ebook img

Is dark energy an effect of averaging? PDF

0.15 MB·English
by  Nan Li
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Is dark energy an effect of averaging?

FortschrittederPhysik,2February2008 Is dark energy an effect of averaging? NanLi,MarinaSeikelandDominikJ.Schwarz∗ Fakulta¨tfu¨rPhysik,Universita¨tBielefeld,Postfach100131,D-33501Bielefeld 8 Keywords cosmology,darkenergy,Hubbleexpansion 0 0 Thepresentstandardmodelofcosmologystatesthattheknownparticlescarryonlyatinyfractionoftotal 2 massandenergyoftheUniverse.Rather,unknowndarkmatteranddarkenergyarethedominantcontribu- n tionstothecosmicenergybudget. Wereviewthelogicthatleadstothepostulateddarkenergyandpresent a analternativepointofview,inwhichthepuzzlemaybesolvedbyproperlytakingintoaccounttheinfluence J ofcosmicstructuresonglobalobservables. Weillustratetheeffectofaveragingonthemeasurementofthe Hubbleconstant. 2 2 Copyrightlinewillbeprovidedbythepublisher ] h p 1 Introduction - o r The concordance model of cosmology states that only 4% of the mass/energy content of the Universe t s is carried by identified particles, and the dominant contributions are unknown dark matter (22%) and a mysteriousdarkenergy(74%)[1]. Itissaidthatwearelivingintheageof“precisioncosmology”,which [ isjustifiedasastatementontheprecisionofobservations,butcertainlynotontheirunderstandings. The 1 purposeofthistalkistorecapitulatethegenesisofthedarkenergyhypothesisandtoshowthatitposesa v seriouscrisistotheoreticalcosmology. Wearguethatapossibleresolutionforthiscrisismaycomefrom 0 thepropertreatmentofeffectsfromaveraging. 2 4 3 2 Dark energy . 1 0 Thevastmajorityofcosmicbackgroundphotons(photonswithoutidentifiedsource)areduetothecosmic 8 microwave background(CMB) radiation, which is isotropic (apart from a componentdue to our proper 0 motion)withfluctuationsatthelevelof10−5. ThustheisotropyoftheUniverse(aroundus)isanobser- : v vationalfact. Ontheotherhand,thereisnoevidencethattheMilkyWaywouldbeadistinguishedplace i intheUniverseandthusitseemsreasonabletofollowCopernicustoassumethatwearenotlivingatthe X centreoftheUniverse. Therefore,weendupwithahomogeneousandisotropicmodel. Themostgeneral r a lineelementinsuchaFriedmann-Lemaˆıtremodelisgivenby dr2 ds2 = dt2+a2 +r2dΩ2 , − (cid:18)1 Kr2 (cid:19) − wherea =a(t)denotesthescalefactorandK/a2thespatialcurvature(K = 1,0,+1)oftheUniverse. − In this model physical distances evolve with time, r = af(r) (we may fix the present scale factor ph a 1), where f(r) = Arsinh(r),r,arcsin(r) for K = 1,0,1 . Itis usefulto define the rate of 0 ≡ { } {− } linearexpansionH a˙/a. WithoutusingEinstein’sequations,justassumingthatphotonstravelonnull ≡ geodesics,onefindsthatlightfromdistantobjectsisred-shiftedbyz ∆λ/λ=1/a 1andtheso-called ≡ − luminositydistance(definedbytheobservedfluxfromasourcewithknownluminosityd = L/4πF) L satisfiestheHubblelaw p c z2 d = z+(1 q ) + (z3) L 0 H (cid:20) − 2 O (cid:21) 0 ∗ Talkat“Balkanworkshop2007”,Kladovo(Serbia). Copyrightlinewillbeprovidedbythepublisher 2 NanLi,MarinaSeikelandDominikJ.Schwarz :Isdarkenergyaneffectofaveraging? 0.4 Gold (MLCS2k2) ESSENCE(MLCS2k2) 0.35 ESSENCE (SALT) 0.3 0.25 ∆µ 0.2 0.15 0.1 0.05 0 0 0.2 0.4 0.6 0.8 1 1.2 1.4 z Fig.1 Thebinnedmagnitudes∆µ(seetext)fordifferentSNdatasetsandlight-curvefittingmethods. at small redshifts z 1. Observationsshow that H 70 km/s/Mpc > 0 and thus we know that the 0 ≪ ≈ Universe expands. The typical time scale of the cosmos is estimated as t 14 Gyr, in concordance H ≈ with the estimate on the age of the oldest objects in the Universe [2]. Another interesting kinematic quantityistheacceleration(deceleration)ofthecosmicexpansion,encodedbythedecelerationparameter q (a¨/a)/H2. MeasurementsofsupernovaeoftypeIa(SNIa)indicatethatq <0. 0 ≡− One might wonder what could be the reason for the high symmetry of the observed Universe. The answerofmoderncosmologyistheideaofcosmologicalinflation[3],anepochintheveryearlyUniverse thatisheldresponsiblefortheUniverse’shomogeneityandisotropy.Ontopofthat,genericpredictionsof cosmologicalinflationarespatialflatness(Ω =0)andtheexistenceoftinyfluctuations[4],asobserved K atalevelof10−5intheCMB. We may ask how strong is the evidence for the acceleration of the Universe, even before we wish to invokeamodelforthemattercontent,withoutassumingthevalidityofEinstein’sequations.Thistestgoes asfollows. We ask atwhatlevelof confidencewe canrejectthenullhypothesisthattheUniversenever accelerated(atz <few).Foraspatiallyflatmodel,assuggestedbytheideaofcosmologicalinflation,our nullhypothesiscanbeexpressedas c d < (1+z)ln(1+z). L H 0 BasedontwodifferentSNIadatasets,twodifferentfittingmethodsandtwodifferentcalibrationmethods, weconcludethatthenullhypothesisisrejectedat>5σ[5]. Thistestcanalsobedoneinacalibration-freeway,i.e. withoutassumingcertainvaluesfortheHubble constant H and the luminosity of the SNe. Instead, we consider the averaged value of the apparent 0 magnitudemofSNewithinacertainredshiftbinrelativetotheaveragedapparentmagnitudem of nearby nearbySNewithz <0.2.Defininganewquantity ∆µ=m m =5log d 5log d , − nearby 10 L− 10 L,nearby the null hypothesiscan be written as ∆µ < 0. For the test, we averagem within redshiftbins of width 0.2. InFig. 1,theresultisshownfortwodatasets(Gold[6]andESSENCE[7])andtwofittingmethods (MLCS2k2[8]andSALT[9]). Theevidenceforaccelerationcanbeobtainedbydividing∆µbyitserror. TheresultforeachredshiftbinisgiveninTable1. Alsogivenistheevidenceobtainedfromaveragingover theapparentmagnitudeofallSNewithredshiftz 0.2. Itisnoticeablethatusingthecalibration-freetest ≥ weakenstheevidenceforacceleration(4.3σ)comparedtotheresultoftheprevioustest(5.2σ). Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 3 Gold2007 ESSENCE ESSENCE z (MLCS2k2) (MLCS2k2) (SALT) 0.2–0.4 2.0 2.2 3.2 0.4–0.6 4.4 4.2 5.2 0.6–0.8 2.8 4.6 3.4 0.8–1.0 2.6 4.9 3.7 1.0–1.2 2.0 1.2–1.4 1.6 0.2 4.3 5.2 5.6 ≥ Table1 Statisticalevidence for accelerationfrom different redshift binsfor different SNdatasetsand light-curve fittingmethods. LetusnowaskwhatthatimpliesforthedynamicalmodeloftheUniverse.Themostgeneralequationof motionforahomogeneousandisotropicUniverseundertheassumptionofdiffeomorphisminvarianceand at most second orderderivativeson the metric (Lovelocktheorem [10]) providesus with the Friedmann equationandthecontinuityequation(c=1) K 8πG H2+ Λ= ǫ, ǫ˙+3H(ǫ+p)=0. a2 − 3 ǫ and p denote the energy density and pressure. G and Λ are Newton’s constant and the cosmological constant. Inordertoclosethissystemofequations,wealsoneedtoimposeanequationofstatep=p(ǫ), whichinmanycasescanbeexpressedasw =p/ǫ.AdimensionlessenergydensityΩ ǫ/(3H2/8πG)is ≡ introducedforconvenience. We have already mentioned that cosmological inflation predicts a vanishing spatial curvature for all practicalpurposesandthuswecanputK = 0. InthepresentUniverse,matterisnon-relativistic(cold), whichmeansp ǫandthusweputp=0. IfwenowwouldputΛ=0aswell,wearriveattheEinstein- ≪ deSitterUniverse,whichpredictsq(t)=1/2andt =2t /3 9Gyr. Therefore,wecannotsticktothis 0 H ≈ simplemodel,aswehaveseenthatq < 0athighconfidencelevelandtheoldeststarsareknowntobeas oldas12Gyrorevenolder[2]. Thesefactsbecameclearonlyabouttenyearsago—the1998cosmologyrevolution. Onecanrewrite thedynamicequationsinto a¨ 3 =4πG(ǫ+3p) Λ<0. − a − Theinequalityandthusacceleration,canoccurifeitherΛ > 4πGǫ(equivalenttoΩ > Ω /2)orthere Λ m existssomeformofenergydensitywithp < ǫ/3,aformofenergythathasneverbeenobservedinthe − laboratorysofarandisthusdubbedthe“darkenergy”. Forp = ǫthisreproducesthebehaviourofthe − cosmologicalconstant(asǫ˙=0inthatcase),whichisthusaspecialcaseofdarkenergy. So a minimal model consistent with the predictions of cosmological inflation and allowing for the observedacceleratedexpansionoftheUniverseisgivenbyK = p = 0andΩ > Ω /2 = (1 Ω )/2 Λ m Λ − and thus Ω > 1/3 and Ω < 2/3. This model is called the flat ΛCDM (cold dark matter) model or Λ m concordancemodel,asitiscurrentlyingoodagreementwithallcosmologicalobservations. OnecantestforapossibledeviationfromK = 0orp = 0bymeansofCMBobservations,SNIaand thebaryonacousticoscillationsandfindsthatthereisnoobservationalevidencetoquestionthevalidityof theflatΛCDMmodel[1,11]. Let us stress that an important assumption in the reasoning described above is the homogeneity and isotropy of the Universe and thus it is also important to test this assumption with the help of SN Ia. A simple test can be doneby fitting the Hubblediagram(d vs. z)for SNe fromjust one hemisphereand L comparing the result of the fit to the opposite half of the sky [12]. Weinhorst and one of the authors Copyrightlinewillbeprovidedbythepublisher 4 NanLi,MarinaSeikelandDominikJ.Schwarz :Isdarkenergyaneffectofaveraging? haveanalysedfourdifferentSNdatasetsandfindastatisticallysignificantdeviationfromtheisotropyof theHubblediagram. However,itseemsthattheseanisotropiesarealignedwiththeequatorialcoordinate system (aligned with the Earth’s axis of rotation) and are thus likely to reflect systematic problems in the SN Ia observationor analysis. Another recent analysis revealed anisotropies in the Hubble diagram obtainedbytheHSTKeyProject[13]. IftheseanisotropieswouldbeconfirmedbyfutureSNsurveysand asystematiceffectcouldbeexcluded,thiswouldposeaseriouschallengetotheinterpretationofHubble diagramsintheFriedmann-Lemaˆıtrecontext. 3 Problems ofthe concordance model Thusitseemsthattheconcordancemodelisabletodescribeeverything,howevertherearethreeconceptual problemsinthismodel. Thecosmologicalconstantproblem. Wemissoutafundamentalunderstandingofthevacuumenergy ofquantumfields. Thisvacuumenergydensityisindistinguishablefromacosmologicalconstantandthus wehaveintroducedanelementtotheUniversethatwedonotunderstand.Thesolutionforthisissuemust beexpectedfromafuturetheoryofquantumgravity,asgravity(i.e. geometryofspace-time)istheonly “force”thatcouplestotheenergydensityofthe(quantumfield)vacuum. Thusthisproblemisobviously beyondthescopeofwhatwecanhopetounderstandcurrently. The coincidence problem(s). The second problem however is a pure cosmologicalone. It is called thecoincidenceproblemandtherearetwowaystoformulateit. Thefirstformulationhassomeanthropic touch,butiswidelyused:howdoesitcomethatΩ (t ) Ω (t )? Thisisindeedsurprising.Assumewe m 0 Λ 0 ∼ wouldhavelivedwhentheUniversehadhalf(twice)ofitspresentlinearsize [atz = 1(-1/2)],theratio Ω /Ω wouldbelarger(smaller)byalmostanorderofmagnitude.Itisthereforequitesurprisingthatwe m Λ observeΩ 0.7>1/3att . Λ 0 ≈ Onecanreformulatetheabovesituationviareplacingmankindbylarge-scale-structuresonthetypical scale forstructureformation. Accordingto inflationarycosmology,the primordialfluctuationsin matter and metric are free of any scale. The only scale that enters in the physics of the large scale structure is the horizon scale at matter-radiation equality. This scale appears because the radiation pressure acts againstthegravitationalinstabilityintheearlyUniverseandstructuregrowthstartsonlyoncethepressure supportfadesaway.Thustheshapeofthepowerspectrumofdensityfluctuationsischangingatthisscale. Accordingtotheconcordancemodel,thehorizonscaleatmatter-radiationequalityisseenatthe100Mpc scale today. Scales above that show the primordial slope of the spectrum, scales below that exhibit a substantiallydecreasedslope. Itisnowinterestingtoobservethatthosestructuresgrowtotypicaldensity contrastsoforder(δǫ/ǫ) (1+z )(δǫ/ǫ) 0.1anditturnsoutthatz = (0.1)isthe epoch z=0.x eq eq ∼ ∼ O whenthetypicalscaleofhierarchicalstructureformationstartstoevolvenon-linear(i.e.itdecouplesfrom theoverallcosmologicalexpansion).Thecoincidenceisthatthisisalsotheepochwhenaccelerationseems tosetin [14]. Notethatthese largestructuresareindeedobserved,e.g. theSloangreatwallandvarious bigvoids,asbigasafew100Mpc[15]. Theaveragingproblem. Thisisanoldquestioningeneralrelativity[16]. SolvingtheEinsteinequa- tionsfor an averagedspace-timeis certainlynotthe same as averagingthe Einstein equationsfora very inhomogeneousandanisotropicspace-time,becausethesetwooperations,i.e. averagingandtimeevolu- tion do notcommute. Thusthe issue is, how big is this effectand whatare its observationalsignatures. Againthescaleofinterestmustbethe100Mpcscale,asonmuchsmallerscales,say1Mpcobjectslike galaxieshavealreadypresumablyundergonetheprocessofviolentdynamicalrelaxationandformedsta- tionaryboundsystemsthatcannotbetreatedlikedustparticlesanyway.Howeveritisclearthatforobjects liketheSloangreatwall,whichjuststartedtocollapseyesterday,theremightbeimportanteffectsshowing upintheaveragingprocess. In summary, these three aspects are entangledwith the issues of inhomogeneitiesand anisotropiesin thelocalUniverse. Thebeginningofthedominationofdarkenergycoincideswiththeonsetofstructure Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 5 formation.Consequently,lightmaybeshedonthedarkenergycrisis(i.e.theacceleratedexpansionofthe Universe)bystudyingtheaveragingproblemintheperturbedspace-time. AnattemptforsettingupanformalismtohandlethisproblemhasbeenpioneeredbyBuchert[17,18]. 4 Cosmologicalbackreaction Theseproblemsprovideagoodmotivationtoconsiderthepossibilitythatdarkenergyisnotafundamental componentofthe Universe, butouraverageddescriptionof the Universeisnotappropriatefora correct interpretation of observations [14, 19, 20]. Indeed many cosmological observations are averages. Two importantexamplesarethepowerspectrumP(k),whichisaFouriertransformandthusavolumeaverage weightedbyafactorexp(ik x),andtheHubbleconstantH . Letusconsideranidealisedmeasurement 0 · of H [21]. One picks N standard candles in a local physical volume V (e.g. SN Ia in Milky Way’s 0 neighbourhoodoutto 100Mpc), measurestheirluminositydistancesd andrecessionvelocitiesv = i i ∼ cz , and takes the average H 1 N vi. In the limit of a very big sample, it turns into a volume i 0 ≡ N i=1 di average H = 1 vdV. For objectPs at z 1, the spatial average is appropriatefor the average over 0 V d ≪ thepastlightcone,RastheexpansionrateoftheUniverseisnotchangingsignificantlyattimescalesmuch shorterthantheHubbletime. We nowrecapitulatetheformulationofBuchert,whichwewillusebelowtoarguethattheaveraging effectisindeedsizeableanddoesgiveimportantcontributionstocosmology: Buchert’s setup is well adapted to the situation of a real observer. On large scales, a real observer is comoving with matter, uses her own clock, and regards space to be time-orthogonal. These conditions are the definition of the comoving synchronous coordinate system. Buchert used physically comoving boundaries,whichisthemostnaturalapproachinthissetup. InthefollowingtheUniverseisassumedto beirrotationalasaconsequencefromcosmologicalinflation. Insynchronouscoordinates,themetricoftheinhomogeneousandanisotropicUniverseisds2 = dt2+ g (t,x)dxidxj, andthe spatialaverageofan observableO(t,x) in a physicallycomovingdomai−nD at ij timetisdefinedas[17] 1 O O(t,x) detg dx, (1) D ij h i ≡ V (t)Z D D p whereV (t) detg dxisthevolumeofthecomovingdomainD. Wemayintroduceaneffective D ≡ D ij scalefactoraD [R17]p 1/3 a V D D . (2) a ≡(cid:18)V (cid:19) D0 D0 The effective Hubble expansion rate is thus defined as H a˙ /a = θ /3 (θ being the volume D D D D ≡ h i expansionrate). Fromthedefinition(1),weobtaineffectiveFriedmannequations[17]fromaveragingEinstein’sequa- tions, 2 a˙ 8πG a¨ 4πG D = ǫ , D = (ǫ +3p ), (3) eff eff eff (cid:18)a (cid:19) 3 −a 3 D D whereǫ andp aretheenergydensityandpressureofaneffectivefluid, eff eff 1 1 1 ǫ ǫ ( Q + R ), p Q R . (4) eff D D D eff D D ≡h i − 16πG h i h i ≡−16πG(cid:18)h i − 3h i (cid:19) Q 2( θ2 θ 2 ) 2 σ2 isthekinematicalbackreaction(σ2beingtheshearscalar),and R h iD ≡ 3 h iD−h iD − h iD h iD theaveragedspatialcurvature.Theyarerelatedbytheintegrabilitycondition[17] (a6 Q ). +a4 (a2 R ). =0. (5) Dh iD D Dh iD Copyrightlinewillbeprovidedbythepublisher 6 NanLi,MarinaSeikelandDominikJ.Schwarz :Isdarkenergyaneffectofaveraging? Wedefinetheequationofstatefortheeffectivefluidasw p /ǫ . Itishighlyremarkablethatany eff eff eff ≡ spatiallyaverageddustmodelcanbedescribedbyaneffectiveFriedman-Lemaˆıtremodel. Wecanmapthiseffectivefluidonamodelwithdustand“darkenergy”. Letnbethenumberdensity ofdustparticles,andmbetheirmass. Foranycomovingdomain n = n (a /a )3. Fora dust Universe,inwhichǫ(t,x) mn(t,x),weidentifyǫ ǫ =mh niD ,anhdifDro0m(D40)theDdarkenergyis m D D ≡ ≡h i h i hencedescribedbyǫ = ( Q + R )/(16πG). From(5)wefindthatconstant Q = R /3 de D D D D − h i h i h i −h i correspondstothecaseofacosmologicalconstantΛ = Q . Equations(3)and(4)arenotclosedand D h i additionalinputisrequired.Belowweclosethembymeansofcosmologicalperturbationtheory. Tostudythescaledependenceofphysicalobservables Q , R , ǫ ,H andw ,wecalculate D D D D eff h i h i h i themtosecondorderinaperturbativeseriesoftheeffectivescalefactora . Westartfromaspatiallyflat D dustmodel.Itsscalefactora(t)isdifferentfromtheeffectivescalefactora in(2),andtheirrelationwas D providedin[22]. Insynchronousgauge,thelinearperturbedmetricis ds2 = dt2+a2(t)[(1 2Ψ)δ +D χ]dxidxj, ij ij − − where Ψ and χ are the scalar metric perturbations, D ∂ ∂ 1δ ∆ and ∆ denotes the Laplace ij ≡ i j − 3 ij operatorinthree-dimensionalEuclideanspace. ThesolutionsforΨandχaregivenintermsofthetime independentpeculiargravitationalpotentialϕ(x): Ψ = 1∆ϕt4/3t2/3+ 5ϕandχ = 3ϕt4/3t2/3 (only 2 0 3 − 0 growing modes are considered) [22, 20]. ϕ is related to the hypersurface-invariantvariable ζ [23] by ζ = 1∆ϕt4/3t2/3 5ϕ. 2 0 − 3 Following[22],withthehelpoftheintegrabilitycondition,weyieldthescaledependenceoftheaver- agedphysicalobservablesuptosecondorder[24]( O Odx/ dxhereafter) h iD1 ≡ D D R R a Q = D0B(ϕ)t2, (6) h iD a 0 D 20a2 a R = D0 ∆ϕ 5 D0B(ϕ)t2, (7) h iD 3 a2 h iD1− a 0 D D 1 a3 ǫ = D0, (8) h iD 6πGt2 a3 0 D 2 a3/2 5 a 3 a2 25 H = D0 1 D t2 ∆ϕ + D t4 B(ϕ) ∆ϕ 2 , (9) D 3t0a3D/2 (cid:20) − 4aD0 0h iD1 4a2D0 0(cid:18) − 24h iD1(cid:19)(cid:21) 5 a a2 25 w = D t2 ∆ϕ D t4 B(ϕ) ∆ϕ 2 , (10) eff 6a 0h iD1− a2 0(cid:18) − 12h iD1(cid:19) D0 D0 withB(ϕ) ∂i(∂ ϕ∆ϕ) ∂i(∂ ϕ∂j∂ ϕ) 2 ∆ϕ 2 . Weseefrom(6)–(10)thatthesequantities ≡h i − j i iD1− 3h iD1 arefunctionsofsurfacetermsonly,soalltheirinformationisencodedontheboundaries.Thedependence oncosmictimeoftheseaveragedquantitiescanbefoundin[22],andtheirleadingtermsaregaugeinvariant [22,25]. Wenowturntotheestimateoftheeffectsofcosmologicalbackreactionasafunctionoftheaveraging scale r V1/3. We show below that cosmological averaging produces reliable and important modifi- ∼ D0 cations to local physical observables and determine the averaging scale at which 10% corrections show up. EffectiveaccelerationoftheaveragedUniverseoccursifǫ +3p <0,i.e. Q >4πG ǫ . Thus eff eff D D h i h i weestimate Q 3 a2 8 R4 8 1 R 4 h iD = D B(ϕ)t4 = H B(ϕ) H . (11) (cid:12)4πG ǫ (cid:12) 2a2 0 27(1+z)2 ∼ 75(1+z)2 (cid:18) r (cid:19) Pζ (cid:12) h iD(cid:12) D0 (cid:12) (cid:12) R =3.00(cid:12) 103h−1(cid:12)MpcisthepresentHubbledistanceand =2.35 10−9thedimensionlesspower H ζ × P × spectrum [1] (ζ 5ϕ/3 on superhorizonscales). In (11), we use a = 1/(1+z) and t = 2R /3, 0 H ≈ − Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 7 sinceB isalreadyasecondorderterm. EachderivativeinB isestimatedasafactorof1/rinfrontofthe powerspectrum. Asϕisconstantintime,weidentifytoday’s with9 /25atsuperhorizonscales. If ϕ ζ P P Q /4πG ǫ > 0.1,cosmologicalbackreactionmustbetakenintoaccountseriously. From(11),we D D |h i h i | find 21h−1Mpc r < . Q √1+z Forobservationsatz 1,r <30Mpc(h=0.7). Q ≪ Thecriterionforthescaleatwhichtheeffectoftheaveragedspatialcurvature R emergesisdeter- D h i minedby 2 ǫ R 2 1 R eff D H 1 h i . (cid:12) ǫ − (cid:12)≈(cid:12)16πG ǫ (cid:12)∼ 31+z (cid:18) r (cid:19) Pζ (cid:12)h iD (cid:12) (cid:12) h iD(cid:12) p (cid:12) (cid:12) (cid:12) (cid:12) Weexpec(cid:12)ta10%eff(cid:12)ectf(cid:12)rom R w(cid:12)ithin D h i 54h−1Mpc r < . R √1+z At small redshifts, r < 77 Mpc. Moreover,a 1%effectis expectedup to scales of 240Mpc. Note R ∼ thatthecurvatureoftheUniversehasbeenmeasuredatthefewpercentaccuracyintheCMB[1]. Itwas shownin[26]thatevensmallcurvaturesmightinfluencetheanalysisofhigh-zSNesignificantly. 5 Signature ofcosmologicalbackreaction: the effective Hubble rate ItisnowinterestingtodiscussthefluctuationofthelocalmeasurementoftheHubbleexpansionrate, 2 H H 1 1 R D− 0 H . (12) (cid:12) H (cid:12) ∼ 31+z (cid:18) r (cid:19) Pζ (cid:12) 0 (cid:12) p (cid:12) (cid:12) Theleadin(cid:12)gcontributi(cid:12)ontothiseffectinvolvestheaveragedcurvaturetermsandthereforecannotbethor- oughlydescribedinaNewtoniansetup[27]. Aneffectlargerthan10%showsupfor 38h−1Mpc r < , H √1+z whichreadsr <54Mpcatsmallredshifts. H Let us compare (12) with observations from the HST Key Project [28]. We use 68 individual mea- surements of H in the CMB rest frame from SN Ia, the Tully-Fisher and fundamental plane relations 0 (Tables 6, 7 and 9 in [28]). The respective objects lie at distances between 14 Mpc and 467 Mpc. As (12) can be trusted only above 30 Mpc, we drop the 4 nearest objects. Be r , H and σ the distance, i i i Hubblerate andits 1σ errorforthe i′thdatum, with increasingdistance. We calculate theaverageddis- tanceforthenearestkobjectsbyr¯ = k g r / k g ,withweightsg =1/σ2. Ananalogueholds k i=1 i i i=1 i i i fortheaveragedHubblerateH¯k, i.e. HPD fordifferPentsubsets. Theempiricalvarianceofeachsubsetis σ¯2 = k g (H H¯ )2/[(k 1) k g ]. Westressthat(12)isinsensitivetoglobalcalibrationissues. k i=1 i i− k − i=1 i ThePcomparison of our result (1P2) with the HST Key Project data is shown in Fig. 2. The “global” H isthecentralHST value72km/s/Mpc[28]. We findthatthetheoreticalcurve( 1/r2) matchesthe 0 ∝ experimentaldatafairlywell,withoutanyfitparameterinthepanel.Since(12)isjustanestimate,wevary theresultbyfactorsof0.5and2,whichgiveslowerandupperestimatestothetheoreticalcurve.InFig. 2, theexperimentaldataandtheirerrorbarsareinagreementwiththeseestimates. Beforewe can claim thatwe observethe expected1/r2 behaviourof (12) and thusevidencefor cos- mologicalbackreaction,wehavetomakesurethatthestatisticalnoisecannotaccountforit. Theexpected noiseisgivenbymeansofthevarianceof(12)inthesituationofaperfectlyhomogeneousandisotropic Copyrightlinewillbeprovidedbythepublisher 8 NanLi,MarinaSeikelandDominikJ.Schwarz :Isdarkenergyaneffectofaveraging? 0.2 0.15 H0 0.1 H)/0 H-D 0.05 ( 0 -0.05 40 60 80 100 120 140 160 180 r (Mpc) Fig. 2 The scale dependence of the normalised difference between the effective Hubble rate HD and its “global” valueH0 =72km/s/Mpc(DatafromtheHSTKeyProject[28]).Weexpectthatalldatapointsshouldliearoundthe twothicklines(∼±1/r2)givenin(12).Thinlinesindicatethetheoreticalerrorofourestimate.Dashedlinesarethe expectedstatisticalnoiseforaperfectlyhomogeneousandisotropicmodel. modelwithmeasurementuncertaintiesσ . Inthecaseofaperfectlyhomogenouscoverageoftheaveraged i domainwithstandardcandles,weexpecta1/r3/2 behaviour. InFig. 2,weshowthestatisticalnoisefor theactualdataset,whichturnsouttobewellbelowourestimate(12)andthedatapoints. At 50(80) ∼ Mpc,thevalueofH differsfromitsglobalonebyabout10%(5%),whereastheexpectedvariancefora D homogeneousandisotropicUniverseisonly3%(1%). 6 Toward anew model andopen issues What can we conclude so far? We showed that the large scale structure affects the observed Hubble expansionrate and thatthe averagedspatialcurvatureleadsto sizeable correctionsup to scales of about 200Mpc.Consequently,wemustexpectthatalsoothercosmologicalprobesatz <1,likegalaxyclusters orgalaxyredshiftsurveys,couldbeaffectedbycosmicaveraging. Is that enough to explain dark energy? Currently, this is not the case. In our frameworkan effective acceleration is possible below scales of 20 Mpc. But SN Ia observations show strong evidence for the acceleration of the Universe, based on objects much more distant than that. It seems to take more to explain dark energy. A quite attractive idea is a Universe in which large voids dominate the Universe’s volume,see[29,30,31,32]. Theseworksrelyonwellmotivatedtoymodels. Itremainstobeshownthat thesevoiddominatedcosmologiesfollowfromtheinflationaryparadigm. On the other hand, our analysis is based on an almost scale-invariant power spectrum predicted by inflationarycosmology,butislimitedtoz 1,astheaveragemustbetakenonthepastlightconeandnot ≪ onaspatialslice(see,e.g.[33]). Aformalism(likeBuchert’soneforspatialaveraging)forthelight-cone averagingofanarbitraryinhomogeneousandanisotropicspace-timeisneededbeforewecanknowifdark energyismerelyanillusionduetoaveraging. Acknowledgements WethankAdamRiessforsuggestingthecalibrationindependenttestpresentedinfigure1andtable1. DJS wouldliketothanktheorganisersofthe“Balkanworkshop2007”forhavinginvitedhimtosuchalively andinspiringmeeting. DJSwouldalsoliketothankSEENET-MPandtheDFGforsupportofhistravel. WearegratefultotheDFGtosupportourresearchundergrantGKR881. Copyrightlinewillbeprovidedbythepublisher fdpheaderwillbeprovidedbythepublisher 9 References [1] D.N.Spergeletal.,Astrophys.J.Suppl.170,377(2007). [2] L.M.KraussandB.Chaboyer,Science299,65(2003);B.M.S.Hansenetal.,Astrophys.J.574,L155(2002). [3] A.H.Guth, Phys.Rev. D23, 347(1981); A.D.Linde, Particlephysicsand inflationary cosmology, (Harwood, Chur,1990),hep-th/0503203. [4] V.F.MukhanovandG.V.Chibisov,JETPLett.33,532(1981). [5] M.SeikelandD.J.Schwarz,arXiv:0711.3180[astro-ph]. [6] A.Riessetal.,Astrophys.J.659,98(2007). [7] W.Wood-Vaseyetal.,Astrophys.J.666,694(2007). [8] S.Jha,A.RiessandR.Kirshner,Astrophys.J.659,122(2007). [9] J.Guyetal.,Astron.Astrophys.443,781(2005). [10] D.Lovelock,J.Math.Phys.12,498(1971). [11] T.M.Davisetal.,Astrophys.J.666,716(2007). [12] D.J.SchwarzandB.Weinhorst,Astron.Astrophys.474,717(2007). [13] M.L.McClureandC.C.Dyer,NewAstron.12,533(2007). [14] D.J. Schwarz, in On the nature of dark energy, 18th IAP astrophysics colloquium 2002, edited by P. Brax, J.Martin,andJ-P.Uzan(FrontierGroup,Paris,2002)p.331[astro-ph/0209584]. [15] R.B.Tully,R.Scaramella,G.VettolaniandG.Zamorani,Astrophys.J.388,9(1992);J.R.I.Gottetal.,Astrophys. J.624, 463(2005); L.Rizzietal.,Mon. Not.Roy.Astron.Soc.380, 1255(2007); L.Rudnick, S.Brownand L.R.Williams,arXiv:0704.0908[astro-ph]. [16] G.F.R.Ellis,inGeneralrelativityandgravitation,editedbyB.Bertotti,F.deFelice,andA.Pascolini(Reidel, Dordrecht,1984)p.215. [17] T.Buchert,Gen.Rel.Grav.32,105(2000). [18] T.Buchert,arXiv:0707.2153[gr-qc]. [19] W.Zimdahl, D.J.Schwarz, A.B.Balakin, andD.Pavon, Phys.Rev. D64, 063501 (2001); G. Geshnizjani and R.H.Brandenberger,Phys.Rev.D66,123507(2002);C.Wetterich,Phys.Rev.D67,043513(2003);S.Ra¨sa¨nen, J.Cosmol.Astropart.Phys.02(2004)003;A.A.Coley,N.Pelavas,andR.M.Zalaletdinov,Phys.Rev.Lett.95, 151102(2005);E.W.Kolb,S.Matarrese,andA.Riotto,NewJ.Phys.8,322(2006);T.Buchert,J.Larenaand J.M.Alimi,Class.Quant.Grav.23,6379(2006);A.ParanjapeandT.P.Singh,Phys.Rev.D76044006(2007). [20] E.W.Kolb,S.Matarrese,A.Notari,andA.Riotto,Phys.Rev.D71,023524(2005). [21] R.B.Tullyetal.,arXiv:0705.4139[astro-ph]. [22] N.LiandD.J.Schwarz,Phys.Rev.D76,083011(2007). [23] J.M.Bardeen,inParticlePhysicsandCosmology,editedbyA.Zee(GordonandBreech,NewYork,1989)p.1. [24] N.LiandD.J.Schwarz,arXiv:0710.5073[astro-ph]. [25] S.Matarrese,S.Mollerach,andM.Bruni,Phys.Rev.D58,043504(1998). [26] C.Clarkson,M.Cortes,andB.A.Bassett,J.Cosmol.Astropart.Phys.08,11(2007). [27] E.L.Turner,R.CenandJ.P.Ostriker,Astron.J.103,1427(1992);X.D.ShiandM.S.Turner,Astrophys.J.493, 519(1998);Y.Wang,D.N.SpergelandE.L.Turner,Astrophys.J.498,1(1998). [28] W.L.Freedmanetal.,Astrophys.J.553,47(2001). [29] D.L.Wiltshire,NewJ.Phys.9,377(2007).D.L.Wiltshire,arXiv:0709.0732[gr-qc].B.M.Leith,S.C.C.Ngand D.L.Wiltshire,arXiv:0709.2535[astro-ph]. [30] V. Marra, E.W. Kolb, S. Matarrese and A. Riotto, Phys. Rev. D76, 123004 (2007). V. Marra, E.W. Kolb and S.Matarrese,arXiv:0710.5505[astro-ph]. [31] T. Biswas, R. Mansouri and A. Notari, arXiv:astro-ph/0606703. T. Biswas and A. Notari, arXiv:astro-ph/0702555.S.Alexander,T.Biswas,A.NotariandD.Vaid,arXiv:0712.0370[astro-ph]. [32] K.EnqvistandT.Mattsson,JCAP0702,019(2007).T.MattssonandM.Ronkainen,arXiv:0708.3673[astro-ph]. T.Mattsson,arXiv:0711.4264[astro-ph]. [33] R.A.Vanderveld,E.E.Flanagan,andI.Wasserman,Phys.Rev.D76,083504(2007);S.Khosravi,E.Kourkchi, R.MansouriandY.Akrami,arXiv:astro-ph/0702282. Copyrightlinewillbeprovidedbythepublisher

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.