ebook img

Isospin Effects by Mass Reweighting PDF

0.16 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Isospin Effects by Mass Reweighting

Isospin Effects by Mass Reweighting 5 1 0 2 p e S 1 JacobFinkenrath ,a, FrancescoKnechtlia, BörnLedera,b ∗ a DepartmentofPhysics,BergischeUniversitätWuppertal ] t Gaussstr. 20,D-42119Wuppertal,Germany a l b DepartmentofMathematics,BergischeUniversitätWuppertal - p Gaussstr. 20,D-42119Wuppertal,Germany e E-mail: [email protected] h [ 2 Mostoftoday’slatticesimulationsareperformedintheisospinsymmetriclimitofthelightquark v sector. Mass reweightingis a techniqueto includeeffectsofisospin breakingin the sea quarks 1 at moderate numericalcost. We will give a summary of our recentresults on fine lattices with 4 4 lightquarkmassesandwillshowhowlightquarkmassescanbeextractedbyintroducingsuitable 6 tuningconditionsforthebaremassparameters. 0 . Ingeneralthereweightingfactorintroducesadditionalfluctuationsandthusincreasesthestatisti- 1 0 caluncertainties. Inthecaseofisospinreweightingthisfactorisaratiooffermiondeterminants. 5 Thestochasticevaluationofthedeterminantspotentiallyleadstostochasticnoiseinobservables. 1 : Weshowthequarkmassandthevolumedependenceofthesefluctuations. v i X r a The32ndInternationalSymposiumonLatticeFieldTheory 23-28June,2014 ColumbiaUniversityNewYork,NY Speaker. ∗ (cid:13)c Copyrightownedbytheauthor(s)underthetermsoftheCreativeCommonsAttribution-NonCommercial-ShareAlikeLicence. http://pos.sissa.it/ IsospinEffectsbyMassReweighting JacobFinkenrath 1. Introduction MassReweighting[1]isaninterestingandefficientmethodtocorrectandtoincludeeffectsof quark masses. Itcan beused for tuning, e.g. thestrange quark massm in a2+1simulation orthe s isospinsplittingintheup-quarkmassm andthedown-quarkmassm . Moreoveritcanbeapplied u d to understand the mass behavior of observables. For small corrections it is applicable and more efficient than new simulations. Mass reweighting involves the evaluation of fermion determinants whichcanberewrittenbyanintegral representation. Thisintegralrepresentation canbeestimated byMonteCarlointegration whichneedsaround100inversions oftheDiracoperatortocontrolthe stochastic noiseefficiently. Thereweighting factorentersthemeasurement ofanobservable by[2] OW O = h i = OW˜ (1.1) W h i W h i h i wherethemassreweightingfactorforn flavorsofquarks f nf detD W =(cid:213) mnew,i (1.2) detD i=1 mold,i isnormalized withW˜ =W/ W . Here,theDiracoperator isgivenbythecloverimprovedWilson h i Dirac operator D =D+m. The reweighting factor can be rewritten as a determinant of a ratio m matrixM with 1 1 W = = . (1.3) det(cid:213) nf D 1 D detM i=1 −mnew,i mold,i In general lattice simulations are done in th(cid:2)e isospin sym(cid:3)metric limit in the light quark sector by setting the light quark masses tothe average light quark massm =0.5(m +m ). Theidea isto ud u d use mass reweighting tointroduce isospin breaking. Thereweighting isperformed bysplitting up thelightquarkmassesbykeepingtheaveragequarkmassconstant2m =m +m =const andit ud u d followswiththemassshiftD m =m m ud d u − m =m 0.5 D m m m +0.5 D m =m . (1.4) u ud ud ud ud ud d − · ← → · Thisleadstotheisospinreweighting factor 1 1 W = = . (1.5) iso det D−mu1DmudD−md1Dmud detMiso Now,thedeterminantofthenon–herm(cid:2)itianmatrixM canb(cid:3)erewrittenbyanintegralrepresentation givenby 1 = D[h ]exp h †Mh (1.6) detM {− } Z which holds for l (M+M†) > 0 [3] and the normalized integral measure is given by D[h ] = (cid:213) n dx dy /p withh =x +iy . Theintegraleq.(1.6)canbeestimatedstochastically j=1 j j j j j 1 = 1 (cid:229)Nh e−h i†(M−I)h i+O(1/ Nh ) (1.7) detM Nh i=1 p 2 IsospinEffectsbyMassReweighting JacobFinkenrath Table 1: The table shows the analyzed CLS - ensembles generate with n =2 - O(a) improved Wilson f fermionswithm =m =m [4]. Weusedensemblesofthreedifferentlatticespacingsawithpionmasses ud u d mp from 580 MeV down to 192 MeV and lattice volumeV/a4. The number of configurationsNcnfg are seperatedbyMDUs/configwithR therelativenumberofactivelinks. Themaximalreweightingrangeis act givenbythequarkmassshiftintheMS-schemeD m . Therenormalizedmassisdefinedasin[4]. R,max ID V/a4 a[fm] mp [MeV] Ncnfg MDUs/config Ract D mR,max [MeV] · A5 64 323 0.076 330 202 20 1 4.43(60) × · E4 64 323 0.066 580 100 16 0.37 7.1(17) × · D5 48 243 “ 440 503 8 1 5.9(10) × · E5 64 323 “ 440 99 160 0.37 6.01(96) × · F7 96 643 “ 270 350 16 0.37 5.01(38) × · G8 128 643 “ 192 90 8 1 5.86(56) × · O7 96 483 0.049 270 98 40 1 5.63(40) × · bydrawingNh pseudofermion fieldsh distributed viathenormalized function (cid:181) exp h †h and {− } I the unit matrix with dimension of M. Note for every drawn field h n –inversions of the Wilson f Diracoperator D havetobeperformed. mi Ingeneral massreweighting introduces fluctuations whichincreasethestatistical error. These fluctuations are the ensemble fluctuations, introduced by the ensemble average in eq. (1.1), and the stochastic fluctuations, introduced by the stochastic estimation of the integral eq. (1.6). The fluctuations are given by the variance averaged over the ensemble and the pseudofermions h . We willdefinethevarianceoftheintegralrepresentation eq.(1.6)bys 2= ww† h w h w† h hh i i−hh i ihh i i withthestochasticestimatew(U,h )=1/Nh (cid:229) iexp{−h i†(M−I)h i}. Byperformingtheh –average h (i.e.allh i independently) thefluctuations aregivenforfiniteNh by hi s 2= 1 1 +Nh −1 1 1 1 (1.8) Nh det(M+M† I) Nh detMM† − detM detM† (cid:28) − (cid:29) (cid:28) (cid:29) (cid:28) (cid:29)(cid:28) (cid:29) whichholdsforl (M+M† I)>0. Thestochasticfluctuations foroneconfiguration aregivenby − neglectingtheensembleaverage andvanishforNh ¥ . Moreoverbyintroducing amassinter- hi → polation betweenthestartandthetarget massthestochastic fluctuations canbefurther controlled, i.e.ifnoDiracoperatorhasazeroeigenvalueduringtheinterpolationtheconditionl (M+M†)>1 canbeinsured[5]. InthiscasethenumberofinversionsisNinv(cid:181) N Nh ,whereN isthenumberof · interpolation steps. Note for many reweighting cases it is effecient to use the even-odd precondi- tionedWilson–Diracoperator (e.g.see[6]),howeverwedonotfindanimprovementinthecaseof isospin reweighting. The ensemble fluctuations can be tamed by including additional quarks into the reweighting process, e.g. in the case of isospin reweighting the fluctuations are minimized by keeping theaveragequarkmassm =0.5(m +m )constantduring thereweighting. ud u d Here,wewilldiscussmassreweightingbyintroducinganisospinbreakinginthelightquarks. We will show the scaling of the different fluctuations (ensemble and stochastic) and how the up– anddown–quark masscanbeextracted fromtheanalyzed ensembles(seetab.1). 3 IsospinEffectsbyMassReweighting JacobFinkenrath E4 V] 104 D5 * E5 4 R m A5 O7 D / [v F7 Nin102 G8 > 2 W 2/st s< 100 0 0.05 0.1 0.15 m *r R 0 Figure1: Therelativestochasticfluctuationsoftheisospinreweightingfactorisshownasafunctionofthe renormalizedquarkmass. s s2t istheaverageofthestochasticvarianceestimatedusingNh =6. 2. IsospinReweighting Theisospinreweighting factoreq.(1.5)canbeexpanded inD m2 ud detD detD W = mu md =1+D m2 Tr(D 2)+O(D m4 ) (2.1) iso detD2 ud −mud ud mud by using detM = exp Tr(ln(M)) . The fluctuations s 2 in eq. (1.8) of the isospin reweighting { } factor can be expanded in D m2 . It can be shown that the stochastic fluctuations s 2 decouple ud st fromtheensemblefluctuationss 2 withs 2=s 2+s 2 . Thestochasticfluctuationsintheisospin ens st ens reweighting casearegivenby s 2(N ) D m4 1 st inv = ud Tr +O D m6 . (2.2) W2 N 2 ud (cid:28) (cid:29) inv * DmudD†mud + (cid:0) (cid:1) (cid:16) (cid:17) Theensemblefluctuations are s 2 1 ens =D m4 var Tr +O D m6 (2.3) W 2 ud D2 ud h i (cid:18) (cid:20) mud(cid:21)(cid:19) (cid:0) (cid:1) with the variance var(O) = O2 O 2. Note this is true because the Dirac operator is g - 5 −h i hermitian. Now, the cost can be derived by demanding that the stochastic fluctuations do not (cid:10) (cid:11) dominate theensemblefluctuations, e.g.thats 2(N )/s 2 ! 0.1. st inv ens ∼ By using the analyzed ensembles, listed in table 1, it is possible to deduce numerically the scaling behavior of the fluctuations in the quark mass and the volume. However in the case of the stochastic fluctuations the trace of the Wilson Dirac operator is known in chiral perturbation theory, e.g. asin [7], by Tr 1 (cid:181) S V. Thenumerical analysis isconsistent with this behavior. h (DD†)2i m3R Itfollowsforthestochastic fluctuations (seefig.1) D m4V 1 s 2 k R (2.4) st ≈ stNinvmrR′ r0r′ 4 IsospinEffectsbyMassReweighting JacobFinkenrath 4 106 10 E4 E4 0.25V r ]0 DE55 0.75V r ]phys0103 DE55 4m * R104 AO57 4m * R102 AO57 F7 F7 2D 2D W| G8 W| G8 / [|ns102 / [|ns101 2e 2e s s 0 0 0.05 0.1 0.15 100 0.05 0.1 0.15 m r m r R 0 R 0 Figure2: Thescalingoftheensemblefluctuationsfordifferentvolumebehaviorsisshown. Theleftfigure showsthequarkmassbehaviorforavolumebehaviorof√4V andtherightfigureforavolumebehaviorof V3/4. by using the scale r [8] to form dimensionless quantities. By fixing the volume behavior to V 0 we perform a fit (black, solid) to the quark mass behavior by using the ensembles E4 (green, triangle), D5 (red, diamond), E5 (black, triangle), A5 (cyan, circle), O7 (magenta, diamond), F7 (blue, square) and G8(green, star). Foreach ensemble wecompute s 2 ands 2 for twovalues of st ens D m=D m /2,D m (seetab. 1). Thequarkmassbehavior isgivenbyr =2.63(5). Forthered max max ′ lines the quark mass behavior and the volume behavior isfixed toV/m3 and only ensembles with q pion masses<340MeV areincluded. Thedatashowagoodagreement withtheexpectation from chiralperturbation theoryforpionmasses<340MeV. Theleadingtermoftheensemblefluctuationseq.(2.3)isproportionaltovar(TrD 2). Numer- − ically weobserveaweakvolumedependenceVq withq<1. Similartothestochastic fluctuations theensemblefluctuations canbewrittenas D m4Vq 1 s 2 k R . (2.5) ens≈ ens mrR r0r−4−q In general the simultaneous deduction of the volume and the quark mass behavior is difficult. A varied volume behavior changes simultaneously the mass behavior. A good fit is given for a volume scaling of q=0.25 (see left figure 2) which gives amassbehavior of r=3.85(13) for all ensembles (black line) and r=3.94(31) for ensembles with pion masses <340MeV (red dashed line). Aweakervolumebehavior isalsosupported bycomparisonofD5andE5ensembles, which givesq 0.46. Howeverbyassumingasimilarquarkmassbehaviorasinthecaseforthestochastic ∼ fluctuations with r=3 the scaling in the volume is roughly given by q 0.75. In the right figure ∼ 2 we fixed the volume behavior to q = 0.75 which gives a mass behavior of r = 2.83(13) by including every ensemble (black line) and r=3.04(31) byincluding ensembles withpion masses smaller than < 340MeV (red, dashed line). We conclude that the volume behavior is given by q 0.25...0.75byasimultaneous variation ofthequarkmassbehavior fromr 4...3. ≃ ≃ Thecostofisospinreweighting canbeestimatedfromtheratio s 2(N )/s 2 ks′t (Lmp )2L with ks′t =1e 3 (2.6) st inv ens ∼ k N r k − e′ns inv 0 e′ns · 5 IsospinEffectsbyMassReweighting JacobFinkenrath 3 30 ] ] V V e e M M 20 [ [d 0.076 fm ud2.5 0.076 fm R,u10 0.066 fm mR, 0.066 fm m 0.049 fm 0.049 fm D 0 2 0 2 4 6 8 0 5 10 R3 R3 Figure3:Thefiguresshowtheaveragequarkmassm (left)andthemasssplittingm m plottedversus ud d u − R afterfixingR andR . ThemassesarerenormalizedintheMS–schemeat2GeV. 3 1 2 forq=0.25andr=4. FortheG8ensemblefollowsN 200foraratioof0.1. inv ≈ 3. QuarkMasses Thecontinuum limitcanbeperformed onalineofconstant physics. Thisline canbedefined bykeepingdimensionlessratiosofphysicalquantitiesconstant. Thesefixthebaremassparameters, here,aquenchedstrangequarkwithm ,theisospinmasssplittingD m andtheaveragelightquark s ud massm . Wetaketheratios ud 0.5(m2 +m2 ) m2 m2 m2 R1= (0.5(fK0+ f K±))2 , R2= (0.5(Kf0−+ fK±))2 and R3= (0.5(f p+± f ))2 (3.1) K0 K K0 K K0 K ± ± ± withthemesonmasses,thepionmp ,theneutralkaonmK0 andthechargedkaonmK andthekaon ± ± decay constants f and f . The physical values of the ratios are taken from [9] and we assume K0 K ± 0.5(f + f )=155MeV. Now, the strategy is to use R to fix m , which is done in [4] and R K0 K 1 s 2 ± to fix the isospin splitting D m . Afterwards the ratio R is used to extrapolate the light quarks ud 3 towardsthephysicallimit. We measure the PCAC mass on the analyzed ensembles (see tab. 1) and convert them into theMS-renormalization scheme. Thedimensionless ratios R andR aregiveninthelowestorder 2 3 chiral perturbation theory up to O(D m2 ,m2 )by R = B D m (1+Cm ) and R = 2Bm with ud ud 2 F2 ud ud 3 F2 ud constants B,C and F2. Now, itis possible toperform extrapolations towards the physical point in thelightquarkmasses. Fortheaverage lightquarkmassthisisshownintheleftfigureoffig.3by assuming m (R ) a R . Byusing the F7 and G8ensemble the average light quark mass at the ud 3 1 3 ≈ physical point atfinitelattice spacing ofa=0.066fmisgivenbym =3.19(11)MeV. Forthe ud,R masssplittinginthelightquarks(seerightplotinfigure3)weassumedD m (R ) b +b R . By ud 3 0 1 3 ≈ usingthedataoftheE5,F7andG8ensembleitfollowsforthemasssplittingD m =2.49(10)MeV ud atfinitelatticespacing a=0.066fm. Theisospineffectsentertheobservablebytheisospinreweightingfactorwhichscalespropor- tional toD m2 . InthecaseofthePCACmassthestatistical erroristoobigcompared totheeffect ud of the isospin reweighting correction. A determination of this effect is only possible for larger 6 IsospinEffectsbyMassReweighting JacobFinkenrath statistics. Neclecting theseaquarkeffectsproportional toD m2 ,bysettingtheisospinreweighting ud factor to one, the isospin quark mass splitting is given by D m = 2.52(10) MeV. However the ud isospinreweightingeffectsincreasesforsmallerquarkmassesandwewanttoreducethestatistical errortofigureouttheisospineffectsforexampleinthepionmass. Inordertoperformacontinuum limitthestatistics hastobeincreased andotherensembles havetobeincluded. 4. Conclusion Isospinmassreweighting needsamoderatenumerical effort. Theanalysis showsthatthecost scales with (LM )2L for a volume scaling of the ensemble fluctuations with √4V and is around PS 200 inversions of the Dirac operator for the G8 ensemble which has a pion mass of 192 MeV at a volume ofV/a4 =128 643. By using the introduced dimensionless ratios R , R and R it is 1 2 3 × possible toextractthelightquark masses. Theisospin massspliting isD m =2.49(10)MeVand ud theaveragequarkmassism =3.19(11)MeVatfinitelatticespacingofa=0.066fm. Although ud,R amorecarefulanalysisisneededtoextractcompetitivenumbersitshowsthatthetuningconditions are suitable to extract the light quark masses. In order to extract continuum physics the statistics hastobeimprovedandQED-effectshavetobeincluded. Asoftwarepackageformassreweighting [10](seealso[11])ispubliclyavailable intheframeworkoftheopenQCDcode[12]. References [1] A.Hasenfratz,R.HoffmannandS.Schaefer,Phys.Rev.D78,014515(2008)[arXiv:0805.2369 [hep-lat]]. [2] A.M.FerrenbergandR.H.Swendsen,Phys.Rev.Lett.61,2635(1988). [3] J.Finkenrath,F.KnechtliandB.Leder,Nucl.Phys.B877,441(2013)[Erratum-ibid.B877,574 (2013)][arXiv:1306.3962[hep-lat]]. [4] P.Fritzsch,F.Knechtli,B.Leder,M.Marinkovic,S.Schaefer,R.SommerandF.Virotta,Nucl.Phys. B865,397(2012)[arXiv:1205.5380[hep-lat]]. [5] B.Leder,J.FinkenrathandF.Knechtli,PoSLATTICE2013,035(2014)[arXiv:1401.1079[hep-lat]]. [6] J.Finkenrath,F.KnechtliandB.Leder,PoSLATTICE2012,190(2012)[arXiv:1211.1214[hep-lat]]. [7] L.GiustiandM.Lüscher,JHEP0903,013(2009)[arXiv:0812.3638[hep-lat]]. [8] R.Sommer,Nucl.Phys.B411,839(1994)[hep-lat/9310022]. [9] S.Aoki,Y.Aoki,C.Bernard,T.Blum,G.Colangelo,M.DellaMorte,S.DürrandA.X.ElKhadraet al.,Eur.Phys.J.C74,no.9,2890(2014)[arXiv:1310.8555[hep-lat]]. [10] B.LederandJ.Finkenrath,https://github.com/bjoern-leder/mrw [11] B.LederandJ.Finkenrath,PoSLATTICE2014,040(2014) [12] MartinLüscher,http://luscher.web.cern.ch/luscher/openQCD 7

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.