ebook img

Is the entropy at the liquid-gas critical point of pure fluids proportional to a master dimensionless constant ? PDF

0.41 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Is the entropy at the liquid-gas critical point of pure fluids proportional to a master dimensionless constant ?

Europhysi s Letters PREPRINT 6 0 Is the entropy at the liquid-gas riti al point of pure (cid:29)uids 0 2 proportional to a master dimensionless onstant? n a Yves Garrabos J Equipe du Super ritique pour l'Environnement, les Matériaux et l'Espa e - Institut de 5 Chimie de la Matière Condensée de Bordeaux - Centre National de la Re her he S ien- ti(cid:28)que - Université Bordeaux I - 87, avenue du Do teur S hweitzer, F 33608 PESSAC ] h Cedex Fran e. c e m PACS. 64.60.-i (cid:21) General studies of phase transitions. - PACS. 05.70.Jk (cid:21) Criti al pointphenomena. t a PACS. 64.70.Fx (cid:21) Liquid-vapor transitions. t s . t a m Abstra t. (cid:21) From a minimal set made of four s ale fa tors de(cid:28)ned at the liquid-gas riti al - pointofapure(cid:29)uid,andoneadjustableparameterwhi ha ountsforparti lequantume(cid:27)e ts, d wedemonstratehereamastersingularbehaviorofthe orrelationlengthfortheone- omponent n o (cid:29)uidsub lass,usinganasymptoti s aledilatationofthephysi al(cid:28)elds. Su hmasteΦr4behavior c observed within the preasymtoti domain is in onformity with the renormalized d=3 Field [ Theorypredi tions at large orrelation length s ale of the(cid:29)u tuatingorder parameter, forthe omplete universality lass of the symmetri al uniaxial 3D-Ising-like systems. The following 1 onsequen es are dis ussed: (i) A omparison between the riti al state of pure (cid:29)uids and the v zero-temperature state leads to an intuitive analogy with the (Nerst) third law of thermo- 8 dynami s, whi h authorizes spe i(cid:28) master form for hypers aling within the sub lass of pure 8 0 (cid:29)uids; (ii) A master onstant value of the non-dimensional riti al entropy an exist for all 1 the pure (cid:29)uids at the short-ranged lengths ale of the mole ular intera tion. From this latter 0 hypothesis, we show that the needed four s ale fa tors are the four preferred dire tions ex- 6 pressing omplete thermodynami (linear) ontinuity rossing the liquid-gas riti al point on 0 the(pressure, volume,temperature) phase surfa e. / t a The liquid-gas riti al point (CP) of a pure (cid:29)uid is an unattainable single point on the m p,v ,T p d- of freedo(pmresasruere ,ouppalretdi .leAvosluamme,attteemrpoefraftau rte,)tphhea seritsiu rafla sNeta,ti=enawNthpi ch, aTnc,ina(cid:28)nnditnecde=greNVVecs c n (the riti al density number) of a riti al amount of matter (cid:28)lling the volume , o is a thermodynami ally unstable state, due to the diverging hara ter of the spontaneous p V c (cid:29)u tuations of extensive variables ( is dual to ). This riti al state appears then asa limit : v of∂2tUhermodynami stability at whi h all the stability determinants (the se ond derivatives Xi ∂Ωi∂Ωj), that were stri tly positive for any point of the four-dimensional (4-D) hara teristi φ (U,Ω )=0 U(Ω ) U i i r surfa e Ω =(S,,Vb,eN o)me zero for CP (see for example [1℄). S is the total internal a i energy, while arethe threeasso iatednaturalvariables. is thetotalentropy. A omprehensiveunderstandingofthediverging hara terofthespontaneous(cid:29)u tuations of extensive variables, whi h hara terizes the riti al behavior of the one- omponent (cid:29)uid losetoitsunstable riti alstate, omesfromthe(cid:28)eldtheory(FT)framework(seeforexample [2℄). This theoreti al s heme a ounts for the in(cid:28)nite degrees of freedom throughout the (cid:13) EDPS ien es 2 EUROPHYSICSLETTERS Φ4 (n = 1) Hamiltonian of the so- alled d=3 -model of the symmetri al uniaxial 3D-Ising-like u > 0 Λ 4 0 systems, with asso iated oupling onstant and (cid:28)nite uto(cid:27) wave number . The t sele ted pair of relevant s aling (cid:28)elds, made of the thermal (cid:28)eld weakly (cid:29)u tuating and the h ordering(cid:28)eld morestrongly(cid:29)u tuating,takesexa tzero-valueattheisolatednon-Gaussian {t=0;h=0} (Wilson-Fisher)(cid:28)xedpoint . Atthis (cid:28)xed point, the(cid:29)u tuationsofthe1(s alar) m=hΦi h ξ ∼L=(V)d ∼∞ order-parameter(OP) , onjugatedto , anrea hin(cid:28)nitesizen o. T = T c This hypotheti al situation at is then only expe ted for an unphysi al pure (cid:29)uid V → ∞ N → ∞ of in(cid:28)nitne =sizeN(= (v )−)1and in(cid:28)nitennum=berNo→f∞parti le≡s (1 ), but with (cid:28)nite number density V p , su h that c V→∞ CP vp,c. Asymptoti ally lose to this t (cid:0) h (cid:1) riti al point, i. e. for small values of and , power law behaviors of universal features are expe ted whatever the sele ted system. So that, the set of system-dependent parameters whi h hara terizesea hone- omponent(cid:29)uid ismade from i) the riti alparameters,su has T p n c c c , ,and ,ii)theinverse( Λut)o−(cid:27)1wavenumberwhi h hara terizesadis retestrutureofthet 0 (cid:29)uid parti les with spa ing , and iii) the two-s ale fa tors whi h relate analyti ally h and totherespe tivephysi al(cid:28)eldspropertoea hsystem[3℄. Startingfromthisasymptoti des ription of the two-s aleuniversalityin the lose vi inity of CP, we havepostulated in [4℄, that the hara teristi set of (cid:29)uid-dependent parameters orresponds to the minimal set of p,v ,T p measured riti alparametersneeded to lo alize CP on thenormalized (i.e. 3D) phase surfa e. Here normalizaNtionreferto parti le properties forstandarvd t=herVmodynami swritten for a onstant amount of matter. Our parti le notation, i.e. p N, uses small letters p Qmin = T ;v ;p ;γ′ = ∂p withexpli itsubs ript . Theminimalsetreads c (cid:26) c p,c c c (cid:16)∂T(cid:17)vp,c(cid:27)CP [4,5℄. We an then make dimensionless the thermodynami and orrelation fun tions of any one1- (β )−1 = k T α = kBTc d omponent (cid:29)uid, using the s ale fa tors, c B c for energy unit, and c (cid:16) pc (cid:17) k α B c for lengt1h unit ( is the Boltzmann onstant). is not dependent of the ontainer size L=(V)d αc [6℄ and takes a lear physi al meaning: isvthe=spakBtiTacl extent of the short-ranged (Lennard-Joneslike)mole ularintera tion. Therefore, c,I pc , isthemi ros opi volume oZft=hep crvipt,ic al inteYra =tioγn′p ce−ll 1(CIC).Introdu ingthetwo hara teristi dimensionlessnumber, Qcmin =kB{Tβc ,;aαnd;Zc;Y }cTc ,(Zlea)d−s1t=o rnewvritethe minimal setin the more onvenientformZ, c c c c c . Now, c c c,I is the number of parti lesthat (cid:28)ll the CIC. c Y c and anthentaketheirphysi almeaningoftwo-s alefa torstoformulatethedimensionless master behavior of all the one omponent (cid:29)uids asymptoti ally to their CP [5,7℄. "Master" singular behavior of the one- omponent (cid:29)uid sub lass As a matter of fa t, asymptoti master singular behavior of dimensionless potentials and dimensionlesssizeofOP(cid:29)u tuationsonlyo∆ τ u∗rs=wkhenβa(nTa−ppTro)pri∆athe∗s =aleβdi(lµata−tioµnm)ethod B c c c p p,c (SDM) is applied to the physi al (cid:28)elds, , , and ∆m∗ = (α )d(n−n ) µ N c c p .∗ ,∗dual to ∗, is the hemi al potential per parti le. In SDM, the T H M (cid:16)renormalized(cid:17) (cid:28)elds qf, qf, and qf, are proportional to the physi al (cid:28)elds, in omplete analogy to the FT framework near the Wilson-Fisher (cid:28)xed point [3℄. For the omplete one- omponent (cid:29)uid sub lass, these renorTm∗al≡izeTd∗(cid:28)=eldYs∆arτe∗now [8℄ de(cid:28)ned by qf c H∗ = Λ∗ 2H∗ = Λ∗ 2(Z )−d2 ∆h∗ qf qe qe c (1) M∗(cid:0)=Λ(cid:1)∗ M∗ =(cid:0)Λ∗ (cid:1)(Z )d2 ∆m∗ qf qe qe c Λ∗ = 1 + λ qe c In Eqs. (1), a ounts for quantum e(cid:27)e ts on the ut-o(cid:27) parameter for T ∼= Tc [8℄. Writing λc = λq,f(cid:16)ΛαTc,c(cid:17), [ΛT,c = (2πmphkPBTc)12 is the thermal wavelength at YvesGarrabos:Istheentropyattheliquid-gas riti alpointofpurefluidsproportionaltoamasterdimensionless onstant?3 T =T h c P and isthe Plan k onstant℄, leadsto a relativequantum orre tionof the rangeof ΛT,c λ mole ularintera tionatCPproportionaltotheratio αc . Then q,f appearsasanadjustable numeri al prefa tor whi h in orporates the quantum parti le statisti s. When riti al properties of one standard (cid:29)uid (xenon [9℄) are known, Eqs. (1) permit to de(cid:28)ne the onstant amplitude values of the master riti al behavior [5℄ in the so- alled preasymptoti domain (PAD) [10℄, where the singular powerlaws expressedat the (cid:28)rst-order of the Wegner expansion [11℄, are expe ted to be valid. Conversely, SDM is then able to estimate all the riti al amplitudes appearing in the [two-terms℄ Wegner expansions for any pure (cid:29)uid [5,9℄. ξ+ nm T −Tc > 0 K Figure 1 (cid:21) a)XLeogK-LrogArs aCleOo2fSF6(inD2O ) as a3Hfuen tion of (in ), along the riti al iso hore, for , , , , , αc ,and(βc)−1(seetherespe tive olorsintheinsertedTable); b) dimensionless behaviors in units of and , showing failure of the lassi al orrℓe∗s,p+onding state s heme; ) master dimensionleTss∗behavior of the renormalized orrelation length qf , as a fun tion of the dilated thermal (cid:28)eld [see Eq. (2)℄. The arrow indi ates the order of magnitude α c of the expe ted extension of the preasymptoti domain. Ea h (cid:29)uid length s ale is given in the inserted Table. To demonstrate this impoQrtmanint featuΛre∗where any leading and (cid:28)rst on(cid:29)uent amplitudes an be estimated only using c and qe, we are here on erned by the riti al behavior ξ+ T c of the a tual orrelaΛtion length ΛaloΛn∗g t=he1 riti al iso hore above [12℄. When the (cid:29)uid uto(cid:27)wavenumber 0 issu hthat 0 qe αc [8℄,therenormalized orrelationlengthwrites ℓ∗ =Λ ξ = ξ∗ = αξc ℓ∗,+ qf 0 Λ∗qe Λ∗qe. Within PAD, the two-terms master divergen e of qf reads as ℓ∗,+ =Z+(T∗)−ν 1+Z(1),+(T∗)∆ qf ℓ h ℓ i (2) ν =0.6304±0.0013 ∆=0.502±0.002 where and are universal riti al exponents [13℄. Z+ = 0.57 Z(1),+ = 0.385 The leading amplitude ℓ and the (cid:28)rst on(cid:29)uent amplitude ℓ have onstant values for the pure (cid:29)uid sub lass (see [12℄ for detailed analysis and the Refs. [5,7,9℄ Z(1),+ = cte for amplitude values of standard riti al xenon). Here, postulating ℓ for the pure 4 EUROPHYSICSLETTERS Φ4 (n = 1) (cid:29)uid sub lass, leads to onsider the simpler situation in the d=3 -theory, where the u > 0 4 starting point for (in usual renormalized traje tories), is ertainly very lose to the ideal traje tory between the Gaussian and the Wilson-Fisher (cid:28)xed points [14℄. Xe Kr Ar CO 2 The published (cid:28)tting resultsof the orrelationlength measurementsof , , , , SF D O 3He 6 2 , ,and ,[15℄havebeenreportedonFigure1ausingdimensionedquantities,whi h make learly distinguishable ea h spe i(cid:28) (cid:29)uid behavior. Figure 1b gives a representation of t(βhe)d−i1mensioαnless quantities obtained from the lassi al theory of orresponding states, using c c and units. The failure of the lassi al theory is eviden ed from the importan e 3He D O 2 of quantum e(cid:27)e ts in and mole ular intera tion e(cid:27)e ts in , when omparison to Xe the standard monoatomi is made. Final representation of the master behavior obtained from SDM is given on Figure 1 . The s atter between the data orrespondsto the estimated pre ision (10%) on the determination of ea h (cid:29)uid orrelation length. α c Sin e is a measure of the mean range of intera tion for es, Eq. (2) also provides an ℓe∗a,s+y≫ on1trol of the e(cid:27)e tive extension of the riti al domain where the mandatory ondition qf is expe ted to be validT. ∗T/hen0.0F1igure 1 indi ates also the order of magnitude of the PAD length (at least up to ) where Eq. (2) is valid (see also [7,12℄). Su h result on(cid:28)rmsprevioussimilar on lusionsbasedon arefulanalysesof rossovermodels and generalized riti al (cid:29)uid e.o.s. [5,9,16℄. Chara terization of the thermodynami "CP vi inity" To rea h CP from a thermodynami approa h needs to perform an in(cid:28)nite number of transformationsbetweenin(cid:28)nite number ofnear- riti alequilibrium states,leadingto in(cid:28)nite time to obtain the riti al state. By analogy with the Nernst prin iple (the so- alled third law of thermodynami s), we an also reformulate the previous senten e as follows. It is impossible by any pro edure, no matter how idealized, to rea h exa t riti al state of any pure (cid:29)uid in a (cid:28)nite number of operations. In a (cid:28)nite number of operations (or (cid:28)nite time), it is then only possible to border the riti al point as lose as possible, and the (cid:28)nal near riti al state at in ipient equilibrium is imposed by the (cid:28)nite sized ontainer. For pure (cid:29)uids in absen e of external (cid:28)eld, this (cid:28)nite size of the ontainer is measured by i) (cid:28)nite extensive V N n − n v − v c p¯ p¯,c values of and , (cid:28)xing the (small) mean value of (or , equivalently), T proportional to the physi al OP; ii) the (cid:28)nite intensive value of , that (cid:28)xes the (small) T −T c mean value of , proportional to the independent physi al thermal (cid:28)eld. Therefore, the µ −µ p−p p¯ p¯,c c (cid:28)nite intensive value of (or , equivalently), proportional to the independent physi al ordering (cid:28)eld, is also (cid:28)xed (from thermodynami s prin iples). This (cid:28)nite riti al size of the ontainer governs the natural way for the unstable riti al (cid:29)uid to rea h in ipient stabilityonanequilibriumstatea tedbythisnear riti al ontainer,theso- alledreservoir in statisti alme hani s. Forsu hathermodynami equilibriumvery losetotheCP,allthetotal Π≡{U,H,A,G,J} hara teristi potentials [17℄arehomogeneousfun tions ofthe (cid:28)rst order Ω ≡ {S,V,N,T,p,µ } i p¯ in terms of their three natural variables among , and Euler's thoerem SdT − Vdp + Ndµ = 0 p¯ applies [1℄. Correlatively, the Gibbs-Duhem equation, , requires a normalized des ription leading to the 3-D representation of thermodynami equilibrium N V states. As and are two independent extensive variables, in addition to the standard normalization per parti le mentionned above, another equivalent normalizeπd=s Πhemeno= uNrs using densities for a system at onstant volume. The density notation, i.e. V or V , uses small letters. When the above (cid:28)rst-order (equilibrium) s heme is used in the "CP vi inity", the (cid:28)nite riti al parameters are basi ally onstitued from the non-zero values of appropriate "(cid:28)rst order" derivatives. On this thermodynami point of view, all the riti al parameters, the so- alledpreferred riti aldire tionsin the following,re(cid:29)e ttopologi al ontinuityofthermo- dynami sattheCP,dire tlyasso iatedtotheproperanalyti ontinuityofthethreeintensive YvesGarrabos:Istheentropyattheliquid-gas riti alpointofpurefluidsproportionaltoamasterdimensionless onstant?5 T p µ p¯ variables , , and when " rossing CP". For example of our main present on ern, the s = ∂gp¯ s = ∂g normalizedvalueof p¯,c (cid:16)∂T (cid:17)p,CP [or c (cid:16)∂T(cid:17)p,CP℄,shouldbede(cid:28)nedasoneamongthe preferreddire tions. Obviously,the extendedsetmade with all the riti aldire tions(see be- low), in ludes our minimal set hypothetized as ontaining the needed information to des ribe riti alphenomena(i.e. theneededinformationto al ulatealltheleadingand(cid:28)rst on(cid:29)uent amplitudes of the power law singularities of "se ond order" derivatives). This raises the fol- lowingquestionresultingfromthermodynami equivalen ebetweenunattainable riti alstate and unattainable absolute zero state: Is the entropy at the exa t liquid-gas riti al point of any pure (cid:29)uid a hara teristi value of ea h (cid:29)uid parti le, related to a master dimensionless onstant re(cid:29)e ting universal (cid:29)uid nature approa hing asymptoti ally CP? N V Close to the riti al point, we are mainly on erned by the (cid:29)u tuations of (or , alternatively). Whentheenergyandthenumberofparti lesofa(cid:29)uidin onta twithaparti le reservoir an (cid:29)u tuate, the basi link between statisti alme hani sand thermodynami sof a T µ p¯ (cid:28)xedvolumeofmatter,where and aretheoperatingvariables anbe orre tlyestablished J(T,V,µ ) = p¯ only from the Grand anoni al statisti al distribution. The Grand potential −pV isthennaturallysele tedto hara terizetheequilibriumstateofthesystemmaintained ajt(T ,oµns)ta=ntJvolume. Its equilibriump(sTt,aµte)is hara terized by the Grand potential density p¯ V, whose opposite, i.e. p¯ , gives the hara teristi surfa e lose to the CP s hematized in (cid:28)gure 2 [18℄. This result omplements the Canoni al statisti al des ription A(T,V,N) onne tead (toT,tvhe) =HeAlmholtz free energy , where the Helmholtz free energy per parti le p p N hara terizes the equilibrium state of the system of onstant amount of matter in onta t with an energy reservoir (a thermostat). To dis uss di(cid:27)eren es between {p(T,v );s (T,v )} p p p minimalandextendedsets,needsto onsiderthee.o.s. pairs, ,asso iated a {n(T,µ );s(T,µ )} j(T,µ ) µ ;T p p p p p to , or, , asso iated to . However, only their ommon diagram ontainsthreenewunmeasured hara teristi parameters,inadditiontothemeasured p;T ones inµ∗the≡usgu∗al= β dµiagram (seae th=e rjespe+ tgive b=ina−rpyvdiag+ramµs onstrau∗ ted=inj∗Fi+gugre∗ 2)=: −Zi)+µp,∗c µp,c c p,c, with p,c p,c p,c c p,c (β )p−,c1and p,c p,c p,c c p,c; p,c is another energy s ale fa tor (in addition to c ); ′ x∗ = δc (β )−1 α ii) p,c kB (obtained without use of c and c), where the preferred dire tion, δ′ = ∂gp c (cid:20)(cid:16)∂T (cid:17)vp(cid:21)CP, hara terizesthermodynami ontinuity in this diagram ; s∗ = sp,c (β )−1 α iii) p,c kB (alsoobtained withoutuseof c and c), wherethe riti alentropyper s = − ∂µp > 0 γ′ parti le p,c (cid:20)(cid:16)∂T (cid:17)p(cid:21)CP is a preferred dire tion onne ted to c (measured on the ′ p;T δ µ ;T c p diagsram=, Fγi′gv. 2a−),δa′nd (unmesa∗sur+edx∗on=theY Z −jd∗iagram, F−ijg∗. 2=b)Z, throughout the relation p,c c p,c c, leading to p,c p,c c c p,c, with p,c c. v ∂sp Y Z = (cid:20) (cid:16) ∂v (cid:17)h=hc(cid:21)CP The produ t c c kB is independent of the redu tion pro ess, then is a parti {lZe p,YropZer}ty, hara teristi of ea h on(eβ- o)−m1ponenαt (cid:29)uid. De fa to, the non-dimensional c c c c c pair Φ (obtain(jed with,oTu,tvus)e=of0 ajnd ) i(sTa,svso) i=atedJto the two preferred dire tions of jp¯,V=cte p¯,V=cte p , where p¯,V=cte p N V=cte is the Grand (cid:0) (cid:1) potential per parti le of a (cid:29)uidTm;apin;tZain;eYd;aµt∗ o;nss∗tant volume. Finally, the extended set c c c c p,c p,c CP is the omplete set from whi h we (cid:8) (cid:9) are able to al ulate all the othUer= hTaSra+ teGris+tiJ riti al paramuc,epte=rssusin+g lµinc,epa+riz−edpcvt0h,ecrmo- dynamu∗i s.=Fµo∗r e+xasm∗pl−e,Zfrom , we obtain Tc c,p Tc Tc and then c,p c,p c,p c. 6 EUROPHYSICSLETTERS µ ;p µ ;T p;T p p Figure2(cid:21)Preferreddire tions rossing riti alpointin (a), (b),and ( )diagramsob- p(T,µp¯) tainedfromproje tionsofthe3D hara teristi surfa e and orrespondingisothermal(blue), isobari (bla k), iso hori (green), and iso hemi al potential (yellow) iso lines. Non-homogenous two-phasedomain orresponds to theliquid-vapor equilibrium(LVE) (red)line. Seealso [18℄. We an now refovrmu=latkeB Trciti al thermod1ynami s, at the s ale of the mi ros opi intera - tion ell of volume c,I pc (cid:28)lled with Zc parti les, where we expe t that all the system 1 information is ontained. Multiplying then the above parti le relations by Zc, we obtain j∗ = −1 c,I s∗ −1 = Y −X c,I c c u∗ = s∗ +µ∗ −1 (3) c,I c,I c,I x∗ X = c,p Z X Y where c Zc . As expe ted, c disappears in the above equations. c, as well as c, are two hara teristi properties per CIC. Sin je∗th=e G−r1and potential (whi h favorizes the lo al ordering) takes master value at rit- i ality, c,I , whatever the sele ted CIC volume, it seems natural to postulate that the esn∗tro=pycoants triti ality(whi hfaµv∗ori−zeus∗thelo aldisorder) analsotakeamaster onstantvalue, c,I . From Eqs. (3), c,I c,I is tuh∗en agl∗so≡ onµs∗tanth.∗M=oreu∗gen−erja∗lly,=al1l t+heur∗emain- ain∗g =ritji∗ al+frge∗e en=er−g1ies+pµe∗r CIC volume, c,I, c,I c,I, c,I c,I c,I c,I, and c,I c,I c,I c,I, are also master onstants, ex ept a possible ommon onstant YvesGarrabos:Istheentropyattheliquid-gas riti alpointofpurefluidsproportionaltoamasterdimensionless onstant?7 value orresponding to an energy translation. Finally, the two dimensionless preferred dire - X Y c c tions and arerelated. TheremainingsetofthQem hinara teristi parameterswhi h ontains c the omplete information at the CIC s ale is well . Our above suggestion omplements s =0 T =0 p the third law of thermodynami s ( at ), and de(cid:28)nes parti le entropy and parti le Z c free energy from (unknown) onstants of proport(iβon)a−li1ty to at exa t CP, in onformity c with basi thermody(nαam)−i 1prin ipes. Therefore is the unique (cid:29)uid-dependent s ale c fa tor for energy, as is the unique (cid:29)uid-dependent s ale fa tor for length, as initially postulated in [4℄. Asa on lusion,fromaformulationof riti al thermodynami s inunitsofthepropertiesof theCICvolume,theaboveanalysisshowsthattheappropriates aledilatationofthephysi al (cid:28)eldsseemsadequatetoobserves alingoftheirasymptoti riti alsingularities(withonlyone adjustableparameterto a ountforquantume(cid:27)e ts). Todes ribethe(cid:29)uid singularbehavior withinthepreasymptoti domain,s aledilatationsoftwoindependent(cid:28)elds anthenbeused as ontrolledsimpli(cid:28) ationsoflinear ombinationsofthree(cid:28)elds[19℄asso iatedtothedensity formulation of non-symmetrized thermodynami potentials at (cid:28)nite distan e to the CP. Referen es 2nd [1℄ Modell M. and Reid R.C., Thermodynami sand its Appli ations, ed., (Prenti e Hall, New York) 1983. 4th [2℄ Zinn-Justin J., Quantum Field Theory and Criti al Phenomena, ed., (Oxford University Press) 2002. [3℄ Wilson K.G., Phys. Rev. B, 4 (1971) 3174; Wilson K.G. and Kogut J.K., Phys. Rep. C, 12 (1974) 75. [4℄ Garrabos Y., Thesis, Paris (1982). [5℄ Garrabos Y.,J.Phys.(Paris), 46 (1985)281 (see alsohttps://hal. sd. nrs.fr/ sd-00015956 or http://fr.arxiv.org/abs/ ond-mat/0512347); J. Phys. (Paris), 47 (m19p8,c6) 197. [6℄ This is notthe ase of these ond riti al length s ale de(cid:28)nedby rhoc. [7℄ Garrabos Y., Le Neindre B., Wunenburger R., Le outre-Chabot C., and Beysens D., Int. J. Thermophys., 23 (2002) 997. [8℄ Garrabos Y., preprint, https://hal. sd. nrs.fr/ sd-00015988 or http://fr.arxiv.org/abs/ ond-mat/0512408. [9℄ Bagnuls C., Bervillier C., and Garrabos Y., J. Phys.-Lettres, 45 (1984) L-127. [10℄ Bagnuls C. and Bervillier C., J. Phys.-Lettres, 45 (1984) L-95; Phys. Rev. B, 32 (1985) 7209; Phys. Rev. E, 65 (2002) 066132; Bagnuls C., Bervillier C., Meiron D.I., and Ni kel B.G., Phys. Rev. B, 35 (1987) 3585. [11℄ Wegner F.J., Phys.Rev. B, 5 (1972) 4529. [12℄ Garrabos Y., Palen ia F., Le outre C., Erkey C. J., Le Neindre B., preprint, https://hal. sd. nrs.fr/ sd-00016105 or http://fr.arxiv.org/abs/ ond-mat/0512456. [13℄ Guida R. and Zinn-JustinJ., J. Phys.A: Math. Gen., 31 (1998) 8130. [14℄ Bagnuls C. and Bervillier C., Cond. Matter Phys., 3 (2000) 559. [15℄ Data and sour es for (cid:29)uid-dependent orrelation length measurementsare givenin [12℄. [16℄ Kiselev S.B. and Ely J.F., J. Chem. Phys., 119 (2003) 8645; and referen es therein. H A G J [17℄ , , , refer to (total) Enthalpy,Helmholtz and Gibbs free energies, and Grand potential. [18℄ Figure 2 provides omplete thermodynami information for a (cid:29)uidmaintained at onstantvol- ufrmeeee nloesregytoptehrepCaPrtia nledg pan=bNeGu≡sedµpin,c (oT∼m,pp)lefmorenat(cid:29)tuoidthoefu sounaslt3aDntraepmroeusennttaotfiomnaottfetrhe(sGeeibfbors example, http://www.publi .iastate.edu/ jolls/homepage.html). [19℄ seeforexample,KimY.C.,FisherM.E.,andOrkoulasG.,Phys.Rev.E, 67(2003)061506; and referen es therein.

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.