Isogeometric Least-squares Collocation Method with Consistency and Convergence Analysis HongweiLina,∗,YunyangXionga,QianqianHub aDepartmentofMathematics,StateKeyLab.ofCAD&CG,ZhejiangUniversity,Hangzhou,310027,China bDepartmentofMathematics,ZhejiangGongshangUniversity,Hangzhou,310018,China 6 1 0 Abstract 2 n Isogeometric analysis (IGA) approximates the unknown solution of a boundary value problem a (orinitialvalueproblem)usinganon-uniformrationalbasisspline(NURBS)functionwithnon- J linearNURBSbasisfunctions.IftheorderoftheNURBSfunctionishighenough,theboundary 7 valueproblemcanbesolvedusinganisogeometriccollocation(IGA-C)methodthatinterpolates 2 the real differential operator at collocation points. In this paper, we present the isogeometric ] least-squarescollocation(IGA-L)method. IGA-Ldeterminesthenumericalsolutionbymaking A the approximate differential operator fit the real differential operator in a least-squares sense. N Therefore, while IGA-C requires the number of collocation points to be equal to that of the . unknown coefficients of the numerical solution, the number of collocation points employed in h IGA-L can be larger than that of the unknown coefficients. IGA-L has some advantages over t a IGA-C. First, if the number of coefficients of the numerical solution is fixed, a small increase m in the number of collocation points in IGA-L leads to a large improvement in the accuracy of [ itsnumericalsolutioncomparedtoIGA-C.Second,becausethenumberofcollocationpointsin 1 IGA-Lisvariable,itismoreflexibleandmorestablethanIGA-C.Wealsoshowtheconsistency v andconvergencepropertiesofIGA-Linthispaper. 4 4 Keywords: Isogeometricanalysis,collocationmethod,least-squaresfitting,NURBS, 2 consistencyandconvergence 7 0 . 1 0 1. Introduction 6 1 : WhileclassicalFiniteElementAnalysis(FEA)methods,widelyemployedinphysicalsimula- v tions, are based on element-wise piecewise polynomials, computer-aided design (CAD) mod- i X els are usually represented by non-uniform rational basis splines (NURBSs) with non-linear r NURBS basis functions. Therefore, the first task in a CAD model simulation is to transform a the non-linear NURBS-represented CAD model into a linear mesh representation. This mesh transformationisaverytediousoperation, andithasbecomethemosttime-consumingtaskof thewholeFEAprocedure. Toavoidthemeshtransformationandadvancetheseamlessintegra- tionofCADandcomputer-aidedengineering(CAE),isogeometricanalysis(IGA)wasinvented ∗Corresponding author: phone number: 86-571-87951860-8304, fax number: 86-571-88206681, email: [email protected] PreprintsubmittedtoElsevier January28,2016 byHughesetal.[1]. IGAisbasedonthenon-linearNURBSbasisfunctions,henceitcandeal with NURBS-represented CAD models directly. In this way, IGA not only saves a significant amountofcomputation,italsogreatlyimprovesthenumericalaccuracyofthesolution. InIGA,theanalyticalsolutionT toaboundaryvalueproblemisapproximatedbyaNURBS functionT withunknowncoefficients. (Forbrevity,weonlymentiontheboundaryvalueprob- r leminthispaper. However, thismethodisalsosuitablefortheinitialvalueproblem.) Solving theboundaryvalueproblemisthenequivalenttodeterminingtheunknowncoefficientsofT . If r theorderofT ishigherthanthatofthedifferentialoperatorDoftheboundaryvalueproblem, r DT canberepresentedexplicitlybyaNURBSderivativeformula. Therefore,collocationmeth- r odscanbeappliedtothestrongformoftheboundaryvalueproblemtodeterminetheunknown coefficientsofT . r In Ref. [2], an isogeometric collocation (IGA-C) method was presented. Suppose n is the number of unknown coefficients of T . IGA-C first samples n values DT(η ), j = 1,2,··· ,n, r j and then generates a linear system of equations by making DT interpolate the n values, i.e., r DT (η ) = DT(η ), j = 1,2,··· ,n. In this way, the unknown coefficients of T can be deter- r j j r minedbysolvingthelinearsystem. Essentially, IGA-Cacquirestheunknowncoefficientsbyinterpolation, wherethenumberof thecollocationpointsmustbeequaltothatoftheunknowncoefficients.Inthispaper,wepropose theisogeometricleast-squarescollocation(IGA-L)method, whichallowsthenumberofcollo- cationpointstobelargerthanthatoftheunknowncoefficients. Ityieldssomeadvantagesover IGA-C.Insteadofinterpolation,IGA-Lmakesuseofapproximationtodeterminetheunknown coefficientsofT . Specifically,IGA-LfirstsamplesmvaluesDT(η ), j = 1,2,··· ,m,wherem r j isgreaterthanthenumberofunknowncoefficients,i.e.,m>n. Thecoefficientsoftheunknown solutionT arethendeterminedbysolvingtheleast-squaresfittingproblem r (cid:88)m (cid:13) (cid:13) min (cid:13)(cid:13)DT(ηj)−DTr(ηj)(cid:13)(cid:13)2. j=1 TherearetwoadvantagesofIGA-LoverIGA-C.First,numericaltestspresentedinthispaper show that a small increase in the computation of IGA-L leads to a large improvement in the numericalaccuracyofthesolution,eventhoughthecomputationalcostofIGA-Lisonlyslightly morethanthatofIGA-C.Second,IGA-LismoreflexibleandmorestablethanIGA-C,because IGA-Lallowsavariablenumberofcollocationpoints,whilethenumberofcollocationpointsin IGA-Cisfixedtobeequaltothenumberofcontrolpoints. Thestructureofthispaperisasfollows. InSection1.1,somerelatedworkisbrieflyreviewed. In Section 2, the generic formulation of IGA-L is presented. In Section 3, we show the con- sistencyandconvergencepropertiesofIGA-L.AfterthoroughlycomparingIGA-LandIGA-C, bothintheoryandwithnumericalexamplesinSection4,thispaperisconcludedinSection5. 1.1. RelatedWork Least-squares collocation methods: Although collocation-based meshless methods are ef- ficient, equilibrium conditions are satisfied only at collocation points. Thus, collocation-based meshlessmethodscanresultinsignificanterror. Toimprovecomputationalaccuracy, Zhanget al. developedaleast-squarescollocationmethod[3],whereequilibriumconditionsholdatboth collocation points and auxiliary points in a least-squares sense. In order to generate a better conditioned linear algebraic equations, a least-squares meshfree collocation method was pro- posed, based on first-order differential equations [4]. In Ref. [5], a point collocation method 2 was invented that employs the approximating derivatives based on the moving least-square re- producing kernel approximations. Moreover, several schemes using least-squares collocation methodsweredevelopedfortwo-andthree-dimensionalheatconductionproblems[6],transient andsteady-statehyperbolicproblems[7],andadaptiveanalysisproblemsinlinearelasticity[8]. However,theconsistencyandconvergencepropertiesoftheaforementionedleast-squarescol- locationmethodswereonlyvalidatedusingnumericalexamples,andtheoreticalnumericalanal- yseswerenotreported. Inthispaper,wenotonlydevelopanisogeometricleast-squarescollo- cationmethod,butalsoshowitsconsistencyandconvergencepropertiesintheory. Isogeometric analysis: NURBS is a mathematical model for representing curves and sur- facesbyblendingweightedcontrolpointsandNURBSbasisfunctions. Hence,theshapeofthe NURBS curves and surfaces can be easily modified by moving their control points. Because ofthedesirabletraitsofNURBSbasisfunctions,NURBSscurvesandsurfaceshavemanygood properties,suchasconvexhull,affineinvariance,andvariationdiminishing.Moreover,NURBSs can represent conic sections and quadric surfaces accurately. Therefore, NURBSs have been widelyusedinCAD,computer-aidedmanufacturing(CAM),andCAE,andhavebecomeapart of numerous industry standards, such as IGES, STEP, ACIS, and PHIGS. For more details on NURBSs,thereareexcellentbooksonthesubject[9,10]. WhileaNURBSemploysnon-linearbasisfunctions,classicalFEAisbasedonelement-wise piecewisepolynomials. Hence,whenanalyzingNURBS-representedCADmodelsusingclassi- calFEA,theCADmodelshouldbediscretizedintoameshmodel. Themeshgenerationproce- durenotonlyyieldsanapproximation,itisalsoverytedious,andhencehasbecomeabottleneck inFEA.Toovercomethesedifficulties,Hughesetal. inventedtheIGAtechnique[1]. Because IGA is based on NURBS basis functions, it can handle NURBS-represented CAD models di- rectly without generating a mesh. Moreover, because NURBSs can represent complex shapes (andphysicalfields)withsignificantlyfewercontrolpointsthanameshrepresentation,thecom- putationalefficiencyandnumericalaccuracyofIGAarehigherthantheclassicalFEAmethod. In addition, because of the knot insertion property of NURBSs, the original shape of the CAD modelcanbemaintainedexactlyintherefinementprocedure[1]. Ingeometricdesign,theNURBSrepresentationisusuallyemployedtomodelcurvesandsur- faces. There are a few effective methods in geometric design for modeling spline solids. To modelaNURBSsolidforIGAapplications,Zhangetal. proposedasolidconstructionmethod fromaboundaryrepresentation[11]. InthestudyofIGA,makingthegeometricrepresentation moresuitableforanalysispurposesisakeyresearchgoal. Cohenetal. presentedtheanalysis- awaremodelingtechnique[12]. Moreover,T-spline[13,14],trimmedsurfaces[15],andsubdi- visionsolids[16]werealsoemployedintheIGAmethodtomodelthephysicaldomain. Currently, the IGA method has been successfully applied in various simulation problems, including elasticity [17, 18], structure [19, 20, 21], and fluids [22, 23, 24]. On the other hand, someworkconcernsthecomputationalaspectoftheIGAmethod, forinstance, toimprovethe accuracyandefficiencybyreparameterizationandrefinement[25,26,27,28,29]. Isogeometriccollocationmethods:Thecollocationmethodisasimplenumericalmethodfor solvingdifferentialequationsthatcangenerateasolutionthatsatisfiesthedifferentialequation at a set of discrete points, called collocation points [30]. If the order of the unknown NURBS functionthatisemployedtoapproximatethesolutionofthedifferentialequationishighenough, the collocation method can be applied to the strong form of the differential equation. In this way,theIGA-CmethodwaspresentedinRef.[2]. However,IGA-Cisgreatlyinfluencedbythe collocation points. Recently, a comprehensive study on IGA-C discovered its superior behav- iorovertheGalerkinmethodintermsofitsaccuracy-to-computational-timeratio[31], andthe 3 consistencyandconvergencepropertiesoftheIGA-CmethodweredevelopedinRef.[32]. Moreover,basedonthelocalhierarchicalrefinementofNURBSs,adaptiveIGA-Cswerede- velopedandanalyzed[31]. Meanwhile, IGA-Chasalsobeenextendedtomulti-patchNURBS configurations, various boundary and patch interface conditions, and explicit dynamic analy- sis [33]. Recently, IGA-C was successfully employed to solve the Timoshenko beam prob- lem[34]andspatialTimoshenkorodproblem[35],showingthatmixedcollocationschemesare locking-free,independentlyofthechoiceofthepolynomialdegreesfortheunknownfields. 2. GenericFormulationofIGA-L Considerthefollowingboundaryvalueproblem, DT = f, inΩ∈Rd, (1) GT =g, on∂Ω, whereΩisthephysicaldomaininRd,Disadifferentialoperatorinthephysicaldomain,GT =g is the boundary condition, and f : Ω → R and g : ∂Ω → R are given functions. Suppose d 1 isthemaximumorderofderivativesappearinginD : V → W,whereV andW aretwoHilbert spaces,andtheanalyticalsolutionT ∈Cd2(Ω),d2 >d1 ≥1. InIGA,thephysicaldomainΩisrepresentedbyaNURBSmapping: F:Ω →Ω, (2) 0 where Ω is the parametric domain. By replacing the control points of F(Ω ) with unknown 0 0 controlcoefficients,therepresentationoftheunknownnumericalsolutionT isgenerated. r SupposetherearenunknowncontrolcoefficientsintheunknownnumericalsolutionT . We r first sample m points θ inside the parametric domain Ω that correspond to m values η = 1 i 0 1 i F(θ), i = 1,2,··· ,m ,insidethephysicaldomainΩ. Furthermore,wesamplem pointsθ on i 1 2 j theparametricdomainboundary∂Ω thatcorrespondtom valuesη = F(θ ), j=m +1,m + 0 2 j j 1 1 2,··· ,m +m , on the physical domain boundary ∂Ω. The total number of these points, i.e., 1 2 m = m +m ,isgreaterthanthenumberofunknowncoefficientsofthenumericalsolutionT , 1 2 r namely,m = m +m > n. JustasinIGA-C,thesesamplingpointsarealsocalledcollocation 1 2 points. Substitutingthesecollocationpointsintotheboundaryvalueproblem(1), asystemofequa- tionswithmequationsandnunknownsisobtained(wherem=m +m >n), 1 2 DTr(ηi)= f(ηi), i=1,2,···m1, (3) GT (η )=g(η ), j=m +1,m +2,··· ,m +m . r j j 1 1 1 2 Arranging the unknowns of the numerical solution T into an n × 1 matrix, i.e., X = r [x x ··· x ]t,thesystemofequations(3)canberepresentedinmatrixformby 1 2 n AX =b. Becausethenumberofequationsisgreaterthanthenumberofunknowns,thesolutionissought intheleast-squaressense,i.e., min(cid:107)AX−b(cid:107)2. (4) X 4 Computation of the least-squares problem (4): The least-squares problem (4) is very im- portantinpractice,andtherehavebeendevelopedlotsofrobustandefficientmethodsforsolving it[36]. Onefrequentlyemployedmethodistosolvethenormalequation(5), AtAX = Atb. (5) Althoughtheconditionnumberofthematrix ATAisthesquareofthatofthematrix A, ATAis a symmetric positive definite matrix, and the normal equation (5) can be solved efficiently by Choleskydecomposition[36]. Moreover,HouseholderorthogonalizationandGivenorthogonal- ization are also two efficient methods [36] which often employed in solving the least-squares problem(4). Formoremethodsonsolving(4),pleasereferto[36]. In the following, we will show the consistency and convergence properties of IGA-L, and compareitwithIGA-C,bothintheoryandwithnumericalexamples. 3. NumericalAnalysis IntheIGA-Lmethoddevelopedabove,aNURBSfunctionT isemployedtoapproximatethe r analyticalsolutionT oftheboundaryvalueproblem(1),andhencetherealdifferentialoperator DT isapproximatedbyDT . InRef.[32],itwasshownthatbothDT andT aredefinedonthe r r r sameknotintervals,i.e., Lemma1. IfT isaNURBSfunctionandDisadifferentialoperator,thenbothDT andT are r r r definedonthesameknotintervals[32]. Moreover,givenasetΦ,thediameterofΦisdefinedas diam(Φ)=max{d(x,y),x,y∈Φ}, whered(x,y)istheEuclideandistancebetweenxandy.Inthefollowing,wesupposetheNURBS functionT tobedefinedonaknotgridTh,wherehistheknotgridsize:Intheone-dimensional r case,Th isaknotsequence,andh = maxi{diam([ui,ui+1])};inthetwo-dimensionalcase,Th is arectangulargrid,andh=maxij{diam([ui,ui+1]×[vj,vj+1])};andinthethree-dimensionalcase, Thisahexahedralgrid,andh=maxijk{diam([ui,ui+1]×[vj,vj+1]×[wk,wk+1])}. Inthissection,westudytheconsistencyandconvergencepropertiesofIGA-L,i.e.,whenh→ 0, notonlywillapproximatedifferentialoperatorDT tendtorealoperatorDT, butnumerical r solutionT willalsotendtoanalyticalsolutionT. r 3.1. Consistency In this section, we explore the consistency property of the IGA-L method. The theorem for consistencyispresentedasfollows. Theorem1. IntheIGA-Lmethod,if (1.1) eachknotintervaloftheNURBSfunctionT definedonknotgridTh containsatleastone r collocationpoint (1.2) thedegreeofeachvariableinT islargerthanthemaximumorderofthepartialderivatives r tothevariablesappearinginD(seeEq.(1)) 5 (1.3) theleast-squaresfittingerrore isbounded,i.e.,e < M¯,whereM¯ isapositiveconstant h h thenapproximatedifferentialoperatorDT tendstorealdifferentialoperatorDT intheL2norm r whenh→0. Proof: We only show the theorem in the two-dimensional case. The proof for the one- and three-dimensionalcasesissimilar. Inthetwo-dimensionalcase, supposethetensorproductNURBSfunctionT (u,v)ofdegree r l ×l isdefinedontheknotsequences u v {u ,u ,··· ,u ,u ,··· ,u ,u ,u ,··· ,u }, (cid:124)0(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)0(cid:32)(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:125)0 1 nu−1 (cid:124)n(cid:32)(cid:32)u(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)u(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:125)u lu+1 lu+1 (6) {v ,v ,··· ,v ,v ,··· ,v ,u ,u ,··· ,u }. (cid:124)0(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)0(cid:32)(cid:32)(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:125)0 1 nv−1 (cid:124)n(cid:32)(cid:32)v(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:32)(cid:32)v(cid:123)(cid:122)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)(cid:32)n(cid:125)v lv+1 lv+1 Thenthecorrespondingknotgridis Th ={[ui,ui+1]×[vj,vj+1], i=0,1,··· ,nu−1, j=0,1,··· ,nv−1}. (7) Denote R(u,v)=(DT(u,v)−DT (u,v))2,(u,v)∈[u ,u ]×[v ,v ]. r 0 nu 0 nv Note that T (u,v) is generated by least-squares fitting the values of DT(u,v) at the collocation r pointsϑ =(η ,ξ ),i.e.,DT(ϑ ),d =1,2,··· ,D,(D≥n n ). Andsupposethefittingerroris d d d d u v (cid:88)D (cid:88)D e = R(ϑ )= (DT(ϑ )−DT (ϑ ))2. (8) h d d r d k=1 k=1 First, based on Lemma 1, the numerical solution T (u,v) and the approximate differential r operatorDT (u,v)havethesameknotintervals, r [ui,ui+1]×[vj,vj+1], i=0,1,··· ,nu−1, j=0,1,··· ,nv−1. Now,considertheerrorbetweenDT(u,v)andDT (u,v)intheL2norm, r (cid:90) vnv (cid:90) unu n(cid:88)v−1n(cid:88)u−1(cid:90) vj+1(cid:90) ui+1 (cid:107)DT(u,v)−DT (u,v)(cid:107)2 = R(u,v)dudv= R(u,v)dudv. r L2 v0 u0 j=0 i=0 vj ui Sinceeachknotinterval[ui,ui+1]×[vj,vj+1]containsatleastonecollocationpoint,wesuppose ϑd =(ηd,ξd)∈[ui,ui+1]×[vj,vj+1].Usingtheleftandrightrectangleintegralformularepeatedly, 6 weget (cid:90) vj+1(cid:90) ui+1 (cid:90) vj+1 (cid:32)(cid:90) ηd (cid:90) ui+1 (cid:33) R(u,v)dudv= dv R(u,v)du+ R(u,v)du vj ui vj ui ηd =(cid:90) vj+1(ηd−ui)R(ηd,v)+(ui+1−ηd)R(ηd,v)+(ηd−ui)2R(cid:48)u(µ(i12)(v),v) +(ui+1−ηd)2R(cid:48)u(µ(i22)(v),v)dv vj =(ui+1−ui)(cid:90) vj+1R(ηd,v)dv+(ηd−ui)2(cid:90) vj+1 R(cid:48)u(µ(i1)(v),v)dv+(ui+1−ηd)2(cid:90) vj+1 R(cid:48)u(µ(i2)(v),v)dv 2 2 vj vj vj =(ui+1−ui)(ξd−vj)R(ηd,ξd)+(vj+1−ξd)R(ηd,ξd)+(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j)) +(ηd−ui)2(cid:90) vj+1 R(cid:48)u(µ(i1)(v),v)dv+(ui+1−ηd)2(cid:90) vj+1 R(cid:48)u(µ(i2)(v),v)dv 2 2 vj vj =(ui+1−ui)(vj+1−vj)R(ηd,ξd)+(ui+1−ui)(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j)) +(ηd−ui)2(cid:90) vj+1 R(cid:48)u(µ(i1)(v),v)dv+(ui+1−ηd)2(cid:90) vj+1 R(cid:48)u(µ(i2)(v),v)dv, 2 2 vj vj whereµ(i1)(v),µ(i2)(v)∈(ui,ui+1)andω(i1j),ω(i2j) ∈(vj,vj+1).Bythemeanvaluetheoremofintegral, thereexist(µ¯(i1j),ω¯(i1j)),(µ¯(i2j),ω¯(i2j))∈[ui,ui+1]×[vj,vj+1]suchthat (cid:90) vj+1 R(cid:48)u(µ(1)(v),v)dv=(vj+1−vj)R(cid:48)u(µ¯(i1j),ω¯(i1j)), and 2 2 vj (cid:90) vj+1 R(cid:48)u(µ(2)(v),v)dv=(vj+1−vj)R(cid:48)u(µ¯(i2j),ω¯(i2j)), 2 2 vj Therefore, (cid:90) vj+1(cid:90) ui+1 R(u,v)dudv=(ui+1−ui)(vj+1−vj)R(ηd,ξd) vj ui +(ui+1−ui)(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j)) +(vj+1−vj)(ηd−ui)2R(cid:48)u(µ¯(i1j2),ω¯(i1j)) +(ui+1−ηd)2R(cid:48)u(µ¯(i2j2),ω¯(i2j)). Moreover,wedenoteΞ=[u ,u ]×[v ,v ]. Itiseasytoshowthat 0 nu 0 nv (cid:12) (cid:12) (cid:12) (cid:12) min (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12)≤n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i2j))(cid:12)(cid:12)(cid:12) ≤ max (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12), (u,v)∈Ξ v j=0 i=0 (unu −u0)(vnv −v0) 2 (u,v)∈Ξ v 7 (cid:12) (cid:12) (cid:12) (cid:12) min (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12)≤n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i1j),ω¯(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i2j),ω¯(i2j))(cid:12)(cid:12)(cid:12) ≤ max (cid:12)(cid:12)(cid:12)R(cid:48)(u,v)(cid:12)(cid:12)(cid:12). (u,v)∈Ξ u j=0 i=0 (unu −u0)(vnv −v0) 2 (u,v)∈Ξ u Andthen,basedontheintermediatevaluetheorem,thereexist(η(1),ξ(1))∈Ξand(η(2),ξ(2))∈Ξ, suchthat (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12)(cid:12)R(cid:48)(η(1),ξ(1))(cid:12)(cid:12)(cid:12)=n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i2j))(cid:12)(cid:12)(cid:12), v (u −u )(v −v ) 2 j=0 i=0 nu 0 nv 0 (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12)(cid:12)R(cid:48)(η(2),ξ(2))(cid:12)(cid:12)(cid:12)=n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i1j),ω¯(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)u(µ¯(i2j),ω¯(i2j))(cid:12)(cid:12)(cid:12). u (u −u )(v −v ) 2 j=0 i=0 nu 0 nv 0 Asaresult, (cid:90) vnv (cid:90) unu n(cid:88)v−1n(cid:88)u−1(cid:90) vj+1(cid:90) ui+1 (cid:107)DT(u,v)−DT (u,v)(cid:107)2 = R(u,v)dudv= R(u,v)dudv r L2 v0 u0 j=0 i=0 vj ui n(cid:88)v−1n(cid:88)u−1 = (ui+1−ui)(vj+1−vj)R(ηd,ξd) j=0 i=0 +n(cid:88)v−1n(cid:88)u−1(ui+1−ui)(ξd−vj)2R(cid:48)v(ηd2,ω(i1j)) +(vj+1−ξd)2R(cid:48)v(ηd2,ω(i2j)) j=0 i=0 +n(cid:88)v−1n(cid:88)u−1(vj+1−vj)(ηd−ui)2R(cid:48)u(µ¯(i1j2),ω¯(i1j)) +(ui+1−ηd)2R(cid:48)u(µ¯(i2j2),ω¯(i2j)) j=0 i=0 (cid:12) (cid:12) (cid:12) (cid:12) ≤h2(cid:88)D R(ηd,ξd)+hn(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(ηd,ω(i2j))(cid:12)(cid:12)(cid:12) 2 d=1 j=0 i=0 (cid:12) (cid:12) (cid:12) (cid:12) +hn(cid:88)v−1n(cid:88)u−1(ui+1−ui)(vj+1−vj)(cid:12)(cid:12)(cid:12)R(cid:48)v(µ¯(i1j),ω¯(i1j))(cid:12)(cid:12)(cid:12)+(cid:12)(cid:12)(cid:12)R(cid:48)v(µ¯(i2j),ω¯(i2j))(cid:12)(cid:12)(cid:12) 2 j=0 i=0 (cid:16)(cid:12) (cid:12) (cid:12) (cid:12)(cid:17) =h2eh+h(unu −u0)(vnv −v0) (cid:12)(cid:12)R(cid:48)v(η(1),ξ(1))(cid:12)(cid:12)+(cid:12)(cid:12)R(cid:48)u(η(2),ξ(2))(cid:12)(cid:12) (cid:16)(cid:12) (cid:12) (cid:12) (cid:12)(cid:17) <h2M¯ +h(unu −u0)(vnv −v0) (cid:12)(cid:12)R(cid:48)v(η(1),ξ(1))(cid:12)(cid:12)+(cid:12)(cid:12)R(cid:48)u(η(2),ξ(2))(cid:12)(cid:12) . Ontheotherhand,sincethedegreesofuandvinT (u,v)arebothlargerthanthemaximum r ordersofthepartialderivativestouandvappearinginD(referto(1)),respectively,similaras theone-dimensionalcase,R(cid:48)(u,v)andR(cid:48)(u,v)arebothcontinuous,andthenboundedonΩ∪∂Ω, u v i.e., (cid:12) (cid:12) (cid:12) (cid:12) (cid:12)(cid:12)R(cid:48)(η(1),ξ(1))(cid:12)(cid:12)≤ Mˆ, and, (cid:12)(cid:12)R(cid:48)(η(2),ξ(2))(cid:12)(cid:12)≤ Mˆ, v u whereMˆ isapositiveconstant. Inconclusion, (cid:107)DT(u,v)−DT (u,v)(cid:107)2 ≤h2M¯ +2h(u −u )(v −v )Mˆ, r L2 nu 0 nv 0 8 andTheorem1isproved. (cid:50) 3.2. Convergence Based on the consistency property of IGA-L, we can show that IGA-L is convergent if the differentialoperatorisstableorstronglymonotonic,similarlyasinRef.[32]. LetV andW betwoHilbertspacesand(cid:107)·(cid:107) and(cid:107)·(cid:107) betwonormsdefinedonV andW,re- V W spectively.Suppose(cid:107)·(cid:107) and(cid:107)·(cid:107) areequivalenttotheL2norm,i.e.,thereexistpositiveconstants V W α , β , α ,andβ suchthat, V V W W α (cid:107)·(cid:107) ≤(cid:107)·(cid:107) ≤β (cid:107)·(cid:107) , (9) V L2 V V L2 α (cid:107)·(cid:107) ≤(cid:107)·(cid:107) ≤β (cid:107)·(cid:107) . (10) W L2 W W L2 Wefirstgivethedefinitionsforstableandstronglymonotonicoperators. Definition1(Stabilityestimateandstableoperator[37]). LetV,WbeHilbertspacesandD: V →W beadifferentialoperator. IfthereexistsaconstantC >0suchthat S (cid:107)Dv(cid:107) ≥C (cid:107)v(cid:107) , forallv∈ D(D), (11) W S V where D(D) represents the domain of D, differential operator D is called the stable operator, andtheinequality(11)iscalledthestabilityestimate. Definition2(Stronglymonotonicoperator[37]). LetV beaHilbertspaceandD∈L(V,V(cid:48)). OperatorDissaidtobeastronglymonotonicoperator,ifthereexistsaconstantC > 0,such D that (cid:104)Dv,v(cid:105)≥C (cid:107)v(cid:107)2 , forallv∈V. (12) D V For every v ∈ V, element Dv ∈ V(cid:48) is of a linear form. The symbol (cid:104)Dv,v(cid:105), which denotes the applicationofDvtov∈V,iscalledadualitypairing. Clearly,ifadifferentialoperatorDisstronglymonotonic,itisstable. Lemma2. Let V be a Hilbert space and D ∈ L(V,V(cid:48)) be a continuous strongly monotonic linear operator. Then, there exists a constant C > 0 such that D satisfies the stability esti- D mate(11)[37]. TheproofcanbefoundinRef.[32]. Therefore,wehavetheconvergencepropertyofIGA-Lasfollows. Theorem2. SupposeNURBSfunctionT ,definedonknotgridTh,isthenumericalsolutionto r theboundaryvalueproblem(1),generatedbyIGA-L,andtheconditionspresentedinTheorem1 aresatisfiedinone,two,andthreedimensions,respectively. IfdifferentialoperatorD:V →W in(1)isastableoperator,T willconvergetoanalyticsolutionT whentheknotgridsizeh→0. r Proof: Differential operator D in (1) is a stable operator, so there exists a constantC > 0, S suchthat (cid:107)D(T −T )(cid:107) ≥C (cid:107)T −T (cid:107) . r W S r V 9 Anditisequivalentto 1 (cid:107)T −T (cid:107) ≤ (cid:107)DT −DT (cid:107) . r V C r W S Duetotheequivalenceof(cid:107)·(cid:107) and(cid:107)·(cid:107) (9),wehave, L2 W 1 β (cid:107)T −T (cid:107) ≤ (cid:107)DT −DT (cid:107) ≤ W (cid:107)DT −DT (cid:107) . r V C r W C r L2 S S BecauseoftheconsistencyofIGA-L(Theorem1), (cid:107)T −T (cid:107) willconvergeto0whenh → 0. r V Andthistheoremisproved. (cid:50) Moreover,Theorem2andLemma2leadtothedirectcorollary. Corollary1. SupposeNURBSfunctionT definedonknotgridTh isthenumericalsolutionto r theboundaryvalueproblem(1),generatedbyIGA-L,andtheconditionspresentedinTheorem1 are satisfied in one, two, and three dimensions, respectively. Additionally, suppose norm (cid:107)·(cid:107) L2 boundsnorm(cid:107)·(cid:107) .IfdifferentialoperatorDin(1)isastronglymonotonicoperator,thenT will V(cid:48) r convergetoanalyticsolutionT whenh→0. Itiswellknownthatawideclassofellipticdifferentialoperatorsarestableorstronglymono- tonic. Hence, IGA-L is convergent for equations that have these elliptic differential operators. The examples of a PDE whose differential operators are strongly monotonic can be found in Refs.[37,32]. 4. ComparisonswithIGA-C 4.1. Theoreticalcomparisons Inthefollowing,wecompareIGA-LwithIGA-Cintermsoftheircomputationalefficiencyat solvingascalarproblem(Laplaceequation[31])andvectorproblem(elasticityequation[31]). Weconsidermodeldiscretizationsinone,two,andthreedimensionsthatarecharacterizedbythe degreeofthebasisfunctionsandthenumbersofcontrolandcollocationpointsineachparametric direction. Forthesakeofsimplicity,weassumethatthemodeldiscretizationsintwoandthree dimensionshavethesamenumberofcollocationpoints(andcontrolpoints)ineachparametric direction,andthedegreesofbasisfunctionsinone,two,andthreedimensionsare p, p×p,and p×p×p,respectively. First, the costs in floating point operations (flops) for the formation at one collocation point arethesameforbothIGA-LandIGA-C.ThesecostsarelistedinTable1. Itshouldbepointed out that there are some slight flaws in the formulae employed to calculate the costs in flops in Ref.[31]. Hence,theformulaepresentedinTable1areabitdifferentfromthosein[31]. Second,wecomparedthecosts(inflops)ofsolvingthelinearsystemofequationsinIGA-C andIGA-L,andpresentthecomparisoninTable2.Inthistable,thefirstcolumnisthedimension oftheproblemsolved,thesecondcolumnisthenumberofcontrolpoints(equaltothenumberof collocationpointsinIGA-C),andthethirdcolumnisthecostinflopstosolvethelinearsystem of equations using Gaussian elimination in IGA-C [36]. In addition, the fourth column is the number of control points, and the fifth column is the number of collocation points in IGA-L. Finally,thelastcolumnisthecostinflopstosolvenormalequation(5)usingCholeskydecom- positioninIGA-L[36].WecanseethatthecosttosolveEq.(5)inIGA-Llinearlyincreaseswith thenumberofcollocationpoints(m, m×m, m×m×m). 10