water Article Irrigation with Treated Municipal Wastewater on Artichoke Crop: Assessment of Soil and Yield Heavy Metal Content and Human Risk GiuseppeGatta1,* ID,AnnaGagliardi1 ID,GraziaDisciglio1,AntonioLonigro2, MatteoFrancavilla1,EmanueleTarantino1andMarcellaMichelaGiuliani1 ID 1 DepartmentofAgricultural,FoodandEnvironmentalSciences,UniversityofFoggia,71122Foggia,Italy; [email protected](A.G.);[email protected](G.D.);[email protected](M.F.); [email protected](E.T.);[email protected](M.M.G.) 2 DepartmentofAgriculturalandEnvironmentalScience,UniversityofBari,70121Bari,Italy; [email protected] * Correspondence:[email protected];Tel.:+39-0881-589238 Received:3February2018;Accepted:26February2018;Published:1March2018 Abstract:Industrialandmunicipalwastewatersareoftenusedforirrigatingagriculturalfieldsinarid andsemi-aridcountries,representingthemostattractiveoptiontoalleviatepressureonfresh-water resources. However, thewastewatermaycontainvariouspotentiallytoxicelementsandorganic matters with highly harmful effects on human and animal health. During two growing seasons ofglobeartichoke,theeffectsofirrigationwithsecondary(SWW)andtertiary(TWW)municipal wastewater on heavy metal soil and plant content were evaluated, together with the consequent humanriskfromartichokeheadconsumption. Theheavymetalcontents(i.e.,Al,Cd,Co,Cr,Cu,Fe, Ni,Pb,Zn,andMn)oftheirrigationwater,soil,plant,andyieldwereanalyzed. Totalandextractable heavymetalswerequantifiedtodeterminethebioaccumulationfactors,andthehealthriskstoadults andchildrenweredeterminedaccordingtohazardindices. Theheavymetalcontentsoftheartichoke headsharvestedafterSWWandTWWirrigationwerelowerthantheinternationalthresholdvalues, andlowbioaccumulationfactorssuggestedthattheseheavymetalsdidnotaccumulateintheedible partoftheartichokecrop. Thehazardindicesthatwerebasedontheconsumptionoftheartichoke headsremained<1.0forbothadultsandchildren,thusindicatingthatthehealthrisksinvolvingthe differentheavymetalsarenotsignificant. Keywords: globe artichoke; treated wastewater re-use; irrigation; heavy metal; risk assessment; bioaccumulationfactor 1. Introduction Water scarcity is the primary reason for the increasing trend toward wastewater re-use in agricultureworldwide. Industrialandmunicipaltreatedwastewatersareoftenusedforirrigation ofagriculturalfields,particularlyinaridandsemi-aridcountries,becausethisrepresentsthemost attractiveoptionforalleviatingthepressureonfreshwaterresources[1–4].Moreover,wastewatersmay representasignificantnutrientsourceforplantsthataregrowninlowfertilitysoils[5,6]. However,in additiontoplantnutrients,wastewatersmaycontainvariouspotentiallytoxicmineralelementsand organicmatter,andthesecomponentscanhaveharmfuleffectsonhumanandanimalhealth[7]. Asfor heavymetals,whilelowconcentrationsinthesoilareoftenbeneficialtothegrowthandmetabolismof plants,theycanhaveundesirableeffectsathigherconcentrations[8,9]. Althoughtheheavymetals contentinwastewaterthatisusedforirrigationmustcomplywiththelegallimits,continuoususe ofwastewatercanleadtotheirsoilenrichment. Accumulationoftoxicheavymetalscausestressin Water2018,10,255;doi:10.3390/w10030255 www.mdpi.com/journal/water Water2018,10,255 2of18 plantsduetointerferencewiththemetabolicactivitiesandphysiologicalfunctioningoftheplants[10]. Excessivelevelsofmetalscanalsoresultinthedegradationofsoilquality,reductioninmarketable cropyield,and/orpoorqualityofmarketableagriculturalproducts,andtheseeffectscanalsopose significanthazardstothehealthofhumans,animals,andtheecosystem[9,11]. The leafy parts of vegetables tend to accumulate higher amounts of heavy metals than the fruits [12]. Studies on the plants heavy metals uptake have shown that they can be transported fromrootstoshootsthroughthexylemvessels[13],whiletheygenerallyhavepoormobilityinthe phloem [14]. Plant storage organs, such as fruits and seeds, have low transpiration rates and do notaccumulateheavymetalsbecausetheyarelargelyphloem-loaded. Theaccumulationofheavy metalsinagriculturalsoilsthroughwastewaterirrigationmightnotonlyresultinsoilcontamination, but might also affect food quality and safety [15]. Adverse effects of soil and vegetables heavy metalscontaminationonhumanhealthhavebeenwidelyreported[9,16,17]. Majordamagetohealth is strongly correlated with heavy metal toxicity, which can cause tissue damage, kidney tubule dysfunction, skeletal damage, osteoporosis, cancer of the blood and lungs, metabolic disorders, anaemia,andhypochromicanaemia[18]. The risks that are related to the uptake of heavy metals by food crops depends more on the increaseoftheiravailablefractionthanonthetheirtotalconcentrationinthesoil[19],ontheheavy metalsspeciationandsolubility,andonthecropsthatarecultivated[20]. Globeartichoke(CynarascolymusL.)isanirrigatedcropthatiswidespreadinMediterranean areas,anditisofparticularimportanceintheMediterraneandiet. Inareasinwhichcropsareirrigated withwastewateritisrelevanttoevaluatetheaccumulationofindividualheavymetalsintheedible parts in order to estimate potential risks to human health. To the best of the authors’ knowledge, noinformationareavailable,inthescientificliterature,ontoxicheavymetalcontaminationofglobe artichokecropirrigatedwithtreatedwastewaterneitherontheriskstohumanhealththatmaybe associatedwithsuchcontamination. Theaimofthepresentstudywastoevaluatetheaccumulationofheavymetalsinthesoil,with specificreferencetotheexchangeablefraction,andintheediblepartoftheartichokecropirrigated with fresh, secondary (SWW), and tertiary (TWW) municipal wastewater. Moreover, it was also evaluatedthebioaccumulationfactorsandthenthehumanriskthatisrelatedtotheconsumptionof artichokeheads. 2. MaterialsandMethods 2.1. SiteDescriptionandAgronomicConditions TheresearchwasconductedintheApuliaregionofItaly(Trinitapoli,41◦21(cid:48) N,16◦03(cid:48) E;altitude 10ma.s.l.) onglobeartichoke(Cynaracardunculus(L.),subsp. scólymusHayek),cultivar‘Violettoof Provenza’overtwocroppingcycles(2012–2013and2013–2014). Theexperimentaltrialwasperformed inaloamsoil(UnitedStatesDepartmentofAgricultureclassification)withthefollowingphysicaland chemicalcharacteristics: sand,45.3%;silt,30.0%;clay,24.7%;fieldcapacity(measuredbypressure plateapparatusat−0.03MPa)of30.7%dryweight(dw);wiltingpoint(measuredbypressureplate apparatusat−1.5MPa)of15.2%dw,andabulkdensityof1.45Mgm−3;organicmatter,1.2%(Walkley andBlackmethod);availablephosphorus(Olsenmethod),114.0mgkg−1;totalpotassium,1.27gkg−1 (determinatedbycoupledplasmaopticalemissionspectrometer,Agilent,ICP-OES720);totalnitrogen, 0.91 (Kjeldahlmethod). (cid:104)Threetypesofirrigationwaterwereappliedtothecrop: freshwater(FW),secondarymunicipal wastewater (SWW), and tertiary municipal wastewater (TWW). The FW was obtained from the irrigationnetworksystemthatisnormallyusedbythefarmersintheareaforcropirrigation;theSWW andTWWwerefromsecondaryandtertiarymunicipalwaterrecyclingplantthatwaslocatednear theexperimentalsite. Arandomizedcompleteblockdesignwiththreereplicationshasbeenused. Overall, nine plots of dimensions 16.8 m × 6.0 m were defined. In the first growing season (GS ), 1 Water2018,10,255 3of18 theartichokeplantswereplantedasoffshootson15July2012inrows1.20mapartandwith1.20m spacingwithintherowstoprovideadensityof6944plantsha−1. Inthesecondgrowingseason(GS ), 2 theplantswerere-awakenedon20July2013byapplyingwaterinordertoestablishsoilfieldcapacity. Adripirrigationsystemwasusedwithdripperlinesplacedalongeachrow. Thein-linedripperswere located0.40mapart;thedripperflowratewas4Lh–1atanoperatingpressureof1.5bar. Irrigation wasperformedwheneverthewaterwaslost(excludingtheusefulrainfall)bycropevapotranspiration (ET )inthesoillayercontainingtherootsreachedapredeterminedlevel(30mm,i.e.,~50%ofavailable c waterdepletion). Thewateringvolumeusedrestored100%ofthewaterlost. DuringtheGS andGS 1 2 growingcycles,theseasonalwaterirrigationvolumesappliedwere3300m3ha–1and3000m3ha–1, respectively. Duringthesetwogrowingseasons,standardagronomicpracticesforartichokecrops werefollowed. 2.2. Water,SoilandPlantSampling Water samples were collected and analyzed six times during the two growing seasons. Inparticular,duringGS watersamplesweretakenat5,71,128,191,247,300daysaftertransplanting 1 (S –S ), while during GS , they were taken at 2, 58, 113, 185, 245, 303 days after transplanting W1 W6 2 (S –S ). The samples were taken as three replications using 1000 mL sterile glass bottles, W7 W12 transportedinrefrigeratedbagstothelaboratory,andwerestoredinarefrigeratorat4◦C.Toprevent microbialactivity,1mLconcentratedHNO wasaddedtoeachwatersample. 3 Soil samples were collected randomly from each experimental plot before transplanting time (S ,fordeterminationofbackgroundsoilheavymetalcontent)andattheendofthefirst(S )and S1 S2 second(S )artichokegrowthcycles. Thesoilsampleswerecollectedatdepthsof0–40cm(H )and S3 1 40–80cm(H ). H representedthehighrootdensityzone(i.e.,topprofile),whileH representedthe 2 1 2 deeperpartoftherootzone(i.e.,bottomprofile). Soilsampleswereair-dried,crushed,andpassed througha2-mmsievepriortochemicalanalysis. Thefullsoilsamplingcomprisedonesampleper plot × 9 plots (i.e., 3 irrigation treatments × 3 replicates) × 3 sampling dates × 2 soil depths × 2 growingseasons,yieldingatotalof108soilsamples. Sampling of the artichoke heads (i.e., the portion of the plant that is edible to humans) was performed three times (in November, March and May), in each growing season by picking five marketableartichokeheadsperexperimentalplot. Attheendofeachgrowthcycle,threerandomly selectedplantswerecollectedfromeachplotanddividedintoleavesandstems. Theartichokeplant andheadsamplesweredriedinanovenat70◦Cfor24h,groundintofinepowder,sievedthrough 2-mm mesh, and were stored at room temperature. The full sampling comprised five heads per plot×9plots(i.e.,3irrigationtreatments×3replicates)×3samplingdates×2seasons,yieldinga totalof270artichokeheads. 2.3. DeterminationofHeavyMetalsintheWater,SoilandPlantSamples Allofthesamples(water,soil,plants,andartichokeheads)wereanalysedforthetraceelements Al,Cd,Co,Cr,Cu,Fe,Ni,Pb,Zn,andMn. Inthesoilsamples,theextractablemetalfractionswerealso determined. Theelementsanalysedarehereinafterreferredtoas‘heavymetals’. Allofthesamples wereanalysedintriplicatetoensuredataaccuracy,andthemeansofthreeinstrumentalreplicates wereusedindatainterpretation. Thechoiceoftheheavymetalsforanalysisinthesoilandinthe plant marketable yield (i.e., artichoke heads) was based on their concentrations in the three types of irrigation water that were used. Thus, the metals that were below the limit of detection in the irrigationwatersamples(i.e.,PbandCd)werenotanalysedinthesoilandintheartichokeplantand headsamples. For the analytical determination of the heavy metal water content, each sample was filtered througha0.20-µmsyringefilterconsistingofacelluloseacetatemembraneanddiluted,ifnecessary, with ultrapure water (Milli-Q). The levels of the heavy metals were determined using inductively coupled plasma optical emission spectrometer (Agilent, ICP-OES 720). Soil samples (0.5 g dw) Water2018,10,255 4of18 were mineralized in 10 mL 70% (v/v) HNO in a microwave oven (CEM-Mars6). After cooling, 3 thedigestedsamplesweretransferredinto50-mLflasksandbroughttothefinalvolumewithMilli-Q water[21],andthananalyzedbyICP-OES.Theextractablemetalfromsoilsampleswereobtained using diethylenetriaminepentaacetic acid (DTPA) solution, according to ISO 14870 method [22]. About10gofeachsoilsamplewasextractedwith100mL0.005MDTPAfor30min,undershakingat 180oscillations/min. ThemixturesobtainedwerefiltredandanalyzedbyICP-OES. Foranalyticaldeterminationofthetotalheavymetalconcentrationsintheartichokeplantsand heads,thesamples(about0.5gdw)weremineralizedin10mLHNO /H O (3:1;v/v)inamicrowave 3 2 2 oven(CEM-Mars6). Aftercooling,thedigestedsamplesweredilutedwithMilli-Qwaterto50mL[23] andwereanalyzedbyICP-OES. 2.4. QualityAssuranceandQualityControl Appropriatequalityassuranceproceduresandprecautionswerefollowedtoensurethereliability of the data. All of the reagents used were of analytical grade. Glassware was cleaned thoroughly withdetergentandwasrinsedseveraltimeswithdeonizedwater. Milli-Qwaterwasusedforallof thedilutionsthroughoutthestudy. Blankreagentdeterminationswereusedtocorrectinstrument readings. Toensuredataquality,thesampleswereanalysedintriplicate,andonestandardsample wasanalysedforeverythreeexperimentalsamples. Tomaintaininstrumentcalibration,blankand driftstandardswererunaftereveryfivedeterminations. 2.5. BioaccumulationFactorandCharacterizationofHumanRisk The bioaccumulation factor (BAF) is an index related to the accumulation in food of a particular metal with respect to its concentration in the soil; here, it was calculated according to Cuietal. (2004)[24],asdefinedinEquation(1). BAF =C /C (1) M Mplant Msoil whereC andC representthetotalconcentrationsofaparticularheavymetalintheedible Mplant Msoil partsoftheplantandinthesoil, respectively, ondryweightbasis. Inthepresentstudy, BAFwas calculatedbothrelativetothetotalmetalconcentration(BAF)andalsorelativetothe‘extractable’ t heavymetalsconcentration(DTPA-extractablemetalfraction;BAF ). e Thehazardindices(HIs)usedtodeterminethenon-carcinogenicriskstohumanhealthwere estimatedbycomparingthedailyintakeofaparticularmetal(DI )throughtheediblepartofthe M artichoke crop with the corresponding oral reference dose (RfD ) [9,24–26]. Thus, the HIs for the M consumptionoftheartichokeheadswerecalculatedusingEquation(2)[27]. Ef×Ed×DI HI= (2) RfD×BW×ET whereEfisthefrequencyofexposure(thefrequencyofartichokeconsumption)intheexperimental area(240daysyear−1),Edistheexposureduration(82years,equivalenttothemeanlifespanofmalesand femalesinItaly)[28],DIisthedailymetalintake(mgperson−1day−1),RfDistheamountofthechemical elementthatcanbeingesteddailyoveralifetimewithoutcausingharmfulhealtheffects(mgkg−1day−1), BWisthemeanbodyweightoftheconsumer(kg),andETisthemeanexposuretimefornon-carcinogens (280daysyear–1×numberofexposureyears,assuming50yearsinthisstudy).InEquation(2),DIforeach particularheavymetal(DI )wascalculatedbymultiplyingthedailyfreshartichokeheadconsumption M (kgperson−1day−1)bytheaverageamountofthatheavymetalintheartichokeheads(mgkg–1fresh matter). The mean daily vegetable intakes for adults and children were considered to be 0.021 and 0.0105 kg person−1 day−1 [29], respectively, and the mean adult (18 years of age or over) and child (8yearsofage)bodyweightswereconsideredtobe70.2kgand31.9kg,respectively[30,31]. TheRfD foreachheavymetal(RfD )wasderivedfromtheUSEnvironmentalProtectionAgency[32]guidelines M Water2018,10,255 5of18 (http://www.epa.gov).Finally,theadditiveHIs(AHIs)forthetotalheavymetalcontaminantsforboth adultsandchildren[32]hasbeencalculated,asreportedinEquation(3). n ∑ AHI= HI (3) i=1 InEquation(3),HIisdefinedfortheindividualnheavymetalsasshowninEquation(2). 2.6. StatisticalAnalysis Thedatasetsweretestedaccordingtothebasicassumptionsofanalysisofvariance(ANOVA). The normal distribution of the experimental error and the common variance of the experimental errorwereverifiedthroughShapiro-WilkandBartlett’stests,respectively. Whenrequired,Box-Cox transformations[33]wereappliedpriortoanalysis. Forallofthedatasets,theANOVAprocedurewasperformedaccordingtoarandomizedcomplete block design with three replicates. For irrigation water data, two-way ANOVA was performed (irrigationwater×watersamplingdate). Theirrigationwaterwasconsideredtobeafixedfactor, and the water sampling date was considered a random factor. Each soil heavy metal content was subjectedtoathree-wayANOVAprocedure(irrigationwater×soildepth×soilsamplingdate)when consideringthetypeofirrigationwaterandthesoildepthasfixedfactorsandthesoilsamplingdate asarandomfactor. Fortheheavymetalcontentoftheartichokeplants,combinedanalysisofthedata wasperformedtodeterminethemeanirrigationwaterresponseoverthetwogrowingseasons. Lastly,thedataonbioaccumulationfactors(BAF andBAF )andhazardindices(HIandAHI) t e weresubjectedtoaone-wayANOVAprocedureinwhichthetypeofirrigationwaterwasconsidered the only effect. The statistical significance of the differences in the means was determined using Tukey’s honest significance difference post hoc test at the 5% probability level. Bivariate statistical methodswereappliedtoverifythedataforcorrelationsamongthedifferentheavymetalcontents forirrigationwater,soil,andmarketableyield. TheANOVAandbivariatestatisticalmethodswere performedusingtheJMPsoftwarepackage,version8.1(SASInstituteInc.,Cary,NC,USA),andfigures wereconstructedusingSigmaPlotSoftware(SystatSoftware,Chicago,IL,USA). 3. ResultsandDiscussion 3.1. HeavyMetalContentofIrrigationWater TheANOVAofthedataforthethreeirrigationwatersshowedsignificantdifferencesinheavy metalcontentforboth,irrigationwatertype(IW)andwatersamplingdate(S )aswellasfortheir W interaction. Figure1showsthelevelsofindividualheavymetalsinFW,SWWandTWWmeasuredon the12samplingdates(GS ,S –S ;GS ,S –S ). TheCdandPbcontentswerenotconsidered 1 W1 W6 2 W7 W12 beingbelowthedetectionlimits(0.001and0.008mgL−1,respectively)probablybecauserecycled municipalwastewatersdonotusuallycontaintheseindustrialwastecontaminants[15,34].Asexpected, theconcentrationsofallheavymetalsinFWwerelowerthantheconcentrationsinSWWandTWW (Figure1). TheheavymetalcontentofSWWandTWWshowedhighvariabilityasafunctionofwater samplingdate. Inparticular,theCr,Cu,Zn,andMncontentsweresignificantlyhigher(p<0.05)at S andS (July2012andJuly2013,respectively)thanattheothersamplingdates(Figure1). W1 W7 Thisvariabilitymightbeduetoseasonalvariabilityinthequalityofthewaterthatformedtheinput tothewastewatertreatmentplant. Indeed,theinputwaterforthewastewatertreatmentplantcame fromTrinitapoli,whichisasmalltownof15,000inhabitants[28],whichincreaseduringthesummer holidays(July–August);thismightresultinvariationinthechemicalcharacteristicsofthewastewater. The Co content (about 0.007 mg L−1) did not show significant differences as a function of watersamplingdate,withtheexceptionofS andS forSWWandTWW,respectively(Figure1). W7 W9 The Al and Fe contents of SWW and TWW were highly variable, ranging from 0.075 mg L−1 to 0.005mgL−1andfrom0.20mgL−1to0.05mgL−1,respectively. Comparisonofthemeasuredheavy Water2018,10,255 6of18 metal concentrations with national [35] and international (United Nations Food and Agriculture Organization(FAO),USEnvironmentalProtectionAgency)guidelinesshowedthatthelevelsofheavy metalsinSWWandTWWwerebelowtherecommendedthresholdvalues(Table1). Water 2018, 10, x FOR PEER REVIEW 6 of 18 The heavy metal concentrations in the irrigation water that were used in this study are in agreement with the report of Shiekh et al. (1987) [36] on the efficiency of municipal wastewater The heavy metal concentrations in the irrigation water that were used in this study are in treatmenatgprreoemceesnste swfiothr tthhee rreedpuorctt ioofn Sohfiehkeha vety aml. e(t1a9l8c7o) n[3te6n] to.nI ntdhee eedff,ichiiegnhcyc oonf tmenutnsiocifphale awvaystmeweatatelsr are normallytrfeoautmnednitn prinocdeusssetsr ifaolr stehwe raegdeuectfifloun eonf th,ewavhye rmeeatsalt hcoenctoenntc. eInndtreaetdi,o hnisgho fcothnteesnetsm oef thaelasviyn mdoetmalse stic wastewaaterer snaorremgaellny efroaulnlyd loinw infdoullsotwriailn gsetwhaegsee ettflfilnuegnot,f wsohleirdesasd uthrei ncgontrceeanttrmateionnts[ 3o7f ].thHesoew meevtearl,s hine avy metalacdcuommeusltaict iwonasitnewthateersso ialrde ogeesnenroatllye xlcolwu sfiovlelolywdinegp tehned soetntlitnhge olef vseollsidosf dhuerainvgy mtreeattamlsenint [t3r7e]a. ted However, heavy metal accumulation in the soil does not exclusively depend on the levels of heavy wastewater; italsodependsontherateofirrigationandonthesoiltype[38]. Therefore,although metals in treated wastewater; it also depends on the rate of irrigation and on the soil type [38]. theheavymetallevelsintheirrigationwastewaterusedinthisstudyarebelowtherecommended Therefore, although the heavy metal levels in the irrigation wastewater used in this study are below thresholds,itremainsimportanttoevaluatethesoilbioaccumulationofthesemetalsoverboththe the recommended thresholds, it remains important to evaluate the soil bioaccumulation of these mediummanetdalslo onvgert ebromth. the medium and long term. Figure 1.FigHuerea v1y. Hmeeavtayl mcoetnatle cnotnsteonftst hoef tthher etehrierer iigrraitgiaotnionw wataetrer tytyppeess aapppplliieedd aas sfufnucnticotnio onf owfawtera ter samplingsadmapteli,nsgh doawtei, nshgotwhiengir trhige airtriiognatwiona twerat×er w× wataetrers saammppllee ddaattee inintetrearcaticotnio (nIW(I ×W SW×). TShe) d.aTtah earde ata W arethemtheae nmse±ansst a±n sdtaanrddaerrdr oerrrsoorsf tohf rtehereree prelipclaictaetse.s.G GSS1,, fifirrsstt ggrroowwiinngg sseeaassoonn; ;GGS2S, s,esceocnodn gdrogwroinwg ing 1 2 season.Sseas–oSn. SW1a–rSeWt1h2 earwe athtee rwsaatmerp slainmgpldinagte dsaftoers tfhoer tfihres tfi(rSst (S–WS1–SW)6)a anndd sseeccoonndd ((SSW7–S–WS12) gr)ogwroinwg ing W1 W12 W1 W6 W7 W12 seasons. Honest significant differences (HSDs) calculated according to Tukey’s test are also seasons.Honestsignificantdifferences(HSDs)calculatedaccordingtoTukey’stestarealsoreported. reported. Water2018,10,255 7of18 3.2. HeavyMetalContentoftheSoil-PlantSystem 3.2.1. HeavyMetalContentoftheSoil Table 2 lists the mean concentrations of individual heavy metals in the soil as a function of irrigation water type (IW), soil depth (H), and soil sampling time (Ss). Only the soil depth had significanteffectsonthetotalmetalcontents(p≤0.05),whilenosignificantinteractionswerefound between these different experimental factors. The Co soil content was not determined because it wasbelowthedetectionlimitof0.015mgkg−1;ontheotherhand,alsointheirrigationwaterthe Cocontentwas, ingeneral, verylow(about0.007mgL−1). Alsoforthesoil, alltheheavymetals examined were lower than the threshold values (Table 1) that were listed in the national [39] and international[40]guidelines. Table1.Nationalandinternationalguidelinesformaximumlimitsofheavymetalsinirrigationwater, soilandcultivatedvegetables. WastewaterGuidelines SoilGuidelines VegetableGuidelines HeavyMetals (mgL−1) (mgkg−1 ) (mgkg−1 ) dryweight freshweight 1IGw 2FAO 3USEPA 4IGs 5EUs 6IR 7FAO/WHO Al 1.0 5.0 5.0 - - - - Cd 0.005 0.01 0.005 2.0 3.0 3.0e 0.1(0.050) Co 0.05 0.05 0.05 20 - 50e 50 Cr 0.10 0.10 0.10 150 150 100e 2.3 Cu 1.0 0.20 0.2 120 140 100e 73 Fe 2.0 5.0 5.0 - - 50,000f 425 Ni 0.20 0.20 0.20 120 75 50e 67 Pb 0.10 0.50 0.50 100 300 100e 0.3(0.1) Zn 0.50 0.20 2.0 150 300 300e 100 Mn 0.20 0.20 0.20 - - 2000f 500 Note: ThemaximumlimitsforvegetablesaccordingtoEuropeanguidelines,EC1881/2006[41],arereported inparentheses. 1IGw,Italianguidelinesforagriculturalwastewaterreuse:MinisterialDecreen. 185/2003[35]. 2Ayers,R.S.;Westcot1985[42]. 3UnitedStatesEnvironmentalProtectionAgency,Washington,DC,2012[43]. 4IGs,Italianguidelinesforsoilcontent:MinisterialDecreen. 152/2006[39]. 5EUs,Europeanunionstandards (EU2002)[40].6IR,Internationalreferences.7FAO/WHO,2001.Foodadditivesandcontaminants[44].eEwers, 1991[45].fPendiasandPendias,1992[46].-noprescribedlimits. Table2. Maineffectsoftheirrigationwaters,soildepths,andsoilsamplingdatesonthetotalsoil heavymetalcontents. ExperimentalFactor TotalHeavyMetalContent(mgkg−1) Al Co Cr Cu Fe Ni Zn Mn Irrigationwater(IW) ns ns ns ns ns ns ns FW 2827.9±45.8 nd 21.4±1.7 21.0±1.7 18,007.6±298.1 18.3±1.8 51.8±3.1 504.1±13.9 SWW 2839.8±45.2 nd 22.7±1.7 21.6±1.8 17,554.4±193.2 19.3±1.5 50.3±2.7 528.0±133 TWW 2915.6±57.8 nd 22.3±0.6 21.1±0.9 18,228.1±244.4 19.1±0.5 51.9±4.1 524.9±12.1 Soildepth(H) *** *** *** * *** *** *** H1 3007.2±24.9a nd 24.3±0.8a 25.8±2.2a 17,615.1±183.4b 20.4±0.9a 56.7±2.3a 562.3±6.5a H2 2715.1±33.3b nd 20.0±0.9b 18.3±0.3b 18,244.7±214.7a 17.5±1.0b 46.2±1.5b 475.8±6.7b Soilsamplingdate(SS) ns ns ns ns ns ns ns SS1 2959.4±54.2 nd 22.2±1.6 21.2±1.7 18,179.5±288.8 18.2±1.4 51.6±2.5 517.7±13.3 SS2 2845.8±53.1 nd 22.3±1.9 22.3±1.8 17,632.2±226.3 19.4±1.6 51.5±4.2 516.2±12.7 SS3 2832.2±42.3 nd 21.8±0.7 22.1±1.0 17,978.2±247.8 19.2±0.9 50.9±3.5 523.1±13.7 Note:Dataaremeans±standarderror(n=3).Foreachexperimentalfactor,datafollowedbydifferentsuperscripted letters(aandb)withineachcolumnaresignificantlydifferent(p≤0.05;Tukey’stest);ns,notsignificant. FW, freshwater;SWW,secondarytreatedwastewater;TWW,tertiarytreatedwastewater;H1,topsoilprofile(0–40cm); H2,bottomsoilprofile(40–80cm).SS1,SS2,SS3,first(beforetransplanting),second(endofGS1),andthird(endof GS2)soilsamplingdates,respectively;nd,notdetected;*p≤0.05;***p≤0.001(Fisher’stest). TheconcentrationsofAl,Cr,Cu,Ni,Zn,andMnweresignificantlyhigher(p≤0.05)inH (top 1 soilprofile)thaninH (bottomsoilprofile). Incontrast,higherconcentrationsofFewerefoundinH 2 2 thaninH (18,244.7vs. 17,615.1mgkg−1). 1 Water2018,10,255 8of18 InordertodeterminetheBAF,manystudiesrefertotheconcentrationsofaheavymetalinthe soilasthe‘total’amount. Tothebestoftheauthors’knowledge,veryfewstudieshaveconsidered the concentrations of the ‘extractable’ heavy metals using DTPA, or other methods. Because total heavymetalcontentisnotanefficientpredictoroftheavailabilityandmobilityofheavymetalsin soils[47],inthisstudy,thepotentiallyplant-availableheavymetalcontents,asrepresentedbythe DTPA-extractablecontents, werealsoevaluatedtodeterminewhethertheycanmoveintothesoil anduptakebythecrop. TheDTPA-extractablemetalsdonotrepresentthetotalsoilmetalsthatare availablefortheplant,however,theyaregoodindicatorsofthepotentialmetalsquantitiesthatthe cropmayuptake[48]. The effects of type of irrigation water used, soil depth, and soil sampling time (IW, H, S S experimentalfactors)onthemeansoilconcentrationsofDTPA-extractableheavymetalsarereported in Table 3. Also, in this case, Co content was not determined as it was below the detection limit (0.015mgkg–1). DTPA-extractableAl,Cu,Ni,andZnlevelsweresignificantlyhigher(p≤0.05)in SWW and TWW than in FW. The concentrations of Cr in TWW was not significantly higher than thoseinFW. Table3.Maineffectsofirrigationwaters,soildepths,andsoilsamplingdatesontheexchangeablesoil heavymetalcontents(afterDTPAextraction). ExperimentalFactor ExchangeableHeavyMetalContent(mgkg−1) Al Co Cr Cu Ni Zn Irrigationwater(IW) *** * ** *** ** FW 0.64±0.02b nd 0.34±0.01b 3.02±0.15b 0.29±0.02b 6.78±0.28b SWW 0.74±0.01a nd 0.41±0.02a 3.52±0.20a 0.41±0.02a 7.60±0.24a TWW 0.70±0.02a nd 0.39±0.02ab 3.55±0.20a 0.38±0.01a 8.39±0.57a Soildepth(H) *** *** ** *** * H1 0.73±0.01a nd 0.44±0.01a 3.56±0.18a 0.40±0.01a 7.33±0.20b H2 0.66±0.02b nd 0.33±0.02b 3.17±0.13b 0.32±0.02b 7.95±0.25a Soilsamplingdate(Ss) ns ns *** ns ns SS1 0.71±0.02 nd 0.38±0.02 2.53±0.08b 0.34±0.02 7.79±0.17 SS2 0.67±0.03 nd 0.39±0.02 3.71±0.16a 0.35±0.02 7.39±0.37 SS3 0.70±0.02 nd 0.36±0.03 3.86±0.17a 0.37±0.02 7.60±0.39 Note:Dataaremeans±standarderror(n=3).Foreachexperimentalfactor,datafollowedbydifferentsuperscripted letters(a,bandab)ineachcolumnaresignificantlydifferent(p≤0.05;Tukey’stest). FW,freshwater;SWW, secondarytreatedwastewater;TWW,tertiarytreatedwastewater;H1,topsoilprofile(0–40cm);H2,bottomsoil profile(40–80cm);SS1,SS2,SS3,first,second,andthirdsoilsamplingdates,respectively;ns,notsignificant.;nd,not detected;*p≤0.05;**p≤0.01;***p≤0.001(Fisher’stest). Moreover,forallofthemetalsconsidered,withtheexceptionofZn,theDTPA-extractablecontent washigherinthetopsoilprofilethaninthebottomone. Finally,asforsoilsamplingdate(S ,S ,S ), S1 S2 S3 onlyCushowedadifferentDTPA-extractableheavymetalcontent. ThemeanCucontentofthesoil sampledattheendofthefirst(S )andsecond(S )artichokecropcyclesexceededthebackground S2 S3 value(S ). ThismightbeduetotheplantsuptakeCuataratethatislowerthantherateatwhichit S1 wassuppliedbytheirrigationwater. The DPTA-extractable soil content of Fe and Mn varied significantly with type of irrigation water and soil depth (IW × H interaction; Figure 2A,B). In the top soil profile (H ), SWW and 1 TWW both significantly increased the Fe and Mn soil content (3–5 mg kg−1 and 10–15 mg kg−1, respectively;p≤0.05forboth)comparedtoFW.Incontrast,inthebottomsoilprofile(H )therewere 2 nosignificanteffects(p>0.05)ofSWWorTWWontheFeandMnsoilconcentrations. Thesedata areinagreementwiththeresultsreportedbyAchahetal. (2014)[15],whofoundacloserelationship betweenFecontentintheirrigationwaterandFecontentofthesoilandvegetablesamples. Also Al-Lahhametal. (2007)[34],inastudyontomatocropsirrigatedwithwastewater,reportedincreased concentrationsofMn,andFeinthesoilcorrelatedwiththehighconcentrationsofthesemetalsinthe wastewaterusedforirrigation. Water 2018, 10, x FOR PEER REVIEW 9 of 18 rWeapteorr2t0e1d8 ,i1n0c,2re55ased concentrations of Mn, and Fe in the soil correlated with the high concentrat9ioofn1s8 of these metals in the wastewater used for irrigation. IInn tteerrmmss ooff tthhee SSS ×× HH inintteerraacctitoionn eeffffeecctsts ((FFigiguurree 22CC,D,D)), ,tthhee DDTTPPAA--eexxttrraaccttaabbllee FFee aanndd MMnn ssooiill S ccoonntteenntt iinn tthhee ttoopp ssooiill pprroofifillee ((HH1)) iinnccrreeaasseedd ffrroomm SSS1 ((33..2266,, 1100..5555 mmgg kkgg−−11, ,rreessppeeccttiivveellyy)) ttoo SSS3 ((44..4433,, 1 S1 S3 1155..3322 mmgg kkgg−−1,1 ,rerespspeectcitviveleyly),) ,ininddiciacatitningg ththaat tththeessee mmeetatalsls aaccccuummuulalatetedd ggrraadduuaalllyly inin tthhee ttoopp ssooiill;; nnoo ssuucchh eeffffeecctt wwaass oobbsseerrvveedd ffoorr tthhee bboottttoomm ssooiill pprrooffiillee ((HH2)).. TThhee aaccccuummuullaattiioonn ooff FFee aanndd MMnn iinn tthhee ttoopp 2 soil profile was related to the higher content of Fe and Mn in SWW and TWW (Figure 1), and to the soilprofilewasrelatedtothehighercontentofFeandMninSWWandTWW(Figure1),andtothe low mobility of these heavy metals, especially in alkaline soils (pH ~ 8) [38]. Moreover, combining lowmobilityoftheseheavymetals,especiallyinalkalinesoils(pH~8)[38]. Moreover,combining this with the irrigation water demand of artichoke plants defined in terms of the active root depth thiswiththeirrigationwaterdemandofartichokeplantsdefinedintermsoftheactiverootdepth (40–50 cm), the heavy metals that were present in the added SWW and TWW would be expected to (40–50cm),theheavymetalsthatwerepresentintheaddedSWWandTWWwouldbeexpectedto accumulate specifically in the top soil profile. accumulatespecificallyinthetopsoilprofile. Figure 2. Diethylenetriaminepentaacetic acid (DTPA)-extractable soil content of iron (A,C) and Figure 2. Diethylenetriaminepentaacetic acid (DTPA)-extractable soil content of iron (A,C) and manganese (B,D) according to the first-order interaction factors irrigation water × soil depth (A,B) manganese (B,D) according to the first-order interaction factors irrigation water × soil depth (A,B) and andsoilsamplingdate×soildepth(C,D).Differentletters(a–b)indicatesignificantdifferences(p≤0.05; soil sampling date × soil depth (C,D). Different letters (a–b) indicate significant differences (p ≤ 0.05; Tukey’stest).Thedatashownarethemeans±standarderrorsofthreereplicates.S ,S ,S referto S1 S2 S3 Tthuekfieyrs’st, tseesct)o.n Tdhaen ddattah isrhdoswoinl saarme tphlein mgedaantess ±, rsetsapnedcatirvde elyr.roFrWs ,offr ethshrewe areteprl;icSaWteWs. ,SsSe1,c oSnS2d, SarS3y rterfeeart etod the first, second and third soil sampling dates, respectively. FW, fresh water; SWW, secondary wastewater;TWW,tertiarytreatedwastewater;H ,topsoilprofile(0–40cm);H ,bottomsoilprofile 1 2 t(r4e0a–t8e0d cwma)s.tewater; TWW, tertiary treated wastewater; H1, top soil profile (0–40 cm); H2, bottom soil profile (40–80 cm). 3.2.2. HeavyMetalContentofthePlantsandoftheMarketableYield 3.2.2. Heavy Metal Content of the Plants and of the Marketable Yield Artichokeplantsandheadsirrigatedwithdifferenttypesofwaterdifferedinalloftheheavy Artichoke plants and heads irrigated with different types of water differed in all of the heavy metalcontentsthatwereconsidered,exceptforCo(Figure3). metal contents that were considered, except for Co (Figure 3). TheheavymetalcontentoftheartichokeplantsresultedhigherunderSWWandTWWirrigation The heavy metal content of the artichoke plants resulted higher under SWW and TWW whencomparedtoFWirrigation,althoughthesealwaysremainedbelowthevegetableguidelines irrigation when compared to FW irrigation, although these always remained below the vegetable (Table1). Al,Fe,andNishowedthesamebehavior,withsimilarSWWandTWWvaluesthatwere guidelines (Table 1). Al, Fe, and Ni showed the same behavior, with similar SWW and TWW values significantlyhigherthanFW.Instead,Cr,Zn,andMn,showedthehighestvaluesunderSW,without that were significantly higher than FW. Instead, Cr, Zn, and Mn, showed the highest values under significantdifferencesbetweenTWandFW.Finally,onlyCushowedsignificantdifferencesamongthe SW, without significant differences between TW and FW. Finally, only Cu showed significant threeirrigationwatertypes,havingSWWwithhighestvalueandFWthelowest. differences among the three irrigation water types, having SWW with highest value and FW the Theheavymetalconcentrationsintheartichokeheadswereonaverageabout20%lowerthan lowest. those in the artichoke plants. Several studies have indicated that edible plant organs are not the Water 2018, 10, x FOR PEER REVIEW 10 of 18 Water2018,10,255 10of18 The heavy metal concentrations in the artichoke heads were on average about 20% lower than those in the artichoke plants. Several studies have indicated that edible plant organs are not the mmaaiinn ssiittee ooffa caccucmumulualtaiotinono fohfe ahveyavmye tmalest[a7ls,4 9[7];,4in9s];t eiands,tehaeda,v yhemavetya lmsaeptaplesa raptopeaaccr utmo ualcacteummuailnatley minatihnelys hino otthsea snhdoorotso tasnodf prolaontst so,fa npdlalnotws, earnldev leolwsaerre legveenlesr aalrley gfoenuenrdalilny tfhoeunmda rikne tthabe lemyairekledta[1b4le]. yInieplda r[t1ic4u].l aInr, pAalratincdulCaru, sAhlo awnedd Cthue sshaomweedbe thhaev sioarm,we ibtehhsaivmioilra,r wSWithW simanidlaTr WSWWWv aalnude TsiWgnWifi cvaanlutley shiiggnhiefircathnatlny FhWig.hIners tethadan, CFrW,F.e ,InZsnt,eaadnd, CMrn, ,Fseh, oZwne,d ahnidg hMesnt,v ashluoewseudn dheigrhSeWst wviatlhuoeust usingdneifir cSaWnt wdiiftfheoreunt cseigsnbiefitcwaneet ndiTffWereanncdesF bWet.wFeineanl lTyW, o nanlyd NFWi s.h Foiwnaeldlys, iognnliyfi Ncain sthdoiwffeedre snicgensifaicmanotn dgitfhfeeretnhcreees airmriognatgi otnhew thatreere tiyrpriegahtaiovnin wgaStWerW tytphee hhaivgihnegs tSvWalWue tahne dhiFgWhetsht evlaoluwee astn.d FW the lowest. FFiigguurree 33.. HHeeaavvyy mmeettaall ccoonntteenntt ooff aarrttiicchhookkee ccrrooppss aass ppllaannttss ((rriigghhtt,, ggrreeeenn bbaarrss)) aanndd aass aarrttiicchhookkee hheeaaddss ((lleefftt,, bblluuee bbaarrss)),, aass aa ffuunnccttiioonn ooff tthhee ttyyppee ooff iirrrriiggaattiioonn wwaatteerr uusseedd.. DDiiffffeerreenntt lleetttteerrss ((aa––bb)) iinnddiiccaattee ssttaattiissttiiccaallllyy ssiiggnniiffiiccaanntt ddiiffffeerreenncceess ((pp ≤≤ 00.0.055; ;TTuukkeeyy’’ss tteesstt)).. TThhee vveerrttiiccaall bbaarrss iinnddiiccaattee ssttaannddaarrdd eerrrroorrss ((nn == 66,, 33 rreepplliiccaatteess ×× 22 ggrorowwiningg sseeaassoonnss).) . GGeenneerraallllyy,, tthhee aarrttiicchhookkee hheeaaddss ccoonnttaaiinneedd llooww ccoonncceennttrraattiioonnss ooff hheeaavvyy mmeettaallss,, bbeellooww tthhee lliimmiittss ssppeecciiffiieedd iinn tthhee EEuurrooppeeaann [[4411]] aanndd iinntteerrnnaattiioonnaall [[4444]] gguuiiddeelliinneess ffoorr vveeggeettaabblleess uusseedd ffoorr hhuummaann ccoonnssuummppttiioonn ((TTaabbllee 11)).. IInnddeeeedd,, tthhee hheeaavvyy mmeettaall ccoonntteennttss ooff aarrttiicchhookkee hheeaaddss uunnddeerr SSWWWW aanndd TTWWWW iirrrriiggaattiioonn wweerree aabboouutt 1122--ffoolldd aanndd 5500--ffoolldd lloowweerr tthhaann tthhee iinntteerrnnaattiioonnaall tthhrreesshhoolldd vvaalluueess ffoorr ZZnn ((88 vvss.. 110000 mmgg kkgg−−1 1frfereshsh wweeigighht)t )aanndd FFee (9(9 vvss. .442255 mmgg kkgg−1− f1refsrehs whewigehigth),t r),ersepsepceticvtievlyel. y.
Description: