ebook img

Isogeometric Least-squares Collocation Method with Consistency and Convergence Analysis PDF

1.2 MB·
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Isogeometric Least-squares Collocation Method with Consistency and Convergence Analysis

Isogeometric Least-squares Collocation Method with Consistency and Convergence Analysis HongweiLina,∗,YunyangXionga,QianqianHub aDepartmentofMathematics,StateKeyLab.ofCAD&CG,ZhejiangUniversity,Hangzhou,310027,China bDepartmentofMathematics,ZhejiangGongshangUniversity,Hangzhou,310018,China 6 1 0 Abstract 2 n Isogeometric analysis (IGA) approximates the unknown solution of a boundary value problem a (orinitialvalueproblem)usinganon-uniformrationalbasisspline(NURBS)functionwithnon- J linearNURBSbasisfunctions.IftheorderoftheNURBSfunctionishighenough,theboundary 7 valueproblemcanbesolvedusinganisogeometriccollocation(IGA-C)methodthatinterpolates 2 the real differential operator at collocation points. In this paper, we present the isogeometric ] least-squarescollocation(IGA-L)method. IGA-Ldeterminesthenumericalsolutionbymaking A the approximate differential operator fit the real differential operator in a least-squares sense. N Therefore, while IGA-C requires the number of collocation points to be equal to that of the . unknown coefficients of the numerical solution, the number of collocation points employed in h IGA-L can be larger than that of the unknown coefficients. IGA-L has some advantages over t a IGA-C. First, if the number of coefficients of the numerical solution is fixed, a small increase m in the number of collocation points in IGA-L leads to a large improvement in the accuracy of [ itsnumericalsolutioncomparedtoIGA-C.Second,becausethenumberofcollocationpointsin 1 IGA-Lisvariable,itismoreflexibleandmorestablethanIGA-C.Wealsoshowtheconsistency v andconvergencepropertiesofIGA-Linthispaper. 4 4 Keywords: Isogeometricanalysis,collocationmethod,least-squaresfitting,NURBS, 2 consistencyandconvergence 7 0 . 1 0 1. Introduction 6 1 : WhileclassicalFiniteElementAnalysis(FEA)methods,widelyemployedinphysicalsimula- v tions, are based on element-wise piecewise polynomials, computer-aided design (CAD) mod- i X els are usually represented by non-uniform rational basis splines (NURBSs) with non-linear r NURBS basis functions. Therefore, the first task in a CAD model simulation is to transform a the non-linear NURBS-represented CAD model into a linear mesh representation. This mesh transformationisaverytediousoperation, andithasbecomethemosttime-consumingtaskof thewholeFEAprocedure. Toavoidthemeshtransformationandadvancetheseamlessintegra- tionofCADandcomputer-aidedengineering(CAE),isogeometricanalysis(IGA)wasinvented ∗Corresponding author: phone number: 86-571-87951860-8304, fax number: 86-571-88206681, email: [email protected] PreprintsubmittedtoElsevier January28,2016 byHughesetal.[1]. IGAisbasedonthenon-linearNURBSbasisfunctions,henceitcandeal with NURBS-represented CAD models directly. In this way, IGA not only saves a significant amountofcomputation,italsogreatlyimprovesthenumericalaccuracyofthesolution. InIGA,theanalyticalsolutionT toaboundaryvalueproblemisapproximatedbyaNURBS functionT withunknowncoefficients. (Forbrevity,weonlymentiontheboundaryvalueprob- r leminthispaper. However, thismethodisalsosuitablefortheinitialvalueproblem.) Solving theboundaryvalueproblemisthenequivalenttodeterminingtheunknowncoefficientsofT . If r theorderofT ishigherthanthatofthedifferentialoperatorDoftheboundaryvalueproblem, r DT canberepresentedexplicitlybyaNURBSderivativeformula. Therefore,collocationmeth- r odscanbeappliedtothestrongformoftheboundaryvalueproblemtodeterminetheunknown coefficientsofT . r In Ref. [2], an isogeometric collocation (IGA-C) method was presented. Suppose n is the number of unknown coefficients of T . IGA-C first samples n values DT(η ), j = 1,2,··· ,n, r j and then generates a linear system of equations by making DT interpolate the n values, i.e., r DT (η ) = DT(η ), j = 1,2,··· ,n. In this way, the unknown coefficients of T can be deter- r j j r minedbysolvingthelinearsystem. Essentially, IGA-Cacquirestheunknowncoefficientsbyinterpolation, wherethenumberof thecollocationpointsmustbeequaltothatoftheunknowncoefficients.Inthispaper,wepropose theisogeometricleast-squarescollocation(IGA-L)method, whichallowsthenumberofcollo- cationpointstobelargerthanthatoftheunknowncoefficients. Ityieldssomeadvantagesover IGA-C.Insteadofinterpolation,IGA-Lmakesuseofapproximationtodeterminetheunknown coefficientsofT . Specifically,IGA-LfirstsamplesmvaluesDT(η ), j = 1,2,··· ,m,wherem r j isgreaterthanthenumberofunknowncoefficients,i.e.,m>n. Thecoefficientsoftheunknown solutionT arethendeterminedbysolvingtheleast-squaresfittingproblem r (cid:88)m (cid:13) (cid:13) min (cid:13)(cid:13)DT(ηj)−DTr(ηj)(cid:13)(cid:13)2. j=1 TherearetwoadvantagesofIGA-LoverIGA-C.First,numericaltestspresentedinthispaper show that a small increase in the computation of IGA-L leads to a large improvement in the numericalaccuracyofthesolution,eventhoughthecomputationalcostofIGA-Lisonlyslightly morethanthatofIGA-C.Second,IGA-LismoreflexibleandmorestablethanIGA-C,because IGA-Lallowsavariablenumberofcollocationpoints,whilethenumberofcollocationpointsin IGA-Cisfixedtobeequaltothenumberofcontrolpoints. Thestructureofthispaperisasfollows. InSection1.1,somerelatedworkisbrieflyreviewed. In Section 2, the generic formulation of IGA-L is presented. In Section 3, we show the con- sistencyandconvergencepropertiesofIGA-L.AfterthoroughlycomparingIGA-LandIGA-C, bothintheoryandwithnumericalexamplesinSection4,thispaperisconcludedinSection5. 1.1. RelatedWork Least-squares collocation methods: Although collocation-based meshless methods are ef- ficient, equilibrium conditions are satisfied only at collocation points. Thus, collocation-based meshlessmethodscanresultinsignificanterror. Toimprovecomputationalaccuracy, Zhanget al. developedaleast-squarescollocationmethod[3],whereequilibriumconditionsholdatboth collocation points and auxiliary points in a least-squares sense. In order to generate a better conditioned linear algebraic equations, a least-squares meshfree collocation method was pro- posed, based on first-order differential equations [4]. In Ref. [5], a point collocation method 2 was invented that employs the approximating derivatives based on the moving least-square re- producing kernel approximations. Moreover, several schemes using least-squares collocation methodsweredevelopedfortwo-andthree-dimensionalheatconductionproblems[6],transient andsteady-statehyperbolicproblems[7],andadaptiveanalysisproblemsinlinearelasticity[8]. However,theconsistencyandconvergencepropertiesoftheaforementionedleast-squarescol- locationmethodswereonlyvalidatedusingnumericalexamples,andtheoreticalnumericalanal- yseswerenotreported. Inthispaper,wenotonlydevelopanisogeometricleast-squarescollo- cationmethod,butalsoshowitsconsistencyandconvergencepropertiesintheory. Isogeometric analysis: NURBS is a mathematical model for representing curves and sur- facesbyblendingweightedcontrolpointsandNURBSbasisfunctions. Hence,theshapeofthe NURBS curves and surfaces can be easily modified by moving their control points. Because ofthedesirabletraitsofNURBSbasisfunctions,NURBSscurvesandsurfaceshavemanygood properties,suchasconvexhull,affineinvariance,andvariationdiminishing.Moreover,NURBSs can represent conic sections and quadric surfaces accurately. Therefore, NURBSs have been widelyusedinCAD,computer-aidedmanufacturing(CAM),andCAE,andhavebecomeapart of numerous industry standards, such as IGES, STEP, ACIS, and PHIGS. For more details on NURBSs,thereareexcellentbooksonthesubject[9,10]. WhileaNURBSemploysnon-linearbasisfunctions,classicalFEAisbasedonelement-wise piecewisepolynomials. Hence,whenanalyzingNURBS-representedCADmodelsusingclassi- calFEA,theCADmodelshouldbediscretizedintoameshmodel. Themeshgenerationproce- durenotonlyyieldsanapproximation,itisalsoverytedious,andhencehasbecomeabottleneck inFEA.Toovercomethesedifficulties,Hughesetal. inventedtheIGAtechnique[1]. Because IGA is based on NURBS basis functions, it can handle NURBS-represented CAD models di- rectly without generating a mesh. Moreover, because NURBSs can represent complex shapes (andphysicalfields)withsignificantlyfewercontrolpointsthanameshrepresentation,thecom- putationalefficiencyandnumericalaccuracyofIGAarehigherthantheclassicalFEAmethod. In addition, because of the knot insertion property of NURBSs, the original shape of the CAD modelcanbemaintainedexactlyintherefinementprocedure[1]. Ingeometricdesign,theNURBSrepresentationisusuallyemployedtomodelcurvesandsur- faces. There are a few effective methods in geometric design for modeling spline solids. To modelaNURBSsolidforIGAapplications,Zhangetal. proposedasolidconstructionmethod fromaboundaryrepresentation[11]. InthestudyofIGA,makingthegeometricrepresentation moresuitableforanalysispurposesisakeyresearchgoal. Cohenetal. presentedtheanalysis- awaremodelingtechnique[12]. Moreover,T-spline[13,14],trimmedsurfaces[15],andsubdi- visionsolids[16]werealsoemployedintheIGAmethodtomodelthephysicaldomain. Currently, the IGA method has been successfully applied in various simulation problems, including elasticity [17, 18], structure [19, 20, 21], and fluids [22, 23, 24]. On the other hand, someworkconcernsthecomputationalaspectoftheIGAmethod, forinstance, toimprovethe accuracyandefficiencybyreparameterizationandrefinement[25,26,27,28,29]. Isogeometriccollocationmethods:Thecollocationmethodisasimplenumericalmethodfor solvingdifferentialequationsthatcangenerateasolutionthatsatisfiesthedifferentialequation at a set of discrete points, called collocation points [30]. If the order of the unknown NURBS functionthatisemployedtoapproximatethesolutionofthedifferentialequationishighenough, the collocation method can be applied to the strong form of the differential equation. In this way,theIGA-CmethodwaspresentedinRef.[2]. However,IGA-Cisgreatlyinfluencedbythe collocation points. Recently, a comprehensive study on IGA-C discovered its superior behav- iorovertheGalerkinmethodintermsofitsaccuracy-to-computational-timeratio[31], andthe 3 consistencyandconvergencepropertiesoftheIGA-CmethodweredevelopedinRef.[32]. Moreover,basedonthelocalhierarchicalrefinementofNURBSs,adaptiveIGA-Cswerede- velopedandanalyzed[31]. Meanwhile, IGA-Chasalsobeenextendedtomulti-patchNURBS configurations, various boundary and patch interface conditions, and explicit dynamic analy- sis [33]. Recently, IGA-C was successfully employed to solve the Timoshenko beam prob- lem[34]andspatialTimoshenkorodproblem[35],showingthatmixedcollocationschemesare locking-free,independentlyofthechoiceofthepolynomialdegreesfortheunknownfields. 2. GenericFormulationofIGA-L Considerthefollowingboundaryvalueproblem,  DT = f, inΩ∈Rd, (1) GT =g, on∂Ω, whereΩisthephysicaldomaininRd,Disadifferentialoperatorinthephysicaldomain,GT =g is the boundary condition, and f : Ω → R and g : ∂Ω → R are given functions. Suppose d 1 isthemaximumorderofderivativesappearinginD : V → W,whereV andW aretwoHilbert spaces,andtheanalyticalsolutionT ∈Cd2(Ω),d2 >d1 ≥1. InIGA,thephysicaldomainΩisrepresentedbyaNURBSmapping: F:Ω →Ω, (2) 0 where Ω is the parametric domain. By replacing the control points of F(Ω ) with unknown 0 0 controlcoefficients,therepresentationoftheunknownnumericalsolutionT isgenerated. r SupposetherearenunknowncontrolcoefficientsintheunknownnumericalsolutionT . We r first sample m points θ inside the parametric domain Ω that correspond to m values η = 1 i 0 1 i F(θ), i = 1,2,··· ,m ,insidethephysicaldomainΩ. Furthermore,wesamplem pointsθ on i 1 2 j theparametricdomainboundary∂Ω thatcorrespondtom valuesη = F(θ ), j=m +1,m + 0 2 j j 1 1 2,··· ,m +m , on the physical domain boundary ∂Ω. The total number of these points, i.e., 1 2 m = m +m ,isgreaterthanthenumberofunknowncoefficientsofthenumericalsolutionT , 1 2 r namely,m = m +m > n. JustasinIGA-C,thesesamplingpointsarealsocalledcollocation 1 2 points. Substitutingthesecollocationpointsintotheboundaryvalueproblem(1), asystemofequa- tionswithmequationsandnunknownsisobtained(wherem=m +m >n), 1 2  DTr(ηi)= f(ηi), i=1,2,···m1, (3) GT (η )=g(η ), j=m +1,m +2,··· ,m +m . r j j 1 1 1 2 Arranging the unknowns of the numerical solution T into an n × 1 matrix, i.e., X = r [x x ··· x ]t,thesystemofequations(3)canberepresentedinmatrixformby 1 2 n AX =b. Becausethenumberofequationsisgreaterthanthenumberofunknowns,thesolutionissought intheleast-squaressense,i.e., min(cid:107)AX−b(cid:107)2. (4) X 4 Computation of the least-squares problem (4): The least-squares problem (4) is very im- portantinpractice,andtherehavebeendevelopedlotsofrobustandefficientmethodsforsolving it[36]. Onefrequentlyemployedmethodistosolvethenormalequation(5), AtAX = Atb. (5) Althoughtheconditionnumberofthematrix ATAisthesquareofthatofthematrix A, ATAis a symmetric positive definite matrix, and the normal equation (5) can be solved efficiently by Choleskydecomposition[36]. Moreover,HouseholderorthogonalizationandGivenorthogonal- ization are also two efficient methods [36] which often employed in solving the least-squares problem(4). Formoremethodsonsolving(4),pleasereferto[36]. In the following, we will show the consistency and convergence properties of IGA-L, and compareitwithIGA-C,bothintheoryandwithnumericalexamples. 3. NumericalAnalysis IntheIGA-Lmethoddevelopedabove,aNURBSfunctionT isemployedtoapproximatethe r analyticalsolutionT oftheboundaryvalueproblem(1),andhencetherealdifferentialoperator DT isapproximatedbyDT . InRef.[32],itwasshownthatbothDT andT aredefinedonthe r r r sameknotintervals,i.e., Lemma1. IfT isaNURBSfunctionandDisadifferentialoperator,thenbothDT andT are r r r definedonthesameknotintervals[32]. Moreover,givenasetΦ,thediameterofΦisdefinedas diam(Φ)=max{d(x,y),x,y∈Φ}, whered(x,y)istheEuclideandistancebetweenxandy.Inthefollowing,wesupposetheNURBS functionT tobedefinedonaknotgridTh,wherehistheknotgridsize:Intheone-dimensional r case,Th isaknotsequence,andh = maxi{diam([ui,ui+1])};inthetwo-dimensionalcase,Th is arectangulargrid,andh=maxij{diam([ui,ui+1]×[vj,vj+1])};andinthethree-dimensionalcase, Thisahexahedralgrid,andh=maxijk{diam([ui,ui+1]×[vj,vj+1]×[wk,wk+1])}. Inthissection,westudytheconsistencyandconvergencepropertiesofIGA-L,i.e.,whenh→ 0, notonlywillapproximatedifferentialoperatorDT tendtorealoperatorDT, butnumerical r solutionT willalsotendtoanalyticalsolutionT. r 3.1. Consistency In this section, we explore the consistency property of the IGA-L method. The theorem for consistencyispresentedasfollows. Theorem1. IntheIGA-Lmethod,if (1.1) eachknotintervaloftheNURBSfunctionT definedonknotgridTh containsatleastone r collocationpoint (1.2) thedegreeofeachvariableinT islargerthanthemaximumorderofthepartialderivatives r tothevariablesappearinginD(seeEq.(1)) 5 (1.3) theleast-squaresfittingerrore isbounded,i.e.,e < M¯,whereM¯ isapositiveconstant h h thenapproximatedifferentialoperatorDT tendstorealdifferentialoperatorDT intheL2norm r whenh→0. Proof: We only show the theorem in the two-dimensional case. The proof for the one- and three-dimensionalcasesissimilar. Inthetwo-dimensionalcase, supposethetensorproductNURBSfunctionT (u,v)ofdegree r l ×l isdefinedontheknotsequences u v {u ,u ,··· ,u ,u ,··· ,u ,u ,u ,··· ,u }, (cid:124)0(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)0(cid:32)(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:125)0 1 nu−1 (cid:124)n(cid:32)(cid:32)u(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)u(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:125)u lu+1 lu+1 (6) {v ,v ,··· ,v ,v ,··· ,v ,u ,u ,··· ,u }. (cid:124)0(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)0(cid:32)(cid:32)(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:125)0 1 nv−1 (cid:124)n(cid:32)(cid:32)v(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)v(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:125)v lv+1 lv+1 Thenthecorrespondingknotgridis Th ={[ui,ui+1]×[vj,vj+1], i=0,1,··· ,nu−1, j=0,1,··· ,nv−1}. (7) Denote R(u,v)=(DT(u,v)−DT (u,v))2,(u,v)∈[u ,u ]×[v ,v ]. r 0 nu 0 nv Note that T (u,v) is generated by least-squares fitting the values of DT(u,v) at the collocation r pointsϑ =(η ,ξ ),i.e.,DT(ϑ ),d =1,2,··· ,D,(D≥n n ). Andsupposethefittingerroris d d d d u v (cid:88)D (cid:88)D e = R(ϑ )= (DT(ϑ )−DT (ϑ ))2. (8) h d d r d k=1 k=1 First, based on Lemma 1, the numerical solution T (u,v) and the approximate differential r operatorDT (u,v)havethesameknotintervals, r [ui,ui+1]×[vj,vj+1], i=0,1,··· ,nu−1, j=0,1,··· ,nv−1. Now,considertheerrorbetweenDT(u,v)andDT (u,v)intheL2norm, r (cid:90) vnv (cid:90) unu n(cid:88)v−1n(cid:88)u−1(cid:90) vj+1(cid:90) ui+1 (cid:107)DT(u,v)−DT (u,v)(cid:107)2 = R(u,v)dudv= R(u,v)dudv. r L2 v0 u0 j=0 i=0 vj ui Sinceeachknotinterval[ui,ui+1]×[vj,vj+1]containsatleastonecollocationpoint,wesuppose ϑd =(ηd,ξd)∈[ui,ui+1]×[vj,vj+1].Usingtheleftandrightrectangleintegralformularepeatedly, 6 weget (cid:90) vj+1(cid:90) ui+1 (cid:90) vj+1 (cid:32)(cid:90) ηd (cid:90) ui+1 (cid:33) R(u,v)dudv= dv R(u,v)du+ R(u,v)du vj ui vj ui ηd =(cid:90) vj+1(ηd−ui)R(ηd,v)+(ui+1−ηd)R(ηd,v)+(ηd−ui)2R(cid:48)u(µ(i12)(v),v) +(ui+1−ηd)2R(cid:48)u(µ(i22)(v),v)dv vj =(ui+1−ui)(cid:90) vj+1R(ηd,v)dv+(ηd−ui)2(cid:90) vj+1 R(cid:48)u(µ(i1)(v),v)dv+(ui+1−ηd)2(cid:90) vj+1 R(cid:48)u(µ(i2)(v),v)dv 2 2 vj vj vj   =(ui+1−ui)(ξd−vj)R(ηd,ξd)+(vj+1−ξd)R(ηd,ξd)+(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j)) +(ηd−ui)2(cid:90) vj+1 R(cid:48)u(µ(i1)(v),v)dv+(ui+1−ηd)2(cid:90) vj+1 R(cid:48)u(µ(i2)(v),v)dv 2 2 vj vj   =(ui+1−ui)(vj+1−vj)R(ηd,ξd)+(ui+1−ui)(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j)) +(ηd−ui)2(cid:90) vj+1 R(cid:48)u(µ(i1)(v),v)dv+(ui+1−ηd)2(cid:90) vj+1 R(cid:48)u(µ(i2)(v),v)dv, 2 2 vj vj whereµ(i1)(v),µ(i2)(v)∈(ui,ui+1)andω(i1j),ω(i2j) ∈(vj,vj+1).Bythemeanvaluetheoremofintegral, thereexist(µ¯(i1j),ω¯(i1j)),(µ¯(i2j),ω¯(i2j))∈[ui,ui+1]×[vj,vj+1]suchthat (cid:90) vj+1 R(cid:48)u(µ(1)(v),v)dv=(vj+1−vj)R(cid:48)u(µ¯(i1j),ω¯(i1j)), and 2 2 vj (cid:90) vj+1 R(cid:48)u(µ(2)(v),v)dv=(vj+1−vj)R(cid:48)u(µ¯(i2j),ω¯(i2j)), 2 2 vj Therefore, (cid:90) vj+1(cid:90) ui+1 R(u,v)dudv=(ui+1−ui)(vj+1−vj)R(ηd,ξd) vj ui   +(ui+1−ui)(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j))   +(vj+1−vj)(ηd−ui)2R(cid:48)u(µ¯(i1j2),ω¯(i1j)) +(ui+1−ηd)2R(cid:48)u(µ¯(i2j2),ω¯(i2j)). Moreover,wedenoteΞ=[u ,u ]×[v ,v ]. Itiseasytoshowthat 0 nu 0 nv (cid:12) (cid:12) (cid:12) (cid:12) min (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12)≤n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i2j))(cid:12)(cid:12)(cid:12) ≤ max (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12), (u,v)∈Ξ v j=0 i=0 (unu −u0)(vnv −v0) 2 (u,v)∈Ξ v 7 (cid:12) (cid:12) (cid:12) (cid:12) min (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12)≤n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i1j),ω¯(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i2j),ω¯(i2j))(cid:12)(cid:12)(cid:12) ≤ max (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12). (u,v)∈Ξ u j=0 i=0 (unu −u0)(vnv −v0) 2 (u,v)∈Ξ u Andthen,basedontheintermediatevaluetheorem,thereexist(η(1),ξ(1))∈Ξand(η(2),ξ(2))∈Ξ, suchthat (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12)(cid:12)R(cid:48)(η(1),ξ(1))(cid:12)(cid:12)(cid:12)=n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i2j))(cid:12)(cid:12)(cid:12), v (u −u )(v −v ) 2 j=0 i=0 nu 0 nv 0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12)(cid:12)R(cid:48)(η(2),ξ(2))(cid:12)(cid:12)(cid:12)=n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i1j),ω¯(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i2j),ω¯(i2j))(cid:12)(cid:12)(cid:12). u (u −u )(v −v ) 2 j=0 i=0 nu 0 nv 0 Asaresult, (cid:90) vnv (cid:90) unu n(cid:88)v−1n(cid:88)u−1(cid:90) vj+1(cid:90) ui+1 (cid:107)DT(u,v)−DT (u,v)(cid:107)2 = R(u,v)dudv= R(u,v)dudv r L2 v0 u0 j=0 i=0 vj ui n(cid:88)v−1n(cid:88)u−1 = (ui+1−ui)(vj+1−vj)R(ηd,ξd) j=0 i=0   +n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j)) j=0 i=0   +n(cid:88)v−1n(cid:88)u−1(vj+1−vj)(ηd−ui)2R(cid:48)u(µ¯(i1j2),ω¯(i1j)) +(ui+1−ηd)2R(cid:48)u(µ¯(i2j2),ω¯(i2j)) j=0 i=0 (cid:12) (cid:12) (cid:12) (cid:12) ≤h2(cid:88)D R(ηd,ξd)+hn(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i2j))(cid:12)(cid:12)(cid:12) 2 d=1 j=0 i=0 (cid:12) (cid:12) (cid:12) (cid:12) +hn(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(µ¯(i1j),ω¯(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(µ¯(i2j),ω¯(i2j))(cid:12)(cid:12)(cid:12) 2 j=0 i=0 (cid:16)(cid:12) (cid:12) (cid:12) (cid:12)(cid:17) =h2eh+h(unu −u0)(vnv −v0) (cid:12)(cid:12)R(cid:48)v(η(1),ξ(1))(cid:12)(cid:12)+(cid:12)(cid:12)R(cid:48)u(η(2),ξ(2))(cid:12)(cid:12) (cid:16)(cid:12) (cid:12) (cid:12) (cid:12)(cid:17) <h2M¯ +h(unu −u0)(vnv −v0) (cid:12)(cid:12)R(cid:48)v(η(1),ξ(1))(cid:12)(cid:12)+(cid:12)(cid:12)R(cid:48)u(η(2),ξ(2))(cid:12)(cid:12) . Ontheotherhand,sincethedegreesofuandvinT (u,v)arebothlargerthanthemaximum r ordersofthepartialderivativestouandvappearinginD(referto(1)),respectively,similaras theone-dimensionalcase,R(cid:48)(u,v)andR(cid:48)(u,v)arebothcontinuous,andthenboundedonΩ∪∂Ω, u v i.e., (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12)R(cid:48)(η(1),ξ(1))(cid:12)(cid:12)≤ Mˆ, and, (cid:12)(cid:12)R(cid:48)(η(2),ξ(2))(cid:12)(cid:12)≤ Mˆ, v u whereMˆ isapositiveconstant. Inconclusion, (cid:107)DT(u,v)−DT (u,v)(cid:107)2 ≤h2M¯ +2h(u −u )(v −v )Mˆ, r L2 nu 0 nv 0 8 andTheorem1isproved. (cid:50) 3.2. Convergence Based on the consistency property of IGA-L, we can show that IGA-L is convergent if the differentialoperatorisstableorstronglymonotonic,similarlyasinRef.[32]. LetV andW betwoHilbertspacesand(cid:107)·(cid:107) and(cid:107)·(cid:107) betwonormsdefinedonV andW,re- V W spectively.Suppose(cid:107)·(cid:107) and(cid:107)·(cid:107) areequivalenttotheL2norm,i.e.,thereexistpositiveconstants V W α , β , α ,andβ suchthat, V V W W α (cid:107)·(cid:107) ≤(cid:107)·(cid:107) ≤β (cid:107)·(cid:107) , (9) V L2 V V L2 α (cid:107)·(cid:107) ≤(cid:107)·(cid:107) ≤β (cid:107)·(cid:107) . (10) W L2 W W L2 Wefirstgivethedefinitionsforstableandstronglymonotonicoperators. Definition1(Stabilityestimateandstableoperator[37]). LetV,WbeHilbertspacesandD: V →W beadifferentialoperator. IfthereexistsaconstantC >0suchthat S (cid:107)Dv(cid:107) ≥C (cid:107)v(cid:107) , forallv∈ D(D), (11) W S V where D(D) represents the domain of D, differential operator D is called the stable operator, andtheinequality(11)iscalledthestabilityestimate. Definition2(Stronglymonotonicoperator[37]). LetV beaHilbertspaceandD∈L(V,V(cid:48)). OperatorDissaidtobeastronglymonotonicoperator,ifthereexistsaconstantC > 0,such D that (cid:104)Dv,v(cid:105)≥C (cid:107)v(cid:107)2 , forallv∈V. (12) D V For every v ∈ V, element Dv ∈ V(cid:48) is of a linear form. The symbol (cid:104)Dv,v(cid:105), which denotes the applicationofDvtov∈V,iscalledadualitypairing. Clearly,ifadifferentialoperatorDisstronglymonotonic,itisstable. Lemma2. Let V be a Hilbert space and D ∈ L(V,V(cid:48)) be a continuous strongly monotonic linear operator. Then, there exists a constant C > 0 such that D satisfies the stability esti- D mate(11)[37]. TheproofcanbefoundinRef.[32]. Therefore,wehavetheconvergencepropertyofIGA-Lasfollows. Theorem2. SupposeNURBSfunctionT ,definedonknotgridTh,isthenumericalsolutionto r theboundaryvalueproblem(1),generatedbyIGA-L,andtheconditionspresentedinTheorem1 aresatisfiedinone,two,andthreedimensions,respectively. IfdifferentialoperatorD:V →W in(1)isastableoperator,T willconvergetoanalyticsolutionT whentheknotgridsizeh→0. r Proof: Differential operator D in (1) is a stable operator, so there exists a constantC > 0, S suchthat (cid:107)D(T −T )(cid:107) ≥C (cid:107)T −T (cid:107) . r W S r V 9 Anditisequivalentto 1 (cid:107)T −T (cid:107) ≤ (cid:107)DT −DT (cid:107) . r V C r W S Duetotheequivalenceof(cid:107)·(cid:107) and(cid:107)·(cid:107) (9),wehave, L2 W 1 β (cid:107)T −T (cid:107) ≤ (cid:107)DT −DT (cid:107) ≤ W (cid:107)DT −DT (cid:107) . r V C r W C r L2 S S BecauseoftheconsistencyofIGA-L(Theorem1), (cid:107)T −T (cid:107) willconvergeto0whenh → 0. r V Andthistheoremisproved. (cid:50) Moreover,Theorem2andLemma2leadtothedirectcorollary. Corollary1. SupposeNURBSfunctionT definedonknotgridTh isthenumericalsolutionto r theboundaryvalueproblem(1),generatedbyIGA-L,andtheconditionspresentedinTheorem1 are satisfied in one, two, and three dimensions, respectively. Additionally, suppose norm (cid:107)·(cid:107) L2 boundsnorm(cid:107)·(cid:107) .IfdifferentialoperatorDin(1)isastronglymonotonicoperator,thenT will V(cid:48) r convergetoanalyticsolutionT whenh→0. Itiswellknownthatawideclassofellipticdifferentialoperatorsarestableorstronglymono- tonic. Hence, IGA-L is convergent for equations that have these elliptic differential operators. The examples of a PDE whose differential operators are strongly monotonic can be found in Refs.[37,32]. 4. ComparisonswithIGA-C 4.1. Theoreticalcomparisons Inthefollowing,wecompareIGA-LwithIGA-Cintermsoftheircomputationalefficiencyat solvingascalarproblem(Laplaceequation[31])andvectorproblem(elasticityequation[31]). Weconsidermodeldiscretizationsinone,two,andthreedimensionsthatarecharacterizedbythe degreeofthebasisfunctionsandthenumbersofcontrolandcollocationpointsineachparametric direction. Forthesakeofsimplicity,weassumethatthemodeldiscretizationsintwoandthree dimensionshavethesamenumberofcollocationpoints(andcontrolpoints)ineachparametric direction,andthedegreesofbasisfunctionsinone,two,andthreedimensionsare p, p×p,and p×p×p,respectively. First, the costs in floating point operations (flops) for the formation at one collocation point arethesameforbothIGA-LandIGA-C.ThesecostsarelistedinTable1. Itshouldbepointed out that there are some slight flaws in the formulae employed to calculate the costs in flops in Ref.[31]. Hence,theformulaepresentedinTable1areabitdifferentfromthosein[31]. Second,wecomparedthecosts(inflops)ofsolvingthelinearsystemofequationsinIGA-C andIGA-L,andpresentthecomparisoninTable2.Inthistable,thefirstcolumnisthedimension oftheproblemsolved,thesecondcolumnisthenumberofcontrolpoints(equaltothenumberof collocationpointsinIGA-C),andthethirdcolumnisthecostinflopstosolvethelinearsystem of equations using Gaussian elimination in IGA-C [36]. In addition, the fourth column is the number of control points, and the fifth column is the number of collocation points in IGA-L. Finally,thelastcolumnisthecostinflopstosolvenormalequation(5)usingCholeskydecom- positioninIGA-L[36].WecanseethatthecosttosolveEq.(5)inIGA-Llinearlyincreaseswith thenumberofcollocationpoints(m, m×m, m×m×m). 10

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.