ebook img

Iterative Methods for Linear and Nonlinear Equations PDF

172 Pages·1987·0.733 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Iterative Methods for Linear and Nonlinear Equations

Iterative Methods for Linear and Nonlinear Equations C. T. Kelley North Carolina State University Society for Industrial and Applied Mathematics Philadelphia 1995 Untitled-1 3 9/20/2004, 2:59 PM To Polly H. Thomas, 1906-1994, devoted mother and grandmother 1 2 Contents Preface xi How to Get the Software xiii CHAPTER 1. Basic Concepts and Stationary Iterative Methods 3 1.1 Review and notation . . . . . . . . . . . . . . . . . . . . . . . . 3 1.2 The Banach Lemma and approximate inverses. . . . . . . . . . 5 1.3 The spectral radius . . . . . . . . . . . . . . . . . . . . . . . . . 7 1.4 Matrix splittings and classical stationary iterative methods . . 7 1.5 Exercises on stationary iterative methods . . . . . . . . . . . . 10 CHAPTER 2. Conjugate Gradient Iteration 11 2.1 Krylov methods and the minimization property . . . . . . . . . 11 2.2 Consequences of the minimization property . . . . . . . . . . . 13 2.3 Termination of the iteration . . . . . . . . . . . . . . . . . . . . 15 2.4 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 2.5 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 2.6 CGNR and CGNE . . . . . . . . . . . . . . . . . . . . . . . . . 25 2.7 Examples for preconditioned conjugate iteration . . . . . . . . 26 2.8 Exercises on conjugate gradient . . . . . . . . . . . . . . . . . . 30 CHAPTER 3. GMRES Iteration 33 3.1 The minimization property and its consequences . . . . . . . . 33 3.2 Termination . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35 3.3 Preconditioning . . . . . . . . . . . . . . . . . . . . . . . . . . . 36 3.4 GMRES implementation: Basic ideas . . . . . . . . . . . . . . . 37 3.5 Implementation: Givens rotations . . . . . . . . . . . . . . . . . 43 3.6 Other methods for nonsymmetric systems . . . . . . . . . . . . 46 3.6.1 Bi-CG.. . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 3.6.2 CGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 3.6.3 Bi-CGSTAB. . . . . . . . . . . . . . . . . . . . . . . . . 50 vii viii CONTENTS 3.6.4 TFQMR. . . . . . . . . . . . . . . . . . . . . . . . . . . 51 3.7 Examples for GMRES iteration . . . . . . . . . . . . . . . . . . 54 3.8 Examples for CGNR, Bi-CGSTAB, and TFQMR iteration . . . 55 3.9 Exercises on GMRES . . . . . . . . . . . . . . . . . . . . . . . . 60 CHAPTER 4. Basic Concepts and Fixed-Point Iteration 65 4.1 Types of convergence . . . . . . . . . . . . . . . . . . . . . . . . 65 4.2 Fixed-point iteration . . . . . . . . . . . . . . . . . . . . . . . . 66 4.3 The standard assumptions . . . . . . . . . . . . . . . . . . . . . 68 CHAPTER 5. Newton’s Method 71 5.1 Local convergence of Newton’s method . . . . . . . . . . . . . . 71 5.2 Termination of the iteration . . . . . . . . . . . . . . . . . . . . 72 5.3 Implementation of Newton’s method . . . . . . . . . . . . . . . 73 5.4 Errors in the function and derivative . . . . . . . . . . . . . . . 75 5.4.1 The chord method. . . . . . . . . . . . . . . . . . . . . . 76 5.4.2 Approximate inversion of F(cid:1). . . . . . . . . . . . . . . . 77 5.4.3 The Shamanskii method. . . . . . . . . . . . . . . . . . 78 5.4.4 Difference approximation to F(cid:1). . . . . . . . . . . . . . . 79 5.4.5 The secant method. . . . . . . . . . . . . . . . . . . . . 82 5.5 The Kantorovich Theorem . . . . . . . . . . . . . . . . . . . . . 83 5.6 Examples for Newton’s method . . . . . . . . . . . . . . . . . . 86 5.7 Exercises on Newton’s method . . . . . . . . . . . . . . . . . . 91 CHAPTER 6. Inexact Newton Methods 95 6.1 The basic estimates. . . . . . . . . . . . . . . . . . . . . . . . . 95 6.1.1 Direct analysis. . . . . . . . . . . . . . . . . . . . . . . . 95 6.1.2 Weighted norm analysis. . . . . . . . . . . . . . . . . . . 97 6.1.3 Errors in the function. . . . . . . . . . . . . . . . . . . . 100 6.2 Newton-iterative methods . . . . . . . . . . . . . . . . . . . . . 100 6.2.1 Newton GMRES. . . . . . . . . . . . . . . . . . . . . . . 101 6.2.2 Other Newton-iterative methods. . . . . . . . . . . . . . 104 6.3 Newton-GMRES implementation . . . . . . . . . . . . . . . . . 104 6.4 Examples for Newton-GMRES . . . . . . . . . . . . . . . . . . 106 6.4.1 Chandrasekhar H-equation. . . . . . . . . . . . . . . . . 107 6.4.2 Convection-diffusion equation. . . . . . . . . . . . . . . 108 6.5 Exercises on inexact Newton methods . . . . . . . . . . . . . . 110 CHAPTER 7. Broyden’s method 113 7.1 The Dennis–Mor´e condition . . . . . . . . . . . . . . . . . . . . 114 7.2 Convergence analysis . . . . . . . . . . . . . . . . . . . . . . . . 116 7.2.1 Linear problems. . . . . . . . . . . . . . . . . . . . . . . 118 7.2.2 Nonlinear problems. . . . . . . . . . . . . . . . . . . . . 120 7.3 Implementation of Broyden’s method . . . . . . . . . . . . . . . 123 7.4 Examples for Broyden’s method . . . . . . . . . . . . . . . . . . 127 CONTENTS ix 7.4.1 Linear problems. . . . . . . . . . . . . . . . . . . . . . . 127 7.4.2 Nonlinear problems. . . . . . . . . . . . . . . . . . . . . 128 7.5 Exercises on Broyden’s method . . . . . . . . . . . . . . . . . . 132 CHAPTER 8. Global Convergence 135 8.1 Single equations . . . . . . . . . . . . . . . . . . . . . . . . . . 135 8.2 Analysis of the Armijo rule . . . . . . . . . . . . . . . . . . . . 138 8.3 Implementation of the Armijo rule . . . . . . . . . . . . . . . . 141 8.3.1 Polynomial line searches. . . . . . . . . . . . . . . . . . 142 8.3.2 Broyden’s method. . . . . . . . . . . . . . . . . . . . . . 144 8.4 Examples for Newton–Armijo . . . . . . . . . . . . . . . . . . . 146 8.4.1 Inverse tangent function. . . . . . . . . . . . . . . . . . 146 8.4.2 Convection-diffusion equation. . . . . . . . . . . . . . . 146 8.4.3 Broyden–Armijo. . . . . . . . . . . . . . . . . . . . . . . 148 8.5 Exercises on global convergence . . . . . . . . . . . . . . . . . . 151 Bibliography 153 Index 163 x CONTENTS Preface This book on iterative methods for linear and nonlinear equations can be used as a tutorial and a reference by anyone who needs to solve nonlinear systems of equations or large linear systems. It may also be used as a textbook for introductory courses in nonlinear equations or iterative methods or as source material for an introductory course in numerical analysis at the graduate level. We assume that the reader is familiar with elementary numerical analysis, linear algebra, and the central ideas of direct methods for the numerical solution of dense linear systems as described in standard texts such as [7], [105], or [184]. Our approach is to focus on a small number of methods and treat them in depth. Though this book is written in a finite-dimensional setting, we have selected for coverage mostly algorithms and methods of analysis which extend directly to the infinite-dimensional case and whose convergence can be thoroughlyanalyzed. Forexample,thematrix-freeformulationandanalysisfor GMRESandconjugategradientisalmostunchangedinaninfinite-dimensional setting. The analysis of Broyden’s method presented in Chapter 7 and the implementations presented in Chapters 7 and 8 are different from the classical ones and also extend directly to an infinite-dimensional setting. The computational examples and exercises focus on discretizations of infinite- dimensional problems such as integral and differential equations. We present a limited number of computational examples. These examples are intended to provide results that can be used to validate the reader’s own implementations and to give a sense of how the algorithms perform. The examples are not designed to give a complete picture of performance or to be a suite of test problems. The computational examples in this book were done with MATLAB (cid:1) (version 4.0a on various SUN SPARCstations and version 4.1 on an Apple Macintosh Powerbook 180) and the MATLAB environment is an excellent one for getting experience with the algorithms, for doing the exercises, and for small-to-medium scale production work.1 MATLAB codes for many of the algorithms are available by anonymous ftp. A good introduction to the latest 1MATLABisaregisteredtrademarkofTheMathWorks,Inc. xi xii PREFACE version (version 4.2) of MATLAB is the MATLAB Primer [178]; [43] is also a useful resource. If the reader has no access to MATLAB or will be solving verylargeproblems,thegeneralalgorithmicdescriptionsoreventheMATLAB codes can easily be translated to another language. Parts of this book are based upon work supported by the National Science Foundation and the Air Force Office of Scientific Research over several years, most recently under National Science Foundation Grant Nos. DMS-9024622 and DMS-9321938. Any opinions, findings, and conclusions or recommendations expressed in this material are those of the author and do not necessarily reflect the views of the National Science Foundation or of the Air Force Office of Scientific Research. Many of my students and colleagues discussed various aspects of this project with me and provided important corrections, ideas, suggestions, and pointerstotheliterature. IamespeciallyindebtedtoJimBanoczi,JeffButera, Steve Campbell, Tony Choi, Moody Chu, Howard Elman, Jim Epperson, Andreas Griewank, Laura Helfrich, Ilse Ipsen, Lea Jenkins, Vickie Kearn, Belinda King, Debbie Lockhart, Carl Meyer, Casey Miller, Ekkehard Sachs, Jeff Scroggs, Joseph Skudlarek, Mike Tocci, Gordon Wade, Homer Walker, Steve Wright, Zhaqing Xue, Yue Zhang, and an anonymous reviewer for their contributions and encouragement. Most importantly, I thank Chung-Wei Ng and my parents for over one hundred and ten years of patience and support. C. T. Kelley Raleigh, North Carolina January, 1998 How to get the software AcollectionofMATLABcodeshasbeenwrittentoaccompanythisbook. The MATLABcodescanbeobtainedbyanonymousftpfromtheMathWorksserver ftp.mathworks.cominthedirectorypub/books/kelley,fromtheMathWorks World Wide Web site, http://www.mathworks.com or from SIAM’s World Wide Web site http://www.siam.org/books/kelley/kelley.html One can obtain MATLAB from The MathWorks, Inc. 24 Prime Park Way Natick, MA 01760, Phone: (508) 653-1415 Fax: (508) 653-2997 E-mail: [email protected] WWW: http://www.mathworks.com xiii

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.