ebook img

Isolated Singularities in Partial Differential Inequalities PDF

364 Pages·2016·1.613 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Isolated Singularities in Partial Differential Inequalities

ISOLATED SINGULARITIES IN PARTIAL DIFFERENTIAL INEQUALITIES Inthismonographtheauthorspresentsomepowerfulmethodsfordealingwith singularitiesinellipticandparabolicpartialdifferentialinequalities.Here,the authorstaketheuniqueapproachofinvestigatingdifferentialinequalitiesratherthan equations,thereasonbeingthatthesimplestwaytostudyanequationisoftento studyacorrespondinginequality;forexample,usingsub-andsuperharmonic functionstostudyharmonicfunctions.Anotherunusualfeatureofthepresentbook isthatitisbasedonintegralrepresentationformulaeandnonlinearpotentials,which havenotbeenwidelyinvestigatedsofar.Thisapproachcanalsobeusedtotackle higher-orderdifferentialequations. Thebookwillappealtograduatestudentsinterestedinanalysis,researchersin pureandappliedmathematics,andengineerswhoworkwithpartialdifferential equations.Readerswillrequireonlyabasicknowledgeoffunctionalanalysis, measuretheory,andSobolevspaces. EncyclopediaofMathematicsandItsApplications Thisseriesisdevotedtosignificanttopicsorthemesthathavewideapplicationin mathematicsormathematicalscienceandforwhichadetaileddevelopmentofthe abstracttheoryislessimportantthanathoroughandconcreteexplorationofthe implicationsandapplications. BooksintheEncyclopediaofMathematicsandItsApplicationscovertheir subjectscomprehensively.Lessimportantresultsmaybesummarizedasexercises attheendsofchapters.Fortechnicalities,readerscanbereferredtothe bibliography,whichisexpectedtobecomprehensive.Asaresult,volumesare encyclopedicreferencesormanageableguidestomajorsubjects. Encyclopedia of Mathematics and its Applications AllthetitleslistedbelowcanbeobtainedfromgoodbooksellersorfromCambridge UniversityPress.Foracompleteserieslistingvisit www.cambridge.org/mathematics. 114 J.Beck,CombinatorialGames 115 L.BarreiraandY.Pesin,NonuniformHyperbolicity 116 D.Z.ArovandH.Dym,J-ContractiveMatrixValuedFunctionsandRelatedTopics 117 R.Glowinski,J.-L.Lions,andJ.He,ExactandApproximateControllabilityforDistributedParameterSystems 118 A.A.BorovkovandK.A.Borovkov,AsymptoticAnalysisofRandomWalks 119 M.DezaandM.DutourSikiric´,GeometryofChemicalGraphs 120 T.Nishiura,AbsoluteMeasurableSpaces 121 M.Prest,Purity,SpectraandLocalisation 122 S.Khrushchev,OrthogonalPolynomialsandContinuedFractions 123 H.NagamochiandT.Ibaraki,AlgorithmicAspectsofGraphConnectivity 124 F.W.King,HilbertTransformsI 125 F.W.King,HilbertTransformsII 126 O.CalinandD.-C.Chang,Sub-RiemannianGeometry 127 M.Grabischetal.,AggregationFunctions 128 L.W.BeinekeandR.J.Wilson(eds.)withJ.L.GrossandT.W.Tucker,TopicsinTopologicalGraphTheory 129 J.Berstel,D.Perrin,andC.Reutenauer,CodesandAutomata 130 T.G.Faticoni,ModulesoverEndomorphismRings 131 H.Morimoto,StochasticControlandMathematicalModeling 132 G.Schmidt,RelationalMathematics 133 P.KornerupandD.W.Matula,FinitePrecisionNumberSystemsandArithmetic 134 Y.CramaandP.L.Hammer(eds.),BooleanModelsandMethodsinMathematics,ComputerScience,and Engineering 135 V.Berthe´andM.Rigo(eds.),Combinatorics,AutomataandNumberTheory 136 A.Krista´ly,V.D.Ra˘dulescu,andC.Varga,VariationalPrinciplesinMathematicalPhysics,Geometry,and Economics 137 J.BerstelandC.Reutenauer,NoncommutativeRationalSerieswithApplications 138 B.CourcelleandJ.Engelfriet,GraphStructureandMonadicSecond-OrderLogic 139 M.Fiedler,MatricesandGraphsinGeometry 140 N.Vakil,RealAnalysisthroughModernInfinitesimals 141 R.B.Paris,HadamardExpansionsandHyperasymptoticEvaluation 142 Y.CramaandP.L.Hammer,BooleanFunctions 143 A.Arapostathis,V.S.Borkar,andM.K.Ghosh,ErgodicControlofDiffusionProcesses 144 N.Caspard,B.Leclerc,andB.Monjardet,FiniteOrderedSets 145 D.Z.ArovandH.Dym,BitangentialDirectandInverseProblemsforSystemsofIntegralandDifferential Equations 146 G.Dassios,EllipsoidalHarmonics 147 L.W.BeinekeandR.J.Wilson(eds.)withO.R.Oellermann,TopicsinStructuralGraphTheory 148 L.Berlyand,A.G.Kolpakov,andA.Novikov,IntroductiontotheNetworkApproximationMethodfor MaterialsModeling 149 M.BaakeandU.Grimm,AperiodicOrderI:AMathematicalInvitation 150 J.Borweinetal.,LatticeSumsThenandNow 151 R.Schneider,ConvexBodies:TheBrunn–MinkowskiTheory(SecondEdition) 152 G.DaPratoandJ.Zabczyk,StochasticEquationsinInfiniteDimensions(SecondEdition) 153 D.Hofmann,G.J.Seal,andW.Tholen(eds.),MonoidalTopology 154 M.CabreraGarc´ıaandA´.Rodr´ıguezPalacios,Non-AssociativeNormedAlgebrasI:TheVidav–Palmerand Gelfand–NaimarkTheorems 155 C.F.DunklandY.Xu,OrthogonalPolynomialsofSeveralVariables(SecondEdition) 156 L.W.BeinekeandR.J.Wilson(eds.)withB.Toft,TopicsinChromaticGraphTheory 157 T.Mora,SolvingPolynomialEquationSystemsIII:AlgebraicSolving 158 T.Mora,SolvingPolynomialEquationSystemsIV:BuchbergerTheoryandBeyond 159 V.Berthe´andM.Rigo(eds.),Combinatorics,WordsandSymbolicDynamics 160 B.Rubin,IntroductiontoRadonTransforms:WithElementsofFractionalCalculusandHarmonicAnalysis 161 M.GherguandS.D.Taliaferro,IsolatedSingularitiesinPartialDifferentialInequalities 162 G.MolicaBisci,V.D.Radulescu,andR.Servadei,VariationalMethodsforNonlocalFractionalProblems 163 G.TomkowiczandS.Wagon,TheBanach–TarskiParadox(SecondEdition) Encyclopedia of Mathematics and its Applications Isolated Singularities in Partial Differential Inequalities MARIUS GHERGU UniversityCollegeDublin STEVEN D. TALIAFERRO TexasA&MUniversity UniversityPrintingHouse,CambridgeCB28BS,UnitedKingdom CambridgeUniversityPressispartoftheUniversityofCambridge. ItfurtherstheUniversity’smissionbydisseminatingknowledgeinthepursuitof education,learningandresearchatthehighestinternationallevelsofexcellence. www.cambridge.org Informationonthistitle:www.cambridge.org/9781107138384 ©MariusGherguandStevenD.Taliaferro2016 Thispublicationisincopyright.Subjecttostatutoryexception andtotheprovisionsofrelevantcollectivelicensingagreements, noreproductionofanypartmaytakeplacewithoutthewritten permissionofCambridgeUniversityPress. Firstpublished2016 AcatalogrecordforthispublicationisavailablefromtheBritishLibrary ISBN978-1-107-13838-4Hardback CambridgeUniversityPresshasnoresponsibilityforthepersistenceoraccuracy ofURLsforexternalorthird-partyinternetwebsitesreferredtointhispublication, anddoesnotguaranteethatanycontentonsuchwebsitesis,orwillremain, accurateorappropriate. Contents Preface pageix 1 Representationformulaeforsingularsolutionsofpolyharmonic andparabolicinequalities 1 1.1 Introduction 1 1.2 Harmonicinequalitiesinthepuncturedball 1 1.3 Polyharmonicinequalitiesinthepuncturedball 5 1.4 Parabolicinequalities 16 1.5 Comments 20 2 Isolatedsingularitiesofnonlinearsecond-orderelliptic inequalities 22 2.1 Introduction 22 2.2 Casen≥3 22 2.3 Casen=2 48 2.4 Comments 63 3 Moreonisolatedsingularitiesforsemilinearellipticinequalities 65 3.1 Introduction 65 3.2 Localbehaviorofsolutions 65 3.3 Globalexistenceofsolutions 76 3.4 Casep = n+2 81 n−2 3.5 Comments 87 4 EllipticinequalitiesfortheLaplaceoperator withHardypotential 89 4.1 Introduction 89 4.2 SomecomparisonprinciplesfortheLaplaceoperatorwith L1potential 89 4.3 EllipticinequalitieswithHardytermsincone-likedomains 93 v vi Contents 4.4 EllipticinequalitieswithHardytermsinsmoothdomainswith boundarysingularities 101 4.5 EllipticinequalitieswithHardytermsandhigherdimensional singularity 111 4.6 Comments 120 5 Singularsolutionsforsecond-ordernondivergencetype ellipticinequalities 122 5.1 Introduction 122 5.2 Effectivedimensionandotherimportantquantities 123 5.3 AnEmden–Fowlerequation 125 5.4 Firstresult.Estimatesonthecriticalexponent 131 5.5 Secondresult.Thecriticalcase 136 5.6 Examples 138 5.7 Comments 143 6 Isolatedsingularitiesofpolyharmonicinequalities 144 6.1 Introduction 144 6.2 Polyharmonicinequalitiesinpuncturedballs 144 6.3 Polyharmonicinequalitiesinexteriordomains 153 6.4 Comments 155 7 Nonlinearbiharmonicinequalities 158 7.1 Introduction 158 7.2 Mainresults 160 7.3 Preliminaryresults 161 7.4 Casen≥3 168 7.5 Casen=2 193 7.6 Comments 199 8 Initialblow-upfornonlinearparabolicinequalities 200 8.1 Introduction 200 8.2 Optimalexponentsforaprioribounds 201 8.3 Parabolicinequalitieswithboundaryconditions 214 8.4 Comments 234 9 Semilinearellipticsystemsofdifferentialinequalities 235 9.1 Introduction 235 9.2 Casen=2 236 9.3 Casen≥3 245 9.4 Comments 259 10 Isolatedsingularitiesfornonlocalellipticsystems 264 10.1 Introduction:Whatisanonlocalequation? 264 10.2 Anonlocalellipticsystemwithconvolutionterms 265 10.3 Someintegralestimates 266 Contents vii 10.4 Casemin{α,β}≤2 270 10.5 Someauxiliaryresultsforintegralsystems 274 10.6 Caseα,β ∈(2,n) 285 10.7 Comments 292 11 Isolatedsingularitiesforsystemsofparabolicinequalities 294 11.1 Introduction 294 11.2 Preliminarylemmas 295 11.3 Themainresults 306 11.4 Comments 317 AppendixA Estimatesfortheheatkernel 319 AppendixB Heatpotentialestimates 328 AppendixC Nonlinearpotentialestimates 338 References 341 Index 348

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.