Is the Grand Tack model compatible with the orbital distribution of main belt asteroids? RogerioDeiennoa,RodneyS.Gomesb,KevinJ.Walshc,AlessandroMorbidellid,David Nesvorny´c aInstitutoNacionaldePesquisasEspaciais,AvenidadosAstronautas1758,CEP12227-010Sa˜oJose´dosCampos,SP, 7 Brazil 1 bObservato´rioNacional,RuaGeneralJose´Cristino77,CEP20921-400RiodeJaneiro,RJ,Brazil 0 cDepartmentofSpaceStudies,SouthwestSpaceResearchInstitute,1050WalnutSt.,Boulder,CO80302,USA 2 dLaboratoireLagrange,UMR7293,Universite´Coˆted’Azur,CNRS,ObservatoiredelaCoˆted’Azur,Boulevardde n l’Observatoire,06304NiceCedex4,France a J 0 1 Abstract ] P The Asteroid Belt is characterized by the radial mixing of bodies with different physical E properties,averylowmasscomparedtoMinimumMassSolarNebulaexpectationsandhasan . h excitedorbitaldistribution,witheccentricitiesandinclinationscoveringtheentirerangeofvalues p allowedbytheconstraintsofdynamicalstability. ModelsoftheevolutionoftheAsteroidBelt - showthattheoriginofitsstructureisstronglylinkedtotheprocessofterrestrialplanetformation. o r The GrandTack modelpresentsa possible solution to the conundrumof reconcilingthe small t s massofMarswiththepropertiesoftheAsteroidBelt,includingthemassdepletion,radialmixing a and orbitalexcitation. However,while the inclinationdistributionproducedin the GrandTack [ modelisingoodagreementwiththeoneobserved,theeccentricitydistributionisskewedtowards 1 values larger than those found today. Here, we evaluate the evolution of the orbitalproperties v oftheAsteroidBeltfromthe endoftheGrandTackmodel(attheendofthegasnebulaphase 5 whenplanetsemergefromthedispersinggasdisk),throughoutthesubsequentevolutionofthe 7 Solar Systemincludingan instabilityofthe GiantPlanetsapproximately400Mylater. Before 7 2 theinstability,theterrestrialplanetsweremodeledondynamicallycoldorbitswithJupiterand 0 Saturn locked in a 3:2 mean motionresonance. The modelcontinuesfor an additional4.1 Gy 1. afterthegiantplanetinstability.Ourresultsshowthattheeccentricitydistributionobtainedinthe 0 GrandTackmodelevolvestowardsoneverysimilartothatcurrentlyobserved,andthesemimajor 7 axis distribution does the same. The inclination distribution remains nearly unchangedwith a 1 slightpreferencefordepletionatlowinclination;thisleadstotheconclusionthattheinclination : v distributionattheendoftheGrandTackisabitover-excited.Also,weconstraintheprimordial i eccentricitiesofJupiterandSaturn,whichhaveamajorinfluenceonthedynamicalevolutionof X theAsteroidBeltanditsfinalorbitalstructure. r a Keywords: Asteroids,dynamics,Origin,SolarSystem,Planetarydynamics,Planets,migration Emailaddress:[email protected](RogerioDeienno) PreprintsubmittedtoIcarus January12,2017 1. Introduction TheAsteroidBeltischallengingtounderstandbutiscriticalforstudiesoftheformationand earlyevolutionoftheSolarSystem. TheorbitalconfigurationoftheAsteroidBeltisbelievedto havebeenestablishedintwophases. Thefirstphasedatesbacktothefirstfewmillionyearsof Solar System’sformationandshouldbestudiedin conjunctionwith theformationofthe inner andouterplanets,especiallyJupiterandSaturn. ThesecondphaseoccurredwhentheAsteroid Belt witnessed a Giant Planet instability, long after the damping effects of the gaseous Solar Nebulahaddissipated Ingeneral,simulationsofthedynamicalre-shapingoftheAsteroidBeltaremadeinconjunc- tionwiththeformationoftheinnerplanets. Thefirstsimulationsofterrestrialplanetformation (ChambersandWetherill,1998)includedasetofplanetaryembryosuniformlydistributedinthe innerregionoftheSolarSystemwithorbitsinitiallydynamicallycold(loweccentricityandin- clination). Throughnumericalintegrationsoftheequationsofmotionoftheseembryos,adding amodelofaccretionbycollisions,thesystemevolvestoformplanetsintheinnerregionofthe SolarSystemonstableorbits. Whileearlyresultsabouttheformationofterrestrialplanetswere promising,oneoftheproblemsfoundintheseintegrationswasrelatedwiththefinaleccentric- ities of the planets, which weresystematically largerthanthe realones. Themodelsproduced morepromisingresultswhenthepresenceofasubstantialpopulationofplanetesimalswasalso accountedfor;infact,thedynamicalfrictionexertedbytheplanetesimalsactedtodecreasethe excitationoftheplanet’sfinalorbits(Chambers,2001;O’Brienetal.,2006). An importantingredientwas the presenceof Jupiter, which should have completed its for- mation much earlier than the inner planets (ChambersandWetherill, 1998; Chambers, 2001; Petitetal.,2001). Primarily,theinfluenceofJupiterontheAsteroidBeltistopromotedestruc- tivecollisions(fragmentation)ratherthanconstructivecollisions(accretion)(Petitetal.,2002). However,Jupiteralonecannotexcitetheeccentricityofplanetesimalssomuchastoexplainthe currentexcitedorbitsofasteroids(Petitetal.,2002). Inaddition,thereissignificantdiversityin the physicalpropertiesof asteroidsfoundin the MainAsteroid Belt, buttheir main taxonomic classesarefoundinroughlyoverlappingdistributions–althoughS-classbodiespredominatein the inner regions and C-class bodies in the outer regions (see DeMeoandCarry, 2014). The solutionoftheseissueshavebeenattributedtotheoriginalpresenceofplanetaryembryosinthe AsteroidBelt(Petitetal.,1999;O’Brienetal.,2007). Theseembryos,onceexcitedbyJupiter, would havescattered the orbitsof the planetesimals. In the end, the Asteroid Belt wouldhave beendepletedofplanetesimalsandtotallydevoidofembryos. Despite the many successes in the modelingof the terrestrial planets and Asteroid Belt by the simulations described above, systematic problemspersisted. The planet formed in the ap- proximate region of Mars systematically showed a much larger mass than the real Mars (see Raymondetal.,2009). AnexperimentbyHansen(2009)foundthatifthereissharpouteredge intheinitialmassdistributionofsolidsatabout1.0AU,thenthemodelsconsistentlyreproduce themassofMars. Walshetal.(2011)proposedamechanismtomodifytheoriginalmassdistributionofsolids andproducethetruncateddiskexploredbyHansen(2009),byaccountingfortheearlymigration of Jupiter and Saturn when they were still embedded in the gaseous proto-planetarydisk. An outcomefoundinmanyhydrodynamicalmodels(MassetandSnellgrove,2001;Morbidellietal., 2007;PierensandNelson,2008;PierensandRaymond,2011;D’AngeloandMarzari,2012)of the interaction between giant planetsand gaseousdisks is that the type-IIinward migrationof aJupiter-massplanetishaltedandevenreversedwhenasecond,lessmassiveplanet,isformed 2 externalto the first one. Thisprovidesthe explanationfor whyJupiterdid notmigrateto very close the Sun, as is seen for giant planets in many other planetary systems (UdryandSantos, 2007;Cummingetal.,2008). Instead,Jupiterwouldhavemigratedfirstinwards,thenoutwards. BecauseofthechangeindirectionoftheorbitalmotionofJupiter(a“tack”insailor’sjargon), theWalshetal.(2011)modelisnamedthe“GrandTack”.ThetimingoftheformationofSaturn isconstrainedbythemassdistributionoftheterrestrialplanets,whicharebestreproducedwhen Jupiterreversesmigrationat1.5AUandtruncatesthediskat1AU. ThemigrationofJupiterwouldhavestronglyaffectedanyplanetesimalsformedinthepresent- day Asteroid Belt, with a primary consequence of substantially depleting the entire region of small bodies. The inward migration phase primarily pushes the asteroids originally inside of Jupiter’sorbit(named“S-class”inWalshetal.(2011))downtolowersemimajoraxes(insideof 1 AU), thoughWalshetal. (2011) foundthatabout10%of these bodiesare scattered outward onto orbits with semimajor axis a between 4-10 AU. During the outward migration of Jupiter and Saturn, these bodies are encounteredagain, and about 1% are scattered back into the As- teroid Belt. Meanwhile Jupiter and Saturn eventuallyencounterprimitiveplanetesimals(titled “C-class”inWalshetal.(2011)),andafractionofapercentofthesearealsoscatteredintothe AsteroidBelt. Thisprovides,atthetimewhenthegasnebulahasdispersed,afinalbeltwhichis depletedinmassbyafactorofabout1,000,thatcontainstwodifferentclassesofbodiespartially mixedinheliocentricdistanceandwithorbitsexcitedineccentricitiesandinclinations(although thefinaleccentricitydistributiondoesnotmatchwellthecurrentone,asdiscussedbelow). Numerousconstraints,suchastheagesofthelastimpactbasinsontheMoon(Bottkeetal., 2007), the impact age distribution of HED meteorites (Marchietal., 2013), and the small to- tal chondriticmassaccretedbythe Moonsince its formation(Morbidellietal., 2012), pointto anepochofincreasedbombardmentintheinnerSolarSystemabout∼400−700Myafterthere- movalofgasfromtheproto-planetarydisk(whereastheGrandTackhappenedbeforetheremoval ofthegas).Thisperiodofincreasedbombardmentisusuallycalled“TerminalLunarCataclysm” or“LateHeavyBombardment”(LHB)(seeHartmannetal.,2000;Chapmanetal.,2007,forre- views),andwewilladopttheLHBnomenclaturehere. TheoriginoftheLHBhasbeenlinked to a dynamicalupheavalin the outer Solar System frequentlyreferred to as the “Nice model” (Gomesetal., 2005; Levisonetal., 2011;Bottkeetal., 2012). Duringthisdynamicalupheaval thegiantplanetswouldhavesufferedaninstabilityandaperiodofmutualcloseencountersthat radicallychangedtheirorbits.Inturn,theorbitalchangeofthegiantplanetswouldhaveseverely affectedthedistributionoftheasteroidsinthemainbelt(Morbidellietal.,2010). Thebestguess on when this instability occurred, from variousconstraints, is 4.1 Gy ago (Bottkeetal., 2012; Morbidellietal.,2012). This is important because the final Asteroid Belt in Walshetal. (2011) lacks objects with small eccentricities. Indeed, according to the Grand Tack model, the eccentricity distribution expectedfortheAsteroidBeltatthetime whenthegasnebuladispersed,some3-10Myrafter theemergenceoffirstsolidsandroughly4.5Gyrago,peaksaround0.4. Ontheotherhand,the currentdistributionoftheAsteroidBeltpeaksaround0.1(Morbidellietal.,2015). Ithasnever been studied whetherthe Grand Tack finaldistributioncould evolveto onesimilar to what we seetodayduetotheperturbationscausedbythegiantplanetinstabilityduringtheNiceModel. Thegoalofthispaperistopresentsuchastudy. Inthiswork,wewillstudyindetailtheevolutionoftheAsteroidBeltorbitalstructure,from the end of the Grand Tack model to the giant planet orbital instability, through the instability phase,andfinallyduringthelast∼4Gyuntiltoday. Thisworkwillthereforeunfoldasfollows:section2explainsourSolarSystem’sconfigura- 3 Case 1 Case 2 0.03 0.08 0.07 0.06 ntricity 0.02 ntricity 00..0045 Ecce 0.01 Ecce 0.03 0.02 0.01 0 0 0 100 200 300 400 500 600 700 0 100 200 300 400 500 600 700 Time (My) Time (My) Figure 1: Eccentricity behavior ofJupiter (black) andSaturn (gray) before the planetary instability as afunction of time. Thesetwoplanetsareincoplanarorbits,andlockedintheir3:2MMRwithJupiterat5.4AU.Left: Case1isa initialconfigurationfromMorbidellietal.(2007)whereplanetsevolveintoaresonantconfigurationinahydrodynamical simulation. Right: Case2isanarbitrarycasewhereplanetsareplacedinresonantorbits,allowinglargevariationsin eccentricity. tionandthemethodusedforthenumericalsimulations. Insection3wediscussthedynamical evolutionoftheAsteroidBeltthroughoutthevariousphasesoftheSolarSystem’sevolution,as wellastheinfluenceoftheprimordialeccentricitiesofJupiterandSaturnonthefinalstructure oftheAsteroidBelt. Finally,section4summarizesthemainconclusionsofthispaper. A complementary study, approaching the problem from a different perspective, has been recentlypresentedinRoigandNesvorny´ (2015). Wewillcompareourresultswiththeirsatthe endofsection3.2. 2. Methods Ournumericalsimulationscontainfiveplanets,Venus,Earth,Mars,Jupiter,andSaturn(all withtheircurrentmasses),plus10,000masslessparticlesrepresentingthefinaloutcomeofthe Asteroid Belt in the Grand Tack simulations(describedbelow). Uranus, Neptune, and the pu- tativeextraicegiantinvokedinNesvorny´ andMorbidelli(2012)arenotincludedinanyofour simulations (the same applies for the planet Mercury). These planets are indeed too far from theAsteroidBelttohaveanyimportantdirecteffectonitsstructure. Acaveat,however,isthat in somesimulationstheextraicegiantissenttemporarilyontoanAsteroidBelt-crossingorbit before being ultimately ejected from the Solar System. In the case the Asteroid Belt-crossing phaselastforsufficientlylongtime,theeffectsofthisbodyontheAsteroidBeltshouldbetaken into account(see Brasiletal., 2016). Nevertheless, because we have limited understandingon how exactlythe evolutionof the planetsoccurred(i.e. how deepa planetcrossedthe Asteroid Beltandforhowlong),weprefertoneglectthisputativeAsteroidBelt-crossingeventandfocus onlyontheeffectsinducedbyJupiter,Saturnandtheterrestrialplanets,whoseevolutionisbetter constrained. Theorbitalconfigurationofthefiveplanetswaschosenasfollows: • Beforetheplanetaryinstability:Theterrestrialplanetsaremodeledtobeonsimpleplanar orbits(Brasseretal.,2013). JupiterandSaturn,alsoonplanarorbits,werelockedintheir mutual3:2 MMRwith Jupiterat 5.4AU. Two cases, differingforthe eccentricityof the giant planets (Fig. 1) are considered. Case 1 (left) is an initial configuration from the 4 hydrodynamicalsimulations of Morbidellietal. (2007), where the planets migrated into theresonanceandpreservedorbitswithverysmalleccentricitiesduetothetidaldamping effect exerted by the gas disk. Case 2 (right) is an arbitrary case where the planets are placed in resonant orbits, but with larger eccentricities (although still smaller than their currentvalues).Forthisphase(forbothcases),thenumericalintegrationsarecontinuedfor 400My(i.e. until4.1Gyago),thebestestimateofthetimeofthegiantplanetinstability (Gomesetal.,2005;Bottkeetal.,2012;Morbidellietal.,2012). • After the planetaryinstability: The initial asteroid’sorbits are those recordedat the end of the simulations of the previous phase, but the planets are placed onto their present- dayorbits. Bydoingthis,wemodeltheinstantaneoustransitionoftheplanetsfromtheir pre-instability orbits to the current orbits. In other words, we simulate the response of the Asteroid Belt to the change of the planetary orbits, but we assume that the actual dynamicalpath that the planets followed in this transition had no importanteffects. We takethissimpleapproachbecausepreciselywhathappenedduringtheplanetaryinstabil- ity is unknown, and many different paths could have been followed by the giant planets (Nesvorny´ andMorbidelli,2012). Certainly,noinstabilitysimulationcanhavethepreten- siontoreproduceexactlywhathappened. Weknowfrompreviousstudies(Brasseretal., 2009; Morbidellietal., 2010) that the change of the giant planets’ orbits had to be fast andof the “jumping-Jupiter”type, i.e. dominatedbya few impulsiveeventsdueto mu- tualplanetaryencounters. Thus,webelievethatsubstitutingtheoriginalplanetaryorbits with the current orbits is the best approximation of the real planetary evolution we can implementwithoutthe risk of incurringinto arbitrarysimulationartefacts. In particular, byusingthecurrentplanetarysystem,thelocationsandstrengthsofallresonancesexactly matchtherealones,whereasnosingularinstabilitysimulationwouldfinishwithprecisely a replica of the current-day planetary system. For the same reasons, this approach has alreadybeenadoptedbyBottkeetal.(2012)intheirstudyoftheprojectilefluxfromthe AsteroidBelttotheterrestrialplanets. Theoppositeapproach(i.e. simulatingthedynam- icsofthegiantplanetsduringtheinstabilityphase)hasbeentakenbyRoigandNesvorny´ (2015).Thesecondphaseofsimulationswereconductedfor4.1Gy,untilatotaltimescale of4.5GywascoveredbythecombinationofthetwophasesoftheSolarSystemevolution. Concerningtheasteroiddistributionweconsidertwocases. Inournominalcaseweusethe asteroid distribution resulting from the simplest of all Grand Tack scenarios, namely the one that only includedJupiter and Saturn (Figure 2. of SupplementaryInformationof Walshetal. (2011),referencedas“2-planetGrandTacksimulation”hereafter).However,forcomparisonwe alsoconsiderthedistributiongeneratedintheGrandTackscenariothatalsoincludeUranusand Neptune(presentedinthemainpaperofWalshetal.(2011),referencedas“4-planetGrandTack simulation”hereafter). BecausetheoriginalGrandTacksimulationshadonly∼1,000particlesinthefinalsamplein theAsteroidBelt,inordertoimprovestatisticswegenerated10,000masslessparticlesmatching thebasictraitsofthea,e,idistributionobtainedinthe2-planetGrandTacksimulation,withthe followingproperties: • Eccentricitydistributionisanormaldistributionwithmeanof0.38andsigmaof0.17. • InclinationdistributionisaRayleighdistributionwithasigmaof10degrees. 5 • Semimajoraxisdistributionisnearlyanuniformdistributionspreadovertherange1.8–3.6 AU. Whilethesefunctionalfitsreproduceeachdistributionindividually,combinedtheyproduced an excessof objectswith high-eccentricityand low-inclinationcomparedto the distributionof asteroidsattheendoftheGrandTacksimulations. Toremovethisexcess,the10,000particles werere-sampledinbinsofwidth0.05ineccentricityand5degreesininclination. Ineachbin, weallowedthetotalnumberofparticlestobeatmost4timesmorenumerousthantheasteroids attheendoftheGrandTacksimulationsinthesamebin. IftherewerenooriginalGrandTack asteroids in the bin, a maximum of 4 particles from the functional fits was allowed. This re- samplinglimitedtheexcesspopulationofhigh-eccentricityandlow-inclinationbodiesfoundin the10,000particledistributions,andresultedinafinalpopulationof6,424bodies.Theadvantage ofthisprocedure,relativetousingdirectlytheGrandTackasteroidsasinitialconditions,isthat the functional fits allow us to generate more particles (but this could have been achieved also bycloningtheGrandTackasteroids)andalsoplacesomeparticlesinbinsoriginallywithzero GrandTackasteroids,thusmakingthedistributionsmoother. Forthe4-planetGrandTacksimulationwesimplyresampledtheabovedistributionattribut- ing to each particle a “weight”, representingthe probabilitythat said particle exists at the end ofthe4-planetGrandTackrun. Becausethesemimajoraxisandinclinationdistributionsinthe 2-planetand4-planetGrandTacksimulationsarebasicallythesame,theseweightsarecomputed fromtheeccentricitydistributionsonly,whicharesignificantlydifferent.Theseweightsarethen usedtobuildanewfinaldistributionfromthatobtainedinournominalcase. Inallsimulationsallplanetsinteractwitheachotherwhilealsoperturbingthetestparticles. Test particles interact with the planets but not among themselves. The integrations have been conductedusing Mercury (Chambers, 1999), in the Hybrid option with a time step of 10 days (morethan20stepsperorbitalperiodofVenus). 3. Results Figure 2 shows the currentstructure of the Asteroid Belt plotting all objects with absolute magnitude H<10 from the Minor Planet Center catalog1, where the Main Asteroid Belt is as- sumedtobeobservationallycompleteatthissize(Jedickeetal.,2002). Ourgoalistoverifyifit ispossiblethattheorbitalconfigurationoftheAsteroidBeltattheendoftheGrandTackmodel couldevolvetoonesimilartothatshowninthisfigure. Todoso,weconsideredthetwophases oftheSolarSystemevolutionpreviouslydiscussedinsection2. 3.1. Beforetheplanetaryinstability Figure 3 showsthe currentAsteroid Belt orbitaldistribution(grayline) comparedwith the initialconditionsusedinthisexperimentthatweregeneratedfromtheGrandTacksimulations(as describedinsection2);thesolidlineisfortheresultofthe2-planetGrandTacksimulationand thedashedlineisforthe4-planetsimulation.Withtheexceptionoftheinclinationdistributions, whichmatchfairlywell,theGrandTackandtherealdistributionsareclearlydifferent,i.e.,the eccentricitydistributionsintheGrandTacksimulationsareskewedtowardslargevalues,andthe semimajoraxisdistributionsarenearlyuniforminsteadofhavingthecleargapsfoundintoday’s 1http://www.minorplanetcenter.org/iau/MPCORB.html 6 0.6 MMRs with Jupiter 7:2 3:1 5:2 7:3 2:1 N(cid:176) of Ast. = 668 0.5 ity 0.4 Earth c ntri 0.3 Jupiter e c 0.2 c E 0.1 Mars 0 n ) 40 6 (cid:176)( n 30 o i t a 20 n i l c 10 n I 0 1.6 2 2.4 2.8 3.2 3.6 4 Semimajor axis (AU) Figure2:CurrentstructureoftheAsteroidBeltwithallH<10objectsfromtheMinorPlanetCentercatalog. Graydots representtheasteroids. Curveddashedlinesinthetoppanelrepresenttheboundaries forEarth-,Mars-,andJupiter- crossingorbits(fromlefttoright). Inthebottompanel,thecurveddashedlinerepresentsthecurrentlocationoftheν6 secularresonance,whichoccurswhentheprecessionrateofanasteroid’slongitudeofperihelionisequaltothemean precessionrateoftheperihelionofSaturn.VerticaldashedlinesshowMMRsbetweenasteroidsandJupiter. population.The2-planetand4-planetGrandTacksimulationsalsogiveeccentricitydistributions quite differentfrom each other, with the distribution obtained in the 4-planetsimulation being evenmoreskewedtolargevalues.ManyparticlesinthefinalGrandTackdistributions,however, mustclearlybeunstable,becausetheirsmallsemimajoraxisand/orlargeeccentricitymakethem planet-crossing. Figure4, showssnapshotsof theevolutionofthe AsteroidBeltin oursimulations,starting from the final 2-planet Grand Tack configuration. The left panel illustrates the initial system, correspondingtothesolidblacklinesofFig. 3. Consideringtheevolutiondescribedinsection 2(withplanetsonpre-instabilityorbits),andusingCase1(low-eccentricitygiantplanetsorbits from Morbidellietal. (2007)), after 400 My of evolution we obtain the distribution depicted in the right panel of Figure 4. The colors of the particles in the left panels correspond to the particles’lifetimesinthissimulation.ResultsrelatedtoCase2(giantplanetswithmoreeccentric orbits), will be considered only for measuring the influence of the primordialeccentricities of JupiterandSaturnandpresentedinsection3.3. Thedistributionafter400Myisalreadyclosertothecurrentone(seeFig.2)becausethevery high eccentricity objects have been removed due to interactions with the planets whose orbits they crossed. The main differencewith the currentmain beltdistribution is that oursimulated beltextendsinwardsof2.2AUinsemimajoraxis. Thisisbecausethepowerfulν resonanceis 6 notinplaceyet,giventhatJupiterandSaturnarestillinresonanceandonquasi-circularorbits. 7 Time = 0.000 Gy Time = 0.000 Gy 1 1 ber 0.9 ber 0.9 um 0.8 um 0.8 N N ve 0.7 ve 0.7 mulati 00..56 mulati 00..56 u u C 0.4 C 0.4 d d malize 00..23 malize 00..23 Nor 0.1 Nor 0.1 0 0 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 0 5 10 15 20 25 30 35 40 45 Eccentricity Inclination ((cid:176)) Time = 0.000 Gy Time = 0.000 Gy 1 45 mber 0.8 3450 u ormalized Relative N 000...246 (cid:176)Inclination () 1122305050 N 5 0 0 1.8 2 2.2 2.4 2.6 2.8 3 3.2 3.4 3.6 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1 Semimajor axis (AU) Eccentricity Figure3: Normalized cumulative numberofasteroids asafunction oftheeccentricity (topleft)andinclination (top right). Normalizedrelativenumberofasteroidsasafunctionofsemimajoraxis(bottomleft). Thewidth∆aofthebins ofthehistogramis0.02AUinsemimajoraxis. Inallthesepanelsthegraylinereferstotherealdistribution,thesolid anddashedblacklinesrefertothefinaldistributionsinthe2-planetand4-planetGrandTacksimulationsrespectively. Bottomright: inclinationasafunctionoftheeccentricity. LargegraydotsrepresenttherealasteroidswithH<10from theMinorPlanetCentercatalog. Smallblackdotsrepresentourinitialdistributiongeneratedasdescribedinsection2 (thedistributionattheendofthe2-planetGrandTacksimulation,i,e.,afterthedispersionofthegasnebula). ThisextensionofthemainbelttowardstheterrestrialplanetsispreciselytheE-beltadvocatedin Bottkeetal.(2012). Althoughnot shown, the distribution after 700 My of evolution is nearly indistinguishable fromthatshownintherightpanelofFig. 4. Thisdemonstratesthattheexacttimingofthegiant planetinstabilityisnotimportantforthisstudy. Inordertobetterunderstandtheevolutionduringthefirst400My,bylookinginmoredetail atFig. 42,weseethataverystrongdepletion(∼71%)hasoccurred,approximatelyhalfinthe first100My. Thisisduetothelargecollectionofparticlesonclearlyunstableorbits,asnoted above. In fact, this happened mostly to objects with e > 0.4, due to either collision with the terrestrialplanets(10%oftheremovedparticles)orJupiter(1.5%)orejectionsontohyperbolic orbits (88% of the removed particles). Only 0.5% of the removed particles collided with the Sun. ThisnumberismuchsmallerthanthatforthecurrentNear-Earthasteroids(Farinellaetal., 1994;Gladmanetal.,1997). Thisisbecausethegiantplanetsareonmorecircularorbits,which makesthemeanmotionresonancesmuchlesseffectiveinrisingeccentricitiesthaninthecurrent 2An animation of the entire evolution, from 0 to 4.5 Gy, can be found electronically at ex- tranet.on.br/rodney/rogerio/asteroids.mp4 8 Time = 0.000 Gy Time = 0.400 Gy 1 MMRs with Jupiter 7:2 3:1 5:27:3 2:1 N(cid:176) of Ast. = 9888 0.4 1 MMRs with Jupiter 7:2 3:1 5:27:3 2:1 N(cid:176) of Ast. = 2897 4.5 Eccentricity 0000....2468 Earth Jupiter 000...23355 Gy) Eccentricity 0000....2468 Earth Jupiter 334.5 Gy) 0 Mars 0.2 me ( 0 Mars 2.5 me ( (cid:176)nation () 234000 00..115 Lifeti (cid:176)nation () 234000 12.5 Lifeti ncli 10 0.05 ncli 10 1 I 0 0 I 0 0.5 1.6 2 2.4 2.8 3.2 3.6 4 1.6 2 2.4 2.8 3.2 3.6 4 Semimajor axis (AU) Semimajor axis (AU) Figure4: Left: Distribution oftheparticles resultingfromtheGrandTack2-planet simulation, whichconsitutes the initialconditionforourfirstsimulationfrom0to400My. Right: distributionoftheparticlessurvivingat400My,just beforetheplanetaryinstability,whichconstitutestheinitialconditionforoursecondsimulation,from400Myto4.5Gy. Particlesarecoloredaccordingtotheirlifetimeinthesimulationforwhichtheyrepresenttheinitialconditions. Thus, onlyredparticlessurviveuntiltheendofthesimulation.Curveddashedlinesinthetoppanelsrepresenttheboundaries forEarth-,Mars-,andJupiter-crossingorbits(fromlefttoright). VerticaldashedlinesshowthemainMMRsbetween asteroidsandJupiter. SolarSystem(meanmotionresonancesarestableifJupiterisonacircularorbitandwouldnot opengaps, Morbidelli(2002)). Also, theorbitsofthegiantplanetsareclosertoeachother,so theν secularresonanceisfurtheroutinthebelt. Consequently,neitherthemeanmotionnorthe 6 secularresonancesareabletolifttheparticles’eccentricitiestounity. Althoughthedistributionof particlesattheendofthe GrandTack evolutioncoversa wide rangeofeccentricities,semimajoraxes,andinclinations(asshownintheleftpanelofFig. 4),in ordertoestimatetheAsteroidBeltmassWalshetal.(2011)consideronlyparticlesinthe“belt region”, with q > 1.9 AU and a < 3.2 AU. In this region, ourdepletionratio is ∼ 24% during thefirst400Myand∼16%withinthefirst100My. TheGrandTackmodelplaces∼ 1.3×10−3 M ofS-typesasteroidsinthe“beltregion”,andthreetimesasmuchofC-typesasteroids,which ⊕ impliesatotalmassof∼5.2×10−3M forthepost-GrandTackmainbelt. ⊕ Thus,after400My,westillhave∼76%ofthemassremainingintheprimordialmainbelt, which is ∼3.9×10−3 M , or about6-7 the currentmass of the currentAsteroid Belt (∼6×10−4 ⊕ M ). ⊕ 3.2. Aftertheplanetaryinstability Thesecondphaseofthenumericalsimulationsbeginaftertheplanetaryinstability. Here,as explainedinsection2,theplanetsareinstantaneouslyplacedontotheircurrentorbits. Withthe new orbits, the secular resonances(particularlythe ν resonanceat2.05AU) appearwith their 6 fullpowerandseveralmeanmotionresonanceswithJupiterbecomeunstabledueto thelarger eccentricities of Jupiter and Saturn. The lifetimes of the particles that constituted the initial conditionsforthissecondsimulationareillustratedviaacolorscaleintherightpanelsofFig.4. Figure 5 shows the final orbitaldistributionof the particlessurvivingat the end of the full simulation, at4.5 Gy. One may note thatthereis a nice qualitativematch betweenthe current AsteroidBeltdistributionandthatproducedinthesimulation(comparewithFig. 2). Therange ofdistributioninsemimajoraxes,eccentricities,inclinations,andthestructureoftheKirkwood andsecularresonantgapslookverysimilarinthetwocases. 9 Time = 4.500 Gy 0.6 MMRs with Jupiter 7:2 3:1 5:2 7:3 2:1 N(cid:176) of Ast. = 669 0.5 ity 0.4 Earth c ntri 0.3 Jupiter e c 0.2 c E 0.1 Mars 0 n ) 40 6 (cid:176)( n 30 o i t a 20 n i l c 10 n I 0 1.6 2 2.4 2.8 3.2 3.6 4 Semimajor axis (AU) Figure5:Configurationofthesystem4.1Gyaftertheplanetaryinstability(i.e.atthecurrenttime).Blackdotsrepresent theasteroidsthesurvivedinthesimulation. CurveddashedlinesinthetoppanelrepresenttheboundariesforEarth-, Mars-,andJupiter-crossingorbits(fromlefttoright).Inthebottompanel,thecurveddashedlinerepresentsthecurrent locationoftheν6secularresonance.VerticaldashedlinesshowMMRsbetweenasteroidsandJupiter. Fig. 6 comparesthe final distribution of the surviving simulated particles with the current Asteroid Belt orbital distribution, in a manner similar to what we did in Fig. 3 for the initial distribution. Fig.6(bottomleftpanel)comparesthefinalsemimajoraxisdistributions. Thevisualcom- parison is very satisfactory, with the exception of the zone between the 7:3 and 2:1 MMRs, whichismorerelativelypopulatedbyrealasteroidsthaninourmodel. Tobemorequantitative, thefractionofthetotalasteroidpopulationorbitingbetweenmajorKirkwoodgapsisreportedin Table1forboththeobservedandthemodelpopulations.Again,weseeafairlygoodagreement. Theinclinationdistribution(Fig. 6topright)doesnotchangeverymuch(comparewithFig. 3)fromthebeginningtotheendofoursimulations,movingjustslightlytowardslargerinclina- tionvalues. Indeedlowinclinationasteroidsareremovedsomewhatmorefrequentlythanhigh Kirkwoodgapratios Zone1 Zone2 Zone3 Zone4 MajorBelt 0.106 0.373 0.093 0.427 Simulation 0.147 0.394 0.141 0.318 Table1:FractionoftheasteroidpopulationorbitingbetweenmajorKirkwoodgaps.Allfractionsarecaulculateddividing thenumberofasteroidsinbetweentwoadjacentKirkwoodgapsbythetotalnumberofasteroidsbetweenthe7:2and the2:1MMRs. Thus: Zone1representsthefractionofasteroidsbetweentheMMRs7:2and3:1. Zone2thefraction betweenthe3:1and5:2MMRs.Zone3betweenthe5:2and7:3MMRs,andZone4betweenthe7:3and2:1MMRs. 10