ure2). InthissectionweconsiderthelowdopingregimewhereN e Oursystemisthusdescribedby issmallenoughtohaveloopconfigurationswith moreloops thanelectrons,N >N . Sincethelowestsingle-electronen- the numberof lattice sites N, equalto 4L2 and 16L3 ℓ e • ergylevelinanyloopis 2t,theminimumaccessibleenergy for the checkerboard and pyrochlore lattices respec- − is the same ( 2tN ) for all such configurations. Therefore, tively,whereListhelinearnumberofunitcells; − e thegroundstatemanifoldconsistsofallsuchloopcoverings the total electronnumberN , and the electrondensity with the same energy 2tN . The free energy within this e e • − ρ=N /N; manifoldis thenonlydeterminedbyentropics. Atzerotem- e perature,entropyisunderstoodinthesensethatallconfigura- the loop histogram of a given configuration, i.e. the tionshaveanequalprobabilitytooccur. • number h of loops of length ℓ , ℓ being necessarily i i i Inthefirstsubsectionbelow,wepresentsomeentropycal- anevennumberonabipartitelattice; culations,combiningloopandelectroniccontributionstothe entropy,andshowhowthisdeterminestheaveragelooplength the type of lattice, which will among other things de- • termine the smallest possible loop in the system ℓ atnonzeroelectronicdensityρ. Inthesecondsubsectionwe min presentnumericalresultsontheeffectofelectronsontheen- (4 for checkerboardand 6 for pyrochlore); the longest tirelooplengthdistribution(loopPDF).Theeffectontheloop possiblelooplengthisalways N/2. ∼ PDFisanaturalwaytocharacterizetheinfluenceofelectrons Wedefineafewadditionalrelevantobservables: inthemagneticCoulomb-phasesystem. 4 3.5 7 3 6 2.5 5 N N √ 2 √ 4 ⋅ m ⋅ m or 1.5 or 3 n n H H 1 2 0.5 1 0 0 -1 -0.5 0 0.5 1 -0.4 -0.2 0 0.2 0.4 (N - <N>) / √N (N - <N>) / √N l l l l FIG.3: HistogramofdistributionofthenumberofloopsN perconfigurationin2D(left)and3D(right),intheabsenceofelectrons. The ℓ distributionisscaledaccordingtotheGaussianexpressionofequation(2)collapsingallsystemsizesontothesamecurve(L=100to600in 2DandL=4to60in3D).In2D,thetwoGaussianshavethesamewidthandcorrespondstoevenandoddN (upperandlowercurve). In ℓ 3D,finitesizecorrectionsarevisibleforL=4(redcrosses). A. Entropy loopcontributiontotheentropy( lnP)is ∼ N 2 The total entropy consists of loop and electronic contri- S =S ℓ ℓ , (4) loop 1− 2κ ℓ 4 −h i butions. The loop distribution is of course itself affected by h i the itinerant electrons. However, in the limit of small ρ, the (cid:0) (cid:1) whereS isaconstant. changeinloopentropyissmall. Belowwecombinetheρ=0 1 Electronic entropy. Since we have at most one electron loop entropy with the finite-ρ electronic entropy to approxi- per loop, the number of possible combinations to put N matethetotalentropyatsmallρ. e electrons in N loops is the binomial (Pascal) coefficient Loopentropy. Figure3showsthedistributionofthenum- ℓ N !/[N !(N N )!]. Thelogarithmthengivestheelectronic ber of loops N having length ℓ, in the absence of electrons l e l− e ℓ contribution to the entropy. Using Stirling’s approximation (ρ = 0), obtained from Monte Carlo simulations(Appendix for the thermodynamiclimit (N 1, N 1), we get as A).ThedistributionhasGaussianform: l ≫ e ≫ perusual 1 (N N )2 P(Nℓ) exp ℓ−h ℓi (2) N ∼ √N − 2κN S = [xlnx+(1 x)ln(1 x)] (5) (cid:20) (cid:21) elec ℓ − − whereκ =0.0384andκ =0.00423.In2D,therearetwo 2d 3d Gaussians,correspondingtoevenandoddNℓ. wherex=Ne/Nl =ρℓ. Forasystemwithshort-distancecorrelations,Gaussiandis- Total Entropy. For small electron densities, we can ap- tributionsare naturalto expectfromtheCentralLimitTheo- proximatetheloopentropybytheρ=0expressioncalculated rem,sincebydividingthesystemintosmallmesoscopicseg- above.Thetotalentropyofelectronsandloopsisthen mentsthetotaldistributioncanberecastintoa sumofmany random variables. In our case, however, we have a system N S = ρℓlnρℓ+(1 ρℓ)ln(1 ρℓ) with algebraic correlations and extended objects (loops), so tot − ℓ − − findingGaussiandistributionsisnotaprioritrivial. (cid:2) N (cid:3) 2 Equation 2 can be expressed in terms of the average loop + S1− 2κ ℓ 4 ℓ−hℓi0 . (6) lengthℓ=N/NℓinsteadofNℓ: h i0 (cid:0) (cid:1) Thesubscript0representstheensembleaverageatρ=0.The dN √N N 1 1 2 ℓ valueofℓthatmaximizesS isfound(inthelimitρℓ 1) P(ℓ) P(N ) exp tot ≡ ℓ (cid:12) dℓ (cid:12) ∼ ℓ2 "−2κ(cid:18)ℓ − hℓi(cid:19) # tobe ≪ (cid:12) (cid:12) (cid:12)(cid:12) (cid:12)(cid:12)√N exp N ℓ−hℓi 2 (3) ℓopt ≈hℓi0 − ρκhℓi30. (7) ∼ ℓ2 "−2κ(cid:18) hℓi2 (cid:19) # Forρ ℓ 1,thedistributionstaysalmostGaussian,sothis 0 Herewehaveused1/ℓ ℓ 1/ ℓ 2,whichisvalidforlarge mosthpriob≪ablevalueofℓisapproximatelythemeanvalueof h i ≈ h i N intheregionwheretheGaussianisappreciable. Thusthe thedistribution ℓ . InFigure4,wecomparethisprediction ρ h i 5 225 24 22 200 20 175 <l>loop 18 <l>loop 16 150 14 125 12 10 100 0 0.01 0.02 0.03 0.04 0 0.001 0.002 0.003 0.004 ρ ρ FIG.4: Meanvalueofthelooplengthhℓiasafunctionofdoping. Left: checkerboard, L = 10(reddots)and60(bluetriangles). Right: pyrochlore,L=6(reddots)and20(bluetriangles).ThedashedstraightlinesarepredictionsfromEquation(7),withoutanyfittingparameters. Forbothpanels,thebluetrianglesdatapointsareveryclosetothermodynamiclimit. tonumericaldata.ForeachsystemsizeL,wecanextract ℓ 0 100 h i fromthe numerical ℓ at ρ = 0. Eq. (7) then givesa linear h i prediction (dashed straight lines in Figure 4), which works 10 wellforsmallρ. 1 ρ) B. Looplengthdistribution (l,D 0.1 P3 We nextexaminetheeffectofelectronsonthe entireloop 0.01 probability distribution function (PDF). We denote by τ the power-law exponent, when the PDF has form ℓ−τ. Without 0.001 electrons(ρ = 0), the PDF follows P L2/ℓτ in 2D with 2D ∼ τ = 2+ 1/7. In 3D, the ρ = 0 PDF displays a crossover 0.0001 around ℓ L2 between two power laws, from L3/ℓ5/2 to 10 30 100 300 1000 3000 10000 ∼ l 1/ℓ.(Fordetails,seeRef.20.) Atfiniteelectrondensities,loopconfigurationswithN < N are rejected due to energetics, as explained previouℓsly. FIG.5: LooplengthdistributionP3D(ℓ,ρ)in3Dfordifferentval- e uesof doping (ρ = {0,0.00075,0.0015,0.002}]) and systemsize Thuselectrondopingactsnotentirelyunlikea“chemicalpo- L=10. ThedistributionisnormalizedsuchthatR ℓP3D(ℓ,ρ)dℓ= tential” for loops, favoring configurations with more loops, 16L3 =N.Thedashedlineindicatesthepowerlawfitℓ−1atρ=0 andthusapriorishorterones.Inboth2Dand3D,thisimplies and the arrow shows the shifting of the distribution for increasing a disappearanceoflongerloops,ascanbeseen inthe calcu- ρ. The exponents of the two power law regions (before and after latedPDF’sofFigures5and6,wherethelarge-ℓpartsofthe ℓ ≈ L2 = 100) do not vary, but the peak for long winding loops PDFareprogressivelydecimatedforincreasingρ. In3Dthe ℓ∼8L3 =N/2getssmallerwithincreasingρ. formofthePDFisotherwiseunchanged(Figure5). In2Dthe effectseemstobemoredrastic;theinsetoffigure6suggests thattheentirepower-lawbehaviorofthePDFismodified. To quantify how the 2D loop PDF changes qualitatively modelswithloopfugacityn(seee.g. Ref.23). Thepartition at finite ρ, we define and compute a local exponent in ℓ: functionofthefullypackedloopmodelis = nNℓ,where Z τ (ℓ,ρ)=log(P (ℓ,ρ)/P (2ℓ,ρ))/log2. Thisisdis- the sum runsoverall possible configurations. The Coulomb local 2D 2D playedintheupperrightinsettoFigure6. Ourresultssuggest phasecorrespondstoafullypackedloopmodel2P0;atzerodop- atrendtowardincreasingτ asafunctionofρ,consistent ing,thefreeenergyofourmodelistriviallyindependentofthe local withtheideathatitinerantelectronsfavorsmallloops. numberofloopsN andthuscorrespondstoafugacityn=1. ℓ This outcome deserves a few comments. In Ref. 20, the Highervaluesofthefugacitiesfavorconfigurationswithmore loop statistics of the 2D Coulomb phase (zero doping) has loopsandtendtoincreasethevalueofτ27,inawayreminis- beenshowntobeanalogoustotheStochasticLoewnerevolu- centoftheinfluenceofdopinghere. Theadditionofitinerant tionprocessSLE withfractaldimensionD =1+κ/8= electronsremainsanon-trivialproblemandisnotexactlythe κ=6 f 7/4. The SLE can be identified to various realizations of sameasafugacityforaloop,butatsmallandfinitedopingρ, κ the (n) model through the relation n = 2cos(4π/κ).26 somefeaturescouldbecapturedby (n(ρ) > 1) modelsor O − O The (n) modelis often used to describe fully packed loop SLE processes. κ(ρ)<6 O 6 2 lengthℓ,theenergyis(seefigure2) 10 2.18 no 2πn sin(πρ) 101 τlocal 2.14 E(ρ,ℓ)=−2t n=X−no cos(cid:18) ℓ (cid:19)=−2t sin(π/ℓ) (8) ρ) 100 2.10 Foranevennumberofelectrons2no,thisexpressionbecomes P(l,2D 10-1 0 0.004ρ 0.008 E(ρ,ℓ) = 2t sinπ(ρ−1/ℓ) 2t cos(πρ) (9) − sin(π/ℓ) − -2 Moregenerally,if ρℓ is notaninteger, we definethe highest 10 oddintegerbelowρℓas -3 10 ρℓ 1 10 30 100 300 1000 3000 η = 2E − +1 (10) 2 l (cid:18) (cid:19) where E(.) is the floor function. Each loop is filled with at FIG. 6: Main: Loop length distribution P2D(ℓ,ρ) in 2D for dif- leastηelectronsuptotheenergylevelsatk = ±π(η−1)/ℓ, ferent values of doping (ρ = {0,0.0025,0.0056,0.0087}]) and while the remainingN(ρ η/ℓ) electronsin the system are − system size L = 40. The distribution is normalized such that distributed in the partially filled level at k = π(η +1)/ℓ. R ℓP2D(ℓ,ρ)dℓ = 4L2 = N. Thedashedlineindicatespowerlaw Thetotalenergyis ± L2/ℓ15/7andthearrowshowstheshiftingofthedistributionforin- creasingρ. Onthisscale,itisnotobviouswhethertheexponentof sin(πη/ℓ) η η+1 E(ρ,ℓ)= 2tN + ρ cos π (11) thepowerlawvariesornot. Inset: Thepower-lawexponentdefined − ℓsin(π/ℓ) − ℓ ℓ locallyonℓ,τlocal forℓ = 8((cid:4)),16(N),32(•)forL = 40(similar (cid:20) (cid:16) (cid:17) (cid:18) (cid:19)(cid:21) behaviorobtainedforL=20and60). Theseexpressionsareelectron-holesymmetric,i.e. invariant underρ (1 ρ). ↔ − Figure 7 displays the loop length ℓ(ρ) that minimizes the IV. LARGEDENSITIES;PHASEDIAGRAMS energy (11) as a function of ρ, and thus corresponds to the ground state if we impose a unique loop length in the sys- tem. (Theelectron-holesymmetryshows up clearly through In this section, we presentresults relevantfor higher den- themirrorsymmetryoneithersideofρ=0.5. Therefore,we sities, whereentropicconsiderationsarenolongersufficient, shallfromnowononlyconsiderdensitiesbelow1/2.) and non-trivial electronic hopping energies need to be con- Sincethelowestpossibleenergyforanelectronis 2tand sidered. Wecontinuetodescribethesystemintermsofloop − is only accessible for one electron per loop, loops of length coverings. 4 are favored up to ρ = 1/4. Of course for lower densities Wefirstprovideananalysisbasedoncalculationsforloop than1/4, otherconfigurationsmaybepossibleaslongasthe coveringsof equal-lengthloops. Using a Maxwellconstruc- numberofloopsislargerthanthenumberofelectrons,buta tion,wecanusethisinformationtopredictrangesofelectron systemwithonlyloopsoflength4willalwaysbepartofthe densitywherethegroundstatemanifoldconsistsofcoverings groundstatemanifoldforρ61/4. byloopsoftwodifferentlengths. Remarkably, for most densities, a finite loop length with Theseconsiderations,describedinthefirsttwosubsections discreteenergylevelsispreferredcomparedtoinfiniteloops, below, do not take into account any lattice constraints other exceptforρ=1/3and2/5. than the fact that the minimum loop length is ℓ = 4(6) min Weplotonfigure8theminimumenergycorrespondingto forthe checkerboard(pyrochlore). Lattice constraints, disal- thelooplengthℓ(ρ)offigure7: E (ρ)=E(ρ,ℓ(ρ)). min lowingsomeloopcoverings,aredifficulttoenumerateorlist comprehensivelyonaccountoftheirnon-localnature. Inthe finalsubsection,wepresentthelatticeconstraintsthatwehave B. Maxwellconstruction;lattice-independentphasediagram identified,andtheirimplications. We now move beyond configurations with unique loop length. Weneedtoconsidermixturesofelectrondensitiesin A. Equal-lengthloopconfigurations thedifferentloops.ThisisdonethroughaMaxwellconstruc- tion, similar to the physics of a liquid-gas first-order phase Inthissubsectionandthenext, we imaginethatcoverings transition. withanyuniquelooplengthℓ>ℓ arepossible. Later,we AsystemofN sitesanddensityρcanbedividedintotwo min will show that at certain fillings, the ground states exhibit a subsetsofsitesN1andN2,withdensityρ1andρ2ofelectrons uniquelooplength,whileatothers,thebehaviourcanbeun- andlooplengthℓ1andℓ2respectively,with derstoodthroughaMaxwellconstructionbasedonthesingle- N = N + N lengthresults. 1 2 N ρ = N ρ + N ρ . (12) Foranoddnumberofelectronsρℓ = 2n +1inaloopof 1 1 2 2 o 7 1000 1000 100 100 ) ) ρ ρ ( ( l l 10 10 6 4 1 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ρ ρ FIG.7: Looplength ℓ(ρ)minimizing theenergy (11)for asystemfilledwithloopsof length ℓonly, assuming nolatticeconstraints other than l = 4 (left panel, checkerboard) or 6 (right panel, pyrochlore). ρ takes all rational values p/q, withq ∈ {0,1,2,...,1000} and min p∈{0,1,2,...,q},andweconsideralllooplengthsfromℓ toℓ =100(redcrosses)and1000(bluesquares): plottingtwodifferent min max valuesofℓ providesagraphicalwaytovisualizethetwovaluesofρwherethemostfavorablelooplengthisinfinite,namelyρ=1/3and max 2/5(andtheirsymmetricimageswithrespecttoρ=1/2).Ifseverallooplengthsgivethesameenergy,weplotthesmallestone. Now if a straight line between E (ρ ) and E (ρ ) re- thatlatticeconstraints(nextsubsection)willmodifysomeof min 1 min 2 mainsbelowthecurveE (ρ)onfigure8,i.e. if thephasediagram. min N E (ρ) > N E (ρ ) + N E (ρ ), (13) min 1 min 1 2 min 2 thenthemixtureoftwodensitiesismorestablethanaunique C. Latticeconstraintsonloopcoverings density and “phase separation” occurs. We thus construct a phase diagram, separating regions of different loop length Wenowconsidereffectsofthelatticeindisallowingsome combinations. oftheconfigurationspredictedbyouranalysisabove.Forthe Onfigure9,thedotscorrespondtodensitieswhereaunique specificdensitieswhereitispossibletocoverthelatticewith loop length is favored, whereas the zones between them are loopsofauniquelength,theresultisanorderedloopcrystal. “phase mixed”, defined by the loop lengths and electron Insomecases,however,acoveringbyauniquelengthorbya densities of the surrounding dots. The ratio of one phase combinationofloopsoftwolengths,isnotpossible.Wepoint comparedtotheotherisgivenbyequations(12).Forexample outsomesuchcasesbelow. forρ=0.4,80%ofthesitesbelongtoloopsoflengthℓ =8 1 with electron density ρ = 3/8, while the remaining 20% 1 belong to loops of length ℓ = 6 with density ρ = 1/2. 2 2 1. Checkerboard As shown on figure 7, loops of length 4 are particularly robust over a wide range of ρ; preventing their formation, e.g. in the pyrochlore lattice in d = 3 which permits loops Wefirstfocusontheregimeρ [1/4;3/8]favoringloops ∈ ofminimallength6,thusstronglymodifiesthephasediagram. of length 4 or 8 according to the Maxwell construction. As illustratedinfigure10,notonlycanthelatticebecoveredby These resultsindicatethatitinerantelectronstendto favor theseloops,butthetransformationfrom4loopsoflength4to relativelysmallloopsandtopreventtheformationofinfinite 2oflength8isalsopurelylocalandallowsallpossibleratios onesatzerotemperature. betweenthesetwophasesinthethermodynamiclimit. Apair Atlowelectrondensities(upto1/ℓ ),theminimumen- ofloopsoflength8(onemadeofupspins,theotherofdown min ergy for a given ρ is degenerate: e.g. for ρ = 1/12, having ones) cannot be separated if there are no other lengths than onlyloopsoflength4,6,8,10or12givesthesameenergy,as 4 and 8 in the system. We shallcall such pair a defect. The thenumberofelectronsissmallerthanthenumberofloopson defectconcentrationisdeterminedbyρ.Defectsarenottopo- thesystem,andeveryelectroncanfillthelowestenergylevel. logical in the sense that they can be created and annihilated This explains why E (ρ) is a straight line in this region locally,theycanbeplacedanywhereinthebackgroundmade min (Figure8): as ρ decreasesfrom1/ℓ to 0, the degeneracy ofloopsoflength4. min of the groundstate increases untilonerecoversnaturallythe At quarter filling, there is one electron per loop of length fulldegeneracyforρ = 0. Thisofcoursecorrespondstothe 4, its energy is 2t and their total number is N/4. Each − entropicregimementionedabove. additional pair of electrons fills the first excited level of the We stress again that these results have been obtained in- newly created defect (3 electrons per ℓ = 8 loop) and gives dependentlyofthelattice (exceptforthevalueofℓ ),and an energy 4t √2 1 . At a given ρ, the number of elec- min − − (cid:0) (cid:1) 8 0 0 -0.1 -0.1 ) ) ρ ρ ( ( E -0.2 E -0.2 -0.3 -0.3 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 ρ ρ FIG. 8: Minimum energy E(ρ) corresponding to the value of ℓ(ρ) plotted on figure 7, for a system filled with loops of length ℓ only, assuming no lattice constraints other than l = 4 (left, checkerboard) or 6 (right, pyrochlore). ρ takes all rational values p/q, with min q ∈ {0,1,2,...,1000}andp ∈ {0,1,2,...,q}. Weconsideralllooplengthfromℓ toℓ = 1000. Wechosearbitrarilyt = 1/2. A min max Maxwellconstructioncanbevisualizedfromthisfigure.Thereddotsareasetofpoints,suchthatthedashedlinesconnectedthemarealways belowtheredcurveE(ρ).Henceamixtureoftwophasescorrespondingtotwoconsecutivereddots(ℓ1,ρ1)and(ℓ2,ρ2)hasalowerenergy thanasinglephasewithauniquedensityofelectronsρonauniquetypeoflooplengthℓ. Forincreasingvaluesofρ,thereddotscorrespond tothemostfavoredlooplengthℓ={4,8,6,8,4}(leftpanel)andℓ={6,12,10,8,6,8,10,12,6}(rightpanel),ascanbereadfromfigure7. Checkerboard Pyrochlore FIG.9: Zerotemperature“phasediagram”oflooplengthconfigurationasafunctionofelectrondensityρ,obtainedwithoutaccountingfor latticeconstraintsotherthanℓ =4(6)forcheckerboard(pyrochlore).Aphaseisdefinedbythelengthofitsconstitutingloopsandthedensity min ofelectronsonthem.Thevaluesofρandℓ(ρ)foreachphasearegivenbelowandabovethelines. betweenρ=1/4and3/8isthen E(ρ)= 2tL2 1+(4ρ 1)(√2 1) (14) − − − (cid:16) (cid:17) FIG.10: Schematicrepresentationof thecheckerboard latticewith 16sitesanddifferentloopcoverings. Left: 4loopsoflength4,cor- respondingtothegroundstateatρ = 1/4with1electronperloop. Once normalizedpernumberof sites 4L2, thisexpressionis Center: 2 loops of length 8, corresponding to the ground state at thedashedlineplottedonfigure8. Wehaveverifiedthisana- ρ = 3/8with3electronsperloop. Between1/4and3/8,amixture lyticalresultwithfinite-temperatureMonteCarlosimulations; ofthesetwoconfigurationswilloccur,theirrespectiveratiobeingset somedetailsofthemethodareinAppendixA.Extensivede- by the total number of electrons N = ρN. This arrangement of e generacyisrecoveredinthisregionbetween1/4and3/8. twoloopsoflength8appearsasa“defect”inacrystalofloopsof length4.Right:aredloopoflength6spannedbyanotherblueloop; theshortest waytoclosethisbluelooprequires10sites. Itisthus At higher doping, aboveρ = 3/8, the Maxwell argument impossibletohaveamixtureofloopsoflength6and8only. predicts a mixture of loops of length 8 and 6. However, as we can see in figure 10, a single loop of length 6 imposes the presenceof loopsoflength10at least. Thisimpliesthat thisregionofthephasediagram(obtainedwithoutaccounting tronsaddedwithrespecttotheloopcrystalatquarterfillingis for such lattice constraints) is further modified, in an as yet (ρN N/4) = (4ρ 1)L2. Thetotalenergyofthesystem unknownmanner. − − 9 2. Pyrochlore 100 Analogousmodificationofthephasediagramoffigure9is moresevereforthepyrochlore,andshowsupalreadyatρ = 30 1/ℓmin = 1/6. We havefoundthatitisimpossibletocover ents thepyrochlorelatticewithloopsoflength6only.However,it am ispossibletodoitforhalfofthesystem,asexplainednext. of fil 10 Thepyrochlorelatticecanbeseenasanalternativestackof ber m kagomeandtriangularlayersorthogonaltooneoftheglobal Nu 3 [111]axes. Asdepictedonfigure13(d),2/3ofeachkagome layer can be filled with loops of length 6 (blue hexagons), 1 3 6 10 30 60 while the other 1/3 of the kagome sites forms extensive L windingloopsalongthe[111]-axis,crossingalternativelythe kagomeandtriangularlayers. Sinceallbluesitesformloops FIG.11: Averagenumberoffilaments,i.e.thosesegmentsofloops of length 6, putting one electron per loop providesa ground spanningtheentiresystemfromoneborder totheoppositeone, as stateconfigurationuptoρ=1/12atleast. Thisisapriorinot a function of system size L. We use two definitions of filaments; theonlyone,butthisprovesitsexistence. they can either cross the orthogonal borders thanks to the periodic boundaryconditions(•)ornot((cid:4)). Thecartoonontherightshows Indeed, despite an intensive search by complete enumer- suchaboundary-crossingfilament,whichwouldbeexcludedinthe ation of configurations respecting the ice-rules on the py- (cid:4) data. Dashed lines are guides tothe eye for the linear behavior rochlorelattice,wehavenotdetectedanyrelevantloopcrystal withL.Bothx-andy-axesareonalogarithmicscale. or mixtureof themfor systemsup to 128sites. A system of size 192 has been partially investigated, with the same out- come. Thesmallestoccurrenceofasingle-lengthloopcover- In 2D, there is a small but constant number ( 1.86) ingisfor8loopsoflength16inasystemof128sites;however of winding loops on average in the thermodynamic≈limit20. thisisnotarelevantlengthaccordingtoourphasediagramof There is thus some probability to have filaments in the Figure 9. Thus, the loop coverings on an actual pyrochlore checkerboardcase,butthenumberoffilamentsdoesnotgrow aremodifiedfromFigure9inmostorallofthedensityrange withsystemsize. ρ [1/6,1/2]. The details of this modification remains an ∈ In3D,thebackgroundofwindingloopsensuresthatthere importantopenproblem. arefilamentswhosenumbergrowswithsystemsize. Thedata inFigure11showsthatthenumberoffilamentsincreaseslin- earlywiththelinearsizeofthecubicsample. V. CONDUCTINGCHANNELSOR“FILAMENTS” Sinceoursimulationsandloopcountingareperformedwith periodic boundary conditions, some of the filaments, while Inthissection,wediscusstheeffectoftheCoulombphase spanning the sample in one direction, also cross one of the and loop structure on the conductivity of mobile electrons. orthogonalboundaries. (Anexampleisshowninthecartoon Since the electrons are confined to loops, they can conduct to the right of Figure 11.) One can argue that this type of onlyifaloopconnectsoneedgeofthesampletotheopposite filamentwouldnotcontributetoconductioninareal-lifecubic end.Therefore,westudythenumberofsuchsample-spanning pyrochloresample. Therefore, we show data both excluding loops,which,followingRef.28,werefertoas“filaments”. andincludingthistypeoffilament,andtheyareseentohave Whentherearenofilaments(e.g.inloopcrystalswithonly thesamepower-lawbehavior. finite-length loops), the system is unambiguously an insula- Since the data includingthese filamentshavebetter statis- tor. Whentherearefilamentsspanningthesystem,thesystem tics,forfiniteρwedisplaytheinclusivedata,withtheexpec- cannotbeimmediatelycalledaconductor,becausetheactual tationthatthereisnoqualitativedifference. conductivitywilldependonscatteringmechanismsexteriorto AccordingtoFig.5,itinerantelectronstendtomakedisap- ourmodel. pearextensiveloopsoflengthL3 in3D.Whetherornotthis In the first subsection below, we consider small dopings, preventstheformationoffilamentsisnotasstraightforwardas where we present Monte Carlo results for the average num- it seems. Indeed, one could naively assume that the number ber of filaments as a function of system size. In the second ofconductingchannelswilldecreaseandmaybeevenvanish subsection, we comment on the consequences of our phase inthethermodynamiclimit.Howeverthenumberoffilaments diagram. remainsapproximatelyconstantasplottedonfigure12. This means that the average numberof loops increases with dop- ingviadividingtheverylongonesintosmallerbutnonethe- A. Filamentsatlowdensities less extensiveloopsspanningthe system. In the low doping regimein3D,thenumberofconductingchannelsisapproxi- We firstconsiderverylowdensitiesthatthe loopdistribu- matelyindependentofρ. tioncanbeassumedtobelargelyunchangedfromtheρ = 0 Bycontrast,in2D,withrelativelylargeerror-bars,thenum- case. beroffilamentsdecreasesbutremainsof (1)aselectronsare O 10 added. A. Otherlattices:triangularandkagome The Ising ground states observed for the pyrochlore lat- B. Conductionchannelsatlargerfillings ticehavevanishingtotalspinoneachtetrahedron. These‘ice rules’ ensure the existence of the Coulomb phase and states InSectionIV,weidentifieddensities(forboth2Dand3D) obeyingthemamounttoamoderatezero-pointentropyofless wherethesystemisaloopcrystaloriscoveredbyloopsoftwo thanathirdofthatofafreespin. Bycontrast,thezero-point finitelengthsonly. Insuchcases, therearenofilaments,and entropyofthe triangularIsingmagnetis notfarfromhalfof the system is truly insulating: lifting the frustration-induced that of a free spin, while that of the kagome magnet is over degeneracy removes the non-locality of the loops. How the 70%oflog2. energetics (and resulting degeneracies) imposed by lattice Most fundamentally, the single triangle is relatively much constraints (see section IVC) manifest themselves in trans- more degenerate than a tetrahedron, with 6 out of 8 (rather portpropertiesisanintriguingseparatequestion. thanoutof16)statesbeinggroundstates. Thetrianglestates For some ranges of ρ, especially in 3D, the loop cover- have varying magnetizations of 1 (whereas states obeying ± ingsindicatedbytheMaxwellconstructionaredisallowedby the ice rule have a uniquemagnetization, unless one tunes a the lattice geometry (section IVC). In such cases it remains fieldtoatransitionbetweenmagnetizationplateaux30). an openquestionwhetherornotthe lattice constraintsresult Tomovetowardsthefulltriangle-basedlattices,itisworth inloopcoveringsincludinginfinite(sample-spanning)loops. noting that for any Ising antiferromagnet, the ‘hopping net- Unfortunately, the issue of conducting channels depends on work’ formed by neighbouringaligned spins can have a co- theanswertothisgenerallyunresolvedquestion. ordination of at most half that of z, the coordination of the underlyinglattice–otherwiseitwouldbeenergeticallyfavor- able to flip the highly coordinated spin. The concept of the VI. SUMMARYANDOUTLOOK hoppingnetworkgeneralizestheloopsonwhichtheelectrons hopontheplanarandthreedimensionalpyrochlores. We have analyzed the double exchange model on the py- It now turns out that triangle and kagome lattices behave rochlorelatticeintwoandthreedimensions. Wehavechosen entirelydifferentlyfrompyrochloreinbothtwoandthreedi- toconsideraparameterrangeforwhich(i)magneticfrustra- mensions,onaccountofthenatureoftheirfrustratedground tionisknowntogiverisetounconventionalgroundstateen- stateensembles. semblesand(ii)whereitispossibletomakeconsiderablean- alyticalprogressbymappingthesystemontoanensembleof loops,thestatisticalpropertiesofwhichareinfluencedbythe 1. Triangularlattice additionoftheelectrons. We haveidentifieda numberofphenomenawhichdepend Theground-statedegeneracyofthetriangularlatticeisim- onfeaturessuchasdimensionality,whichdetermineswhether mediately lifted by the addition of even a single hole. This or notthere existloopsegmentswindingaroundthe system; resultisentirelyanalogoustothefrustratedNagaokatheorem orlatticestructure,whichmayfrustratethegeometricpacking presented in Ref. 31, in the context of the magnetic super- ofpreferredlooplengths. soliddiscussedthere,anditisalsoconnectedtothetriangular The model studied here leaves unanswered a number of Bosonicsupersolids32–35. questionsandimmediatelysuggestsmanygeneralizationsand Asz = 6forthetriangularlattice,thehoppingnetworkof extensions. We have worked in a limit of parameters such alignedspinsnolongerhascoordinationtwoasintheloopsof thatthemagneticexchangeandanisotropydominateoverthe thepyrochlorelattice. Infact,thecoordinationofasiteofthe Hundcouplingwhichinturndominatesthehoppingintegral. hoppingnetworknolongerevenneedstobeuniform,sothat Ouranalysisappliestozerotemperature. theremaybedanglingorevenisolatedsites,asonFig.13.(a). It would be interesting to relax any of these choices, al- Thecoordinationcanrangeallthewayfromzero(foraspin thoughtechnicallythis may notbe easy. In particular, given surroundedbyahexagonofoppositelyalignedspins)tomax- thepresenceofgaplessexcitationsonlongloops,interesting imallyz/2=3. low-temperature physics may appear. Canting can give rise The latter happenswhen the hole sits on a site experienc- tonon-trivialBerryphasephysics,andfiniteHund’scoupling ingzeronetexchangefieldfromitssixneighbors. Thereex- willenableelectronstohopbetweenloops. Forexample,re- ists a unique state (pictured in Fig. 13.(b)) in which there is cent work at quarter filling on the pyrochlore Kondo lattice a network of three-fold coordinated sites. This state breaks has shown the emergence of a chiral magnetic order in the translationalsymmetrybytriplingtheunitcellaswellastime- weak-couplingregime29. reversalsymmetryasitcorrespondsto astate with amagne- Finally,evenintheparameterrangediscussedhere,itwill tization of a third of the saturated value. We have not stud- be interesting to ask how different frustrated lattices shape iedwhathappenstoafinitedopingbutaFermiliquidregime up compared to the pyrochlores. We devote the final para- on the hexagonalbackboneat low dopinglooks likely. This graphs of this paper to discussing this question for the case would imply a conducting state, with the possibility of ad- oftriangle-basedlattices,thetriangularBravaislatticeandthe ditional low-energyexcitations in the form of defects of the Archimedeankagomelattice. hexagonalbackbone.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.