ebook img

Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes PDF

0.71 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes

Mon.Not.R.Astron.Soc.000,1–15(2012) Printed31January2013 (MNLATEXstylefilev2.2) Irradiation of an Accretion Disc by a Jet: General Properties and Implications for Spin Measurements of Black Holes T. Dauser1⋆, J. Garcia2, J. Wilms1, M. Bo¨ck1,3, L. W. Brenneman4, M. Falanga5, 3 6 2 1 K. Fukumura , and C. S. Reynolds 0 1Dr.KarlRemeis-ObservatoryandErlangenCentreforAstroparticlePhysics,Sternwartstr.7,96049Bamberg,Germany 2 2DepartmentofAstronomyandMarylandAstronomyCenterforTheoryandComputation,UniversityofMaryland,CollegePark,MD20742,USA n 3Max-Planck-Institutfu¨rRadioastronomie,AufdemHu¨gel69,53121Bonn,Germany a 4Harvard-SmithsonianCenterforAstrophysics,60GardenStreet,Cambridge,MA02138,USA J 5InternationalSpaceScienceInstitute,Hallerstrasse6,3012,Bern,Switzerland 6AstrophysicsScienceDivision,NASAGoddardSpaceFlightCenter,Code663,Greenbelt,MD20771,USA 0 3 ] 31January2013 E H . ABSTRACT h X-rayirradiationoftheaccretiondiscleadstostrongreflectionfeatures,whicharethenbroad- p enedanddistortedbyrelativisticeffects.We presentadetailed,generalrelativisticapproach - o tomodelthisirradiationfordifferentgeometriesoftheprimaryX-raysource.Thesegeome- r triesincludethestandardpointsourceontherotationalaxisaswellasmorejet-likesources, t s whichareradiallyelongatedandaccelerating.IncorporatingthiscodeintheRELLINEmodel a forrelativisticlineemission,thelineshapeforanyconfigurationcanbepredicted.Westudy [ how different irradiation geometries affect the determination of the spin of the black hole. 2 Broademissionlinesareproducedonlyforcompactirradiatingsourcessituatedclosetothe v blackhole.Thisistheonlycasewheretheblackholespincanbeunambiguouslydetermined. 2 Inallothercasesthelineshapeisnarrower,whichcouldeitherbeexplainedbyalowspinor 2 anelongatedsource.We concludethatforthosecasesandindependentofthequalityofthe 9 data,nouniquesolutionforthespinexistsandthereforeonlyalowerlimitofthespinvalue 4 canbegiven. . 1 Keywords: Accretion,AccretionDiscs,blackholephysics,Galaxies:Nuclei,galaxies:ac- 0 tive,Lines:Profiles 3 1 : v i X 1 INTRODUCTION tor,andourviewingdirectiononthesystem,parametrisedthrough r anappropriateinclinationangle, i.Additionallyaprimarysource a DuetothevicinityoftheX-rayemittingregioninActiveGalactic of radiation has to exist in order to produce the observed reflec- Nuclei(AGN)andX-raybinariestothecentralcompactobject,it tionand also theunderlying continuum. Initialassumptions were is expected that the observed X-ray spectrum will show signs of that theprimarysource consists of ahot corona around the inner relativisticeffects(Fabianetal.1989).Sucheffectswerefirstseen regionsofthedisc,asComptonizationofsoftdiscphotonsinsuch in the skew symmetric shape of the fluorescent Fe Kα line from a corona naturally produces a power law spectrum which fitsthe these objects (Tanakaetal. 1995; Reynolds&Nowak 2003, and observations (Haardt 1993; Doveetal.1997).Under theassump- referencestherein).Theserelativisticlinesarepresent inasignifi- tionthattheintensityofthehardradiationscatteredbackontothe cantfractionofAGNspectra(Guainazzi,Bianchi&Dovcˇiak2006; discbythecoronaisproportionaltothelocaldiscemissivity,the Nandraetal. 2007; Longinottietal. 2008; Patricketal. 2011) irradiationoftheaccretiondiscwouldbeI(r) r−3fortheouter and Galactic black hole binaries (Miller 2007; Duroetal. 2011; ∝ parts,andgraduallyflattentowardstheinneredgeofthediscfora Fabianetal.2012a).Recent workhasbeen applyingamoreself- standardShakura&Sunyaev(1973)disc. consistent approach by including models for the relativistic dis- tortion of the full reflection spectrum during the data analysis With the advent of high signal to noise data from satellites (see,e.g.,Zoghbietal.2010;Duroetal.2011;Fabianetal.2012b; such as XMM-Newton, however, measurements showed a dis- Dauseretal.2012). agreement with the Fe Kα line profiles predicted by this coro- Therelativisticdistortionofthereflectionspectrum isdeter- nal geometry. For many sources, the data favoured disc emis- minedbythespinoftheblackhole,a,thegeometryofthereflec- sivities that are much steeper in the inner parts of the accretion disc (see, e.g., Wilmsetal. 2001; Milleretal. 2002; Fabianetal. 2002; Fabianetal. 2004, 2012a; Brenneman&Reynolds 2006; ⋆ E-mail:[email protected] Pontietal. 2010; Brennemanetal. 2011; Galloetal. 2011; (cid:13)c 2012RAS 2 T. Dauseret al. Dauseretal.2012).Variabilitystudiesofthebroadironlinespose 2 THEORY additional problems for standard corona models. In such studies 2.1 Introduction the time variability of the continuum flux, i.e., the primary hard X-rayradiation,iscomparedtothefluxinthelines,whicharepro- We calculate the shape of the relativistic line in the lamp-post ducedbythereflectedradiation.Thisallowstoprobetheconnec- geometry by following the radiation emitted from the primary tionbetweentheprimaryandthereflectedradiation.Inacoronal source on the axis of symmetry of the accreting system to the geometry, oneexpects apositivecorrelationbetweenthestrength accretion disc and from there to the observer. Due to the deep oftherelativisticallydistortedreflectionspectrumandtheprimary gravitational potential close to the black hole, the photon trajec- continuum (Martocchia&Matt 1996).Thisisincontrast towhat tories are bent and their energies red-shifted. Moreover the rela- isobserved:MeasurementsofMCG 6-30-15(Fabian&Vaughan tivistic movement of the accretion disc alters the energy flux in- − 2003; Miniuttietal. 2003) revealed large variations of the direct cident on the disc and the shape of the observed line through radiation,whilethereflectedcomponentremainedconstant. the relativistic Doppler effect. Using techniques introduced by Cunningham (1975), the flux seen from a certain element of the accretion disc under a specific inclination can be predicted (e.g., Speith,Riffert&Ruder 1995) and summed up to the complete As shown by Martocchia,Matt&Karas (2002), spectrumofthesource.Thisproblemhasbeenextensivelystudied Fabian&Vaughan (2003), Miniuttietal. (2003), and inthepastandthereareseveralmodelsavailabletopredicttherel- Vaughan&Fabian (2004) for the case of MCG 6-30-15, in ativisticsmearing given a certain emissivity of the accretion disc − a geometry in which the illuminating continuum is assumed (e.g., Fabianetal. 1989; Laor 1991; Dovcˇiak,Karas&Yaqoob to be emitted from a source on the rotational axis at height h 2004;Brenneman&Reynolds 2006; Dauseretal. 2010).Inthese above the black hole, strong light bending yields properties of modelstheintensityemittedfromtheaccretiondisc(theso-called the reflected radiation that are consistent with the observations. “emissivity”) is parametrised as a power law r−ǫ with index ǫ, Figure1illustratesthis“lamppost”geometry(Matt,Perola&Piro wherer isthedistancetotheblackhole.Thestandardbehaviour 1991; Martocchia&Matt 1996). In general, data and predicted isǫ = 3,whichisproportionaltotheenergyreleaseinastandard line shapes show very good agreement (see Wilkins&Fabian Shakura&Sunyaev(1973)disc. 2011;Duroetal.2011;Dauseretal.2012).Thelamppost model Thisemissivitycanalsobecalculateddirectlyfromanirradi- also explains the observed connection between the luminosity atingsource, theso-called “primarysource”. Inthefollowingwe andthereflectionstrength:Foraprimarysourceveryclosetothe willusea sourcesituated on therotational axisof theblack hole blackhole,mostofthephotonsarefocusedontheaccretiondisc, forthispurpose.Byapplyingthesameray-tracingtechniquesused producing a strong reflection component. Therefore less photons totracephotonsfromthedisctotheobserver,wecanalsocalculate are left over to contribute to the continuum component, which is theproperirradiationoftheaccretiondiscbytheprimarysource. directly emitted towards the observer (Miniutti&Fabian 2004). Theradial dependency of thisirradiation isequal to thereflected Foran increasing height of thehardX-raysource thiseffect gets radiation,i.e.,theemissivity,whichwaspreviouslymodelledbya weaker and thus more photons can escape, which strengthens powerlaw. Inthispaperweconcentrate onthe irradiation of the the continuum radiation and, depending on the flux state of the accretiondisc.Inordertobeabletocompareourresultstoobser- X-raysource,weakensthereflectedflux(Miniutti&Fabian2004; vationaldata,wealsoneedtocalculatetheraytracingfromtheac- Miniutti2006). cretiondisctotheobserver,whichisdonewiththeRELLINE-code (Dauseretal.2010). Basedontheearlierworkonthelamppostgeometrypresented 2.2 PhotonTrajectoriesintheLampPostGeometry above, Fukumura&Kazanas (2007) provided a more detailed treatmentoftheemissivityforarbitraryspinandanisotropicemis- Inthefollowingwewillconcentrateonasimplifiedgeometry by sionoftheprimarysource.Off-axissourceswerefirstinvestigated assumingapoint-like,photonemittingprimarysourceataheight by Ruszkowski (2000). Using similar methods Wilkins&Fabian habovetherotationalaxisoftheblackhole.Thissourceirradiates (2012) presented araytracing method working on Graphics Pro- athin,butopticallythickaccretiondisc(Fig.1).Relativisticpho- cessingUnits(GPUs),whichcancalculateirradiationprofilesfor tontrajectoriesinthelamppostgeometrywerefirstinvestigatedby almost arbitrary geometries of the primary sources, now also in- Matt,Perola&Piro(1991)andusedbyMartocchia&Matt(1996) cludingsourcesextendedalongandperpendiculartotherotational inordertoexplaintheverylargeequivalent widthoftheironKα axis.Inthispaperwepresentacompletemethodtoderiveirradi- line in some AGN. A more detailed discussion of effects in this ationprofilesinthelamppostgeometry(Sect.2),including radi- geometrywaspresentedbyMartocchia,Karas&Matt(2000),in- allyextendedandacceleratingsources(Sect.3).Usingthisformal- cludingadiscussionoftheinfluenceoftheblackhole’sspinonthe ism, we introduce an implementation of the lamp post geometry overallspectra. as afittingmodel forrelativisticreflection, which can beapplied As a good physical explanation of this hard X-ray source tomorerealisticexpectationsoftheoreticaljetmodels(Sect.4.1). on the rotation axis is the base of a jet (Markoff&Nowak In Sect. 4.2 we analyse the shape of the reflection features pre- 2004), we call this geometry also the “jet base geometry”. dicted by the different types of irradiating sources. In particular This interpretation is highly supported by the earlier work of weconcentrateontheimplicationsforspinmeasurements,thedif- Ghisellini,Haardt&Matt(2004),whereitisshownthatallAGN ferent assumptions for the geometry of the primary source have are capable of forming jets. This is achieved by inventing the (Sect.4.3).Theseresultsarequantifiedbysimulatingsuch obser- concept of “aborted” jets for radio-quite quasars and Seyferts, vationsforcurrentinstruments(Sect.4.4).Finally,wesummarise which are produced when the velocity of the outflowing mate- themainresultsofthepaperinSect.5. rialissmallerthantheescapespeed.Thereforesuchajetextends (cid:13)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 3 havetorotateatthespeedoflight.1 Notethatallequationsinthis paperaregiveninunitsofG M c 1.Thedifferentsignsin ≡ ≡ ≡ equation(1)areforincreasing(uppersign)anddecreasing (lower sign)valuesofrandθ.Heretheconservedquantitiesarethetotal (cid:14) energy,E,theangularmomentumparalleltotherotationalaxisof theblack hole, λ, and theCarter(1968) constant, q. Thelatteris givenby h h2 2h+a2 q=sinδ − . (5) r h2+a2 (cid:0)i Assuming the source to be located on the symmetry axis of the system(θ = 0)simplifiesthecalculationsignificantly,asp does θ onlytakearealvalueifλ=0,andthereforeequation(1)simplifies to p =E( 1, √V /∆, E q, 0) . (6) µ r r − ± ± | | Thenthetrajectorycanfinallybecalculatednumericallyfromthe Figure1.Aschematicdrawingofthecomponentsinthelamppostgeom- integralequation etry.Theprimarysourceofphotons(blue)issituatedabovetherotational axisoftheblackholeandisemittingphotons(red),whichhittheaccretion r dr′ = θ dθ′ . (7) disc. Zh ±√Vr′ Z0 ±√Vθ′ (following Chandrasekhar 1983; Speith,Riffert&Ruder 1995). only asmalldistance fromtheblack hole, producing only aneg- Notethat thesign changes at turning points of thephoton trajec- ligible amount of radio flux while at the same time it strongly tory.Inthiscasetheleftpartofequation(7)hastobesplitintotwo irradiates the inner accretion disc in X-rays, which produces the integrals, each going from and to the turning point, respectively. observed, highly relativistic reflection (Ghisellini,Haardt&Matt Notethatnoturningpointsintheθdirectionhavetobetakeninto 2004). This interpretation is encouraged by works showing that account,asphotonswhichinitiallyflytowardsthedisc,willnotex- direct and reprocessed emission from such a jet base is equally hibitaturningpointbeforecrossingtheequatorialplaneandthus capable in describing the observed X-ray spectrum as a corona beforehittingtheaccretiondisc. above the accretion disc and also yields a self-consistent expla- nation of the full radio through X-ray spectrum of many com- 2.3 IlluminationoftheAccretionDisc pactsources(Markoff,Nowak&Wilms2005;Maitraetal.2009). In addition a direct connection between the X-rays and the ra- In order to calculate the incident intensity on the accretion disc, diocanexplainthecorrelationbetweenobservedradioandX-ray wefirsthavetoconsiderthegeometriceffectsintrinsictothelamp flaresof Microquasars such asGX339 4 (Corbeletal.2000)or postsetup.Withoutanyrelativisticeffectstheintensityimpinging − CygX-1(Wilmsetal.2007).Wenotethatasimilarkindofconnec- ontheaccretiondiscforanisotropicprimaryemitterisgivenby tionisalsoindicatedinsomemeasurements ofAGNlike3C120 cosδ h (Marscheretal.2002)or3C111(Tombesietal.2012).Addition- Ii(r,h)∝ r2+hi2 = (r2+h2)23 . (8) ally,evidence of adirectinfluence of thejeton theblackholein Microquasarsisgrowingrecently.Namely,Narayan&McClintock Thismeansthatalreadyforflatspacetimetheirradiatedintensity (2012)observeadirectcorrelationbetweenthejetpowerandthe stronglydependsontheradius. spinvaluefromanalysingasmallsampleofsources. Duetothestronggravitythephotontrajectorieswillbesignif- In the following we will briefly summarise the most im- icantlybent,i.e.,inoursetupthephotonswillbe“focused”ontothe portant equations required for deriving the photon trajectories innerregionsoftheaccretiondisc(Fig.1),modifyingtheradialin- from a source on the rotational axis of the black hole. As we tensityprofile.Notethatthisfocusingdependsonboth,theheight, are dealing with potentially rapidly rotating black holes, we h,andtheinitialdirectionofthephoton,parametrisedbytheangle choose the Kerr (1963) metric in Boyer&Lindquist (1967) co- betweenthesystem’saxisofsymmetryandtheinitialdirectionof ordinates to describe the photon trajectories. Following, e.g., thephoton,δ. Bardeen,Press&Teukolsky (1972), the general photon momen- Using the equations of the previous section we developed a tumisgivenby ray-tracing code using similar techniques as those presented in Dauseretal.(2010).Withthiscodeweareabletocalculatephoton p = E, p = E√V /∆, p = E√V , p =Eλ, (1) t − r ± r θ ± θ φ trajectoriesfromthepointofemission(h,δ)attheprimarysource with totheaccretiondisc,yieldingthelocation(r,δi)wherethisspecific photonhitsthedisc.Astheprimarysourceislocatedontherota- ∆ = r2 2r+a2 (2) tionalaxisoftheblackhole,thetrajectoryofthephotonisuniquely − Vr = (r2+a2)2 ∆(q2+a2) (3) determinedbytheq-parameter(equation5).Theincidentpointis − λ thencalculatedbysolvingtheintegralequation(7)forrinthecase V = q2 cos2θ a2 (4) θ − hsin2θ − i ofθ=π/2. foracertaindistancerandspinaoftheblackhole.Thespinisde- finedinsuchawaythatitsabsolutevaluerangesfrom06 a 61, 1 Thorne(1974)showedthattherealisticupperlimitofthespinismore | | whereat themaximal value, amax = 1,theevent horizonwould likelyamax=0.998. (cid:13)c 2012RAS,MNRAS000,1–15 4 T. Dauseret al. Knowing wheretheisotropically emittedphotons hittheac- Thisis in line with the results obtained by Fukumura&Kazanas cretiondisc,wecanderivethephotonfluxincidentonitssurface. (2007)2. Asthephotonsaredesignedtobeemittedatequallyspacedangles Inordertounderstandtheinfluenceofthedifferentrelativis- δ,thedistance ∆r between thesepointsisrelatedtotheincident tic parameters on the incident intensity, Fig. 2 shows the single intensity.Photonsemittedin[δ,δ+∆δ]aredistributedonaring components of equation (18). A similardiscussion of these com- ontheaccretiondiscwithanareaofA(r,∆r).Theproperareaof ponentsisalsogivenbyWilkins&Fabian(2012).Weassumethat sucharingatradiusrwiththickness∆risgivenby theprimarysourceisanisotropicemitter.Alleffectsarestrongest forsmallradiiandwillthereforebemostimportantforhigh spin, r4+a2r2+2a2r where the accretion disc extends to very low radii. First, length A(r,∆r)=2πr ∆r (9) ·r r2 2r+a2 contractionreduces theareaof theringasseenfromtheprimary − in the observer’s frame of rest (Wilkins&Fabian 2012). In or- source. In the rest frame of the accretion disc, this “contraction” der to calculate the irradiation in the rest frame of the accre- implies an effectively larger area and therefore the incident flux tion disc, we have to take into account its rotation at relativis- decreases with increasing vφ proportional to the inverse Lorentz tic speed. The area of the ring will therefore be contracted. Us- factor1/γ(φ)(Fig.2a).Whencomparedtoflatspacetime,thearea ing the Keplerian velocity profile deduced from the Kerr metric ofdiscclosetotheblackholeisadditionallyenhancedintheKerr (Bardeen,Press&Teukolsky1972),thedisc’sLorentzfactoris metric(Fig.2b).Interestingly,thiseffectisalmostindependentof the spin of the black hole3. However, compared to the effect in- γ(φ) = √r2−2r+a2(r3/2+a) (10) ducedbytheenergyshift(equation14),thechangeinareaisonly r1/4 r√r+2a 3√r√r3+a2r+2a2 aminoreffect.Dependingonthepowerlawindex, Γ,theenergy p − shiftofthephotonshittingthediscisthestrongestfactorinfluenc- (Bardeen,Press&Teukolsky 1972, see also Wilkins&Fabian ingthereflectionspectrum.Forasourceontherotationalaxisofthe 2011, 2012). Taking into account that the photons are emitted at blackholethechangeinirradiatedfluxcanbeaslargeasafactorof equally spaced angles, we finally find that for isotropic emission 100(Fig.2c),dependingstronglyonthesteepnessoftheprimary thegeometriccontributiontotheincidentintensityhastobe spectrum. This amplification factor depends on the height of the sinδ emitting source (it becomes larger for increasing height) and de- Igeo = . (11) i A(r,∆r)γ(φ) creasesforlargerradii.Especiallyforlow hlightbendingfocuses photonstowardsthediscandadditionallyenhancestheirradiation Becauseoftherelativemotionoftheemitterandtheaccretiondisc, oftheinnerregions.ThedashedlinesinFig.2dshowhow 1/∆r aswellasbecauseofgeneralrelativisticeffects,theirradiatedspec- decreases in flat space just due to geometrical reasons following trumwillbeshiftedinenergy(Fukumura&Kazanas2007).Using equation(8).Thefullyrelativistictreatment(solidlines)revealsa theinitialfour-momentumattheprimarysource focusing of the photons towards theblack hole. But compared to uµ =(ut,0,0,0) (12) the“effectivelyenhanced”irradiationoftheinnerpartsduetothe h h energyshift(Fig.2c),therelativisticfocusingisonlyaminoreffect. andthecorrespondingfour-momentumontheaccretiondisc Insummary,thepowerlawindex,Γ,hasthestrongestinfluenceon uµ =ut(1,0,0,Ω) (13) theirradiationprofileatsmallradii,whiletheheightoftheemitting d d sourcemostlyaffectstheouterpartsofthedisc. togetherwiththephoton’smomentum(equation6),theenergyshift Finally, Fig. 2e combines all effects and shows the incident is fluxintherestframeoftheaccretiondisc.Ingeneralthisplotcon- glp= EEei = ppµνuuµdνh = √r(cid:0)r√rr2−+3ar(cid:1)+√h22a√−r2√hh+2a+2a2 (14) afioturmtleosrwopuahrretoisg.vheFtroasrltlraounnngidnleycrrseitraarnsaiddniignagtheoetifhgtehhteinolnafemtrhpeppasorotssutrbgcueeotmmaloemrteroysa:tnSdnoomutrcotherees The components of pthe four-velocities are calculated photonshittheouterpartsoftheaccretiondiscandanincreasingre- from the normalising condition u uµ = 1 (see, e.g., gionofmoreconstantirradiationatroughlyh/2iscreated.Inorder µ Bardeen,Press&Teukolsky1972). − tocheckoursimulationforconsistency,athoroughcheckagainst Asthenumberofphotonsisconservedwecanwrite thecalculationsofFukumura&Kazanas(2007)wasdoneandwe couldvalidatetheresultfromFig.2eathighprecision.The same Ne(ph)∆te∆Ee=const.=Ni(ph)∆ti∆Ei , (15) istrueforthestationarypointsourcesolutionofWilkins&Fabian (2012). whereN(ph)(N(ph))istheemitted(incident)photonflux.Assum- e i ingapowerlawshapeoftheemittedradiation Nph =E−Γ , (16) e e 2.4 EmissivityProfilesintheLampPostGeometry thephotonfluxontheaccretiondiscisgivenby Since for a simple accretion disc the local disc emissivity is Nph(r,a)=E−Γ g (r,a)Γ , (17) roughly r−3, in the description of observations it is common i i · lp toparam∝etrisethediscemissivityprofilethrough as∆E /∆E =1/g and∆t /∆t =g .Duetotherelativistic e i lp e i lp energyshift,theincidentphotonfluxnowalsodependsonwhere F(r,h) r−ǫ (19) ∝ thephotonhitstheaccretiondisc(r)andwhichspintheblackhole has.Usingthisresult,wecanfinallycalculatetheincidentfluxon theaccretiondisc 2 NotethatFukumura&Kazanas(2007)usethespectralindexα,whereas F(r,h)=Igeo gΓ = sinδglΓp . (18) weusethephotonindexΓ.BothquantitiesarerelatedbyΓ=α+1. i i · lp A(r,∆r)γ(φ) 3 deviationsarelessthan0.2% (cid:13)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 5 spqtuvwxyzxyy{|}x~(cid:127)(cid:128)~(cid:129)(cid:130)(cid:131)(cid:132)(cid:133) %p&’a(fo)co))*+,o/;</>?@AB (cid:11)(cid:12)(cid:13)(cid:13) (cid:10) -(cid:9) !.99 (cid:31) - (a) 1 7 (cid:13)(cid:14)(cid:19)(cid:15)8(cid:17)(cid:18) o mn (cid:13)(cid:14)3(cid:15)(cid:16)(cid:17)(cid:18) kl (cid:7).(cid:8) (cid:2)(cid:3)+(cid:4)(cid:5)(cid:6)(cid:6) 6 (cid:6)(cid:7)(cid:8)(cid:9)(cid:10)(cid:9)(cid:11)(cid:12) j (cid:2)(cid:3)+(cid:4)(cid:5)(cid:4)(cid:4) (cid:0)(cid:1)25(cid:2)(cid:3)(cid:4)(cid:5) (cid:0)=(cid:1)0:99 h=100:0rg (cid:27) (cid:7).8 $ x e d (cid:14)b(cid:15) n I 4 1 y (cid:142)(cid:140) it (cid:139)(cid:140)(cid:141)(cid:139) (cid:7).5 issiv (cid:28) (cid:138)(cid:134) (cid:0)=(cid:17)0:99 m (cid:137) E (cid:135)(cid:136) (cid:2)(cid:3)+(cid:4)(cid:5)(cid:4)(cid:4) (cid:29) (cid:134) (cid:7).2 (cid:2)(cid:3)(cid:16)(cid:4)(cid:5)(cid:6)(cid:6) (cid:7).(cid:18) (cid:30) (c) (cid:25)(cid:26)(cid:26) (cid:19)(cid:20)(cid:24) (cid:21)(cid:22)(cid:23) (cid:31) (cid:144) (cid:145) (cid:27)(cid:28) (cid:19)(cid:20)3 (cid:26) (cid:24)(cid:25) (cid:22)(cid:23)(cid:23) (cid:20)(cid:21)(cid:21)(cid:21) (cid:143) " ["#] Figure3.Theemissivityindexǫasdefinedinequation(19)oftheradiation (cid:29) irradiatingtheaccretiondiscfromaprimarysourceatdifferentheightsh. &’ (cid:14)d(cid:15) (cid:2)(cid:3)+(cid:4)(cid:5)(cid:6)(cid:6) whereǫiscalledtheemissivityindex.Notethatinthisrepresenta- (cid:29) tiontheinformationofthenormalisationoftheemissivity profile !"#$% (cid:149) islost.Butasusuallytheluminosityoftheirradiatingsourceisnot (cid:148) (cid:7).(cid:18) h(cid:30)(cid:31) rg (cid:147) known,thisisnotveryimportantforreflectionstudies.Ourcalcu- (cid:146) lations easily allow to determine the radius dependent emissivity (cid:11)(cid:12)(cid:11)* indexandthusphraseourresultsinalanguagethatisdirectlycom- 46 parablewithobservations. ,/ Figure3showstheemissivityprofilefordifferentheightsof (cid:25)(cid:26)(cid:26) (e) theprimarysource.Regardlessofthespecificheight,threedifferent 7;< UVWXYZ[ radial zones are visible in all profiles. Firstly, for large radii the NOPQRST EFMJIJKL indexconvergesalwaystowardsitsvalueinflatspace(ǫ = 3,see 1 EFGHIJKL equation8).Theclosertheemittingsourceistotheblackhole,the (cid:159)(cid:160) >?@AABACD fasterǫconvergestowardsthisvalue. (cid:156)(cid:157)(cid:158)(cid:155) byaTsthroenzgonsetecelpoesneirntghaonf2thregefmroimssitvhietyblparcokfihleolteowisacrdhsartahceteirnisneedr (cid:154) (cid:11)(cid:12)(cid:11)* edge of the accretion disc. Except for an extremely low height, thissteepeningisalmostindependent oftheheightoftheprimary source4.Hence,alargeemissivityatlowradii,whichisusuallyin- 4i ,/ terpretedas“strongfocusingofalowheightemitter”,isnotdirectly relatedtotheheight oftheprimarysource. Instead, thesteepness ‘ _ f] ^’ \] (cid:25)(cid:26)(cid:26) almost solely depends on the relativistic boosting of the primary (cid:150) (cid:151)(cid:150)(cid:152)(cid:153) photonsandespeciallyonthesteepnessΓoftheprimaryspectrum Figure2.Relativistic factorswhichinfluencetheincidentfluxontheac- (seeFig.2c). cretion disccompared totheemittedintensity attheprimarysource(see As has been mentioned in the introduction (Sect. 1), many equation 18).Ifnotstated inthefigureexplicitly weusea = 0.99and sources are observed to have very steep emissivity indices, i.e., assumethattheprimarysourceisanisotropicemitter.Theverticaldashed valuesofǫ=5-10arenormal.Similartotheemissivityprofilein linesindicatethelocationoftheinnermoststablecircularorbit(ISCO)for Fig. 3, we can also derive the maximal possible emissivity index certain valuesofspin.(a)Theinversebeamingfactor(red),whichdeter- foracertainvalueofspinandsteepnessoftheinputspectrum.For minestheinfluenceoflengthcontraction(seeequation10)ontheincident astandardlamppostsourceataheightofatleast3r ,thisinfor- flux.(b)Theimpact ofthe properarea. (c)Geometric intensity distribu- g tion on the accretion disc for the relativistic (solid) and Newtonian case (dashed).(d)Energyshift,whichthephotonexperiences whentravelling fromtheprimarysourcetotheaccretiondisc,takentothepowerofΓ(blue). 4 Clearly, the absolute flux foracertain luminosity is highest foralow (e)Combinedirradiatingfluxontheaccretiondiscforaprimarysourceat emitter(seeFig.2e),butweusuallydonotmeasuretheabsoluteintensity, differentheightsbutequalluminosity. butonlytheemissivityindex. (cid:13)c 2012RAS,MNRAS000,1–15 6 T. Dauseret al. by Duroetal. (2011) to find a unique and consistent solution to (cid:0)(cid:1)(cid:2)(cid:3)998 describethereflectionspectrumofCygX-1. (cid:5)(cid:6) a=0:(cid:4)(cid:4)0 (cid:0)(cid:1)(cid:2)(cid:3)9(cid:2)(cid:2) a=0:500 2.5 Theincidentangle (cid:5)(cid:7) The incident angle δ of the irradiated radiation is important for i modelling the reflected spectrum, as it determines the typical in- (cid:5)(cid:8) teraction depth of the reflected photon and therefore strongly influences the limb-darkening of the reflected radiation (e.g., ) ((cid:15) Svobodaetal.2009).Constructinganormalvectoronthedisc,δi (cid:14) (cid:9) (cid:13) isgivenby m µ (p ) n(θ) 6 p⊥ d µ d q cosδi = |p| = (pd)ν(cid:16)(ud)ν(cid:17) (cid:12)(cid:12)(cid:12)θ=π/2= rutd(r,a) . (20) (cid:10) (cid:12) Figures5aandbshowδ fordiffe(cid:12)rentheightsoftheprimarysource i andassuminganisotropicprimaryemitter.Formostdiscradiithe (cid:11) photonshitthediscatashallowangle,exceptforasmallfraction of disc. The location and width of the steeper in-falling photons dependsontheheightoftheprimarysource. 1 2 3 4 The effect of the incidence angle of the illumination in the PhotonIndex(cid:12) reflected spectrum from an accretion disc has been discussed in Figure4.Themaximumpossibleemissivityindexattheinnerregionsof thedisc(r<10rg)foracertainphotonindexΓ.Theheightofthesource Garc´ıa&Kallman(2010).Inthecalculationofreflectionmodels, waschosentobeh=10rg.However,notethatweshowedinFig.3thatfor theboundaryatthesurfaceofthediscisdefinedbyspecifyingthe h>3rgthesteepeningattheinneredgeofthediscisalmostindependent intensity of the radiation field that illuminates the atmosphere at oftheheight. aparticularangle.Usingtheirequation(19) and(37),this canbe expressedas 2n ξ mation isplotted in Fig. 4. In this case, no large emissivities are I = , (21) inc 4π cosδ expectediftheblackholeisnotamaximalrotator,i.e.,roughlyfor (cid:16) (cid:17) i a < 0.9. If theinput spectrum ishard (Γ < 2.5), theemissivity where n is the gas density (usually held fixed), and ξ is the ion- indexisflatterthanthestandardindexof ǫ = 3.Evenforhighly isation parameter that characterises a particular reflection model rotatingblack holestheactual emissivityat theinneredge of the (Tarter,Tucker&Salpeter 1969). Consequently, for a given ioni- accretion disc is only steep if the incident spectrum is very soft sation parameter, varying the incidence angle varies the intensity (Γ>2.5). oftheradiationincidentatthesurface.Thishasinterestingeffects IfwewanttoapplytheinformationofFig.4toacertainobser- ontheionisationbalancecalculations.Ifthephotonsreachthedisc vation,wehavetotakeintoaccountthattheemissivityisgenerally at a normal angle (δi = 0), the intensity has itsminimum value, parametrisedinformof abroken powerlaw.Indetailthismeans but the radiation can penetrate into deeper regions of the atmo- thatbelowacertain“breakradius”(r )onesingleemissivityin- sphere producing more heating. On the contrary, for grazing in- br dexisusedtodescribethesteepemissivityandabovethatitisusu- cidence(δi = 90)Iinc increases,resultinginahotteratmosphere allyfixedtothecanonicalr−3behaviour.Generally,breakradiiare nearthesurface;buttheradiationfieldthermalizesatsmallerop- foundtobeintherangeof3r (e.g.,in1H0707 495, Dauseretal. ticaldepths,whichyieldslowertemperatureinthedeeperregions g 2012) up to 6r (e.g., in NGC3783, Brenn−emanetal. 2011).5 ofthedisc.Evidently,thesechangesintheionisationstructurewill g Hence,theemissivityindexwemeasureinobservations accounts alsoaffect thereflected spectrum(see Fig.5c). Thenarrow com- fortheaveragesteepnessintherangeofr tor andwillthere- ponent of theemissionlinesareexpected tobeemittedrelatively in br forebelowerthanthemaximalemissivity.Wenotethattheemis- near the surface, where photons can easily escape without being sivityindicesfoundinmanyobservationsareclosetoorabovethe absorbedorscattered.Ontheotherhand,thebroadcomponentof maximalallowedemissivityindexasdefinedinFig.4.Forexample theemissionlines,andinparticulartheonesfromhighZelements ǫ 5forΓ=1.8inNGC3783(Brennemanetal.2011),ǫ 6for such as iron, are produced at larger optical depths (τ 1), and Γ≈=2inMCG 6-30-13(Brenneman&Reynolds2006),ǫ≈>6.8 thereforearemorelikelytobeaffectedbychangesinthe∼ionisation forΓ = 1.37in−CygnusX-1(Fabianetal.2012a),orǫ 10for structureoftheslab. Γ = 3.3 in1H0707 495 (Dauseretal.2012). Asthee≈missivity However, Garc´ıa&Kallman (2010) showed that in a gen- index obtained from−thesemeasurements isaveraged overthe in- eral sense, reflected spectra resulting from models with large in- nermost few r these emissivities can therefore not be properly cidence angles tend to resemble models with higher illumina- g explainedsolelybythelamppostgeometry.Despitetheseissues, tion. This means that the changes introduced by the incidence however,insomecasesitispossibletouseFig.4todecideifamea- angle can be mimicked by correcting the ionisation parame- suredvaluefortheemissivityindexcanreasonablybeexplainedin ter to account for the difference introduced in the illumination. thelamppostgeometry.Thismethodhasbeensuccessfullyapplied The current analysis shows that below 7rg the incidence angle can vary as much as 25 80 degrees, equivalent to a change − in the ionisation parameter by more than a factor of 5. Fig- 5 Notethatthevalueofthebreakradiusishighlycorrelatedwiththeemis- ure 5c shows the reflected spectra for these two incidence an- sivityindexwhentryingtoconstrainbothbyobservation. gles predicted by the XILLVER code (Garc´ıa&Kallman 2010; (cid:13)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 7 30(cid:14) 4(cid:0)(cid:1) 60(cid:14) 75(cid:14) LMj 9"(cid:1) (cid:15)b(cid:16) FGG (c) -i.>?< (cid:6)(cid:4) (a) #(cid:0)(cid:1) -i./;< 18 1(cid:7) $%& D(cid:2) mo (cid:8)(cid:9) mu QRTS (cid:8)(cid:10) UV4(cid:0)(cid:1) ‘fld P _ H 1(cid:4) ’%& (cid:11) (cid:12) *(cid:0)(cid:1) (cid:20)(cid:27)(cid:21)(cid:28)(cid:22)(cid:29)(cid:23)(cid:30)(cid:24)(cid:31)(cid:25) (cid:26)! IJK (cid:13) +, h=(cid:17)(cid:18):(cid:19)rg (cid:5) 1(cid:4) 1(cid:3) 2(cid:2) 1(cid:4) 2(cid:2) ABC E @ (cid:5) D(cid:2) (cid:6)(cid:4) (cid:3)(cid:4) N [NO] N [NO] WneXYyZke\^ Figure5.(a)2dimageshowingtheincidentangleδ ofphotonsontheaccretiondisc.Thespinoftheblackholeisa=0.998.(b)incidentangleforthethree i lines(solid,dashed,dotted)markedinsubfigure(a).(c)Samplereflectionspectrafordifferentincidentanglesδ =25◦(red)and 80◦(blue)calculatedwith i theXILLVERcode(Garc´ıa&Kallman2010;Garc´ıa,Kallman&Mushotzky2011). Garc´ıa,Kallman&Mushotzky2011)usingthesameionisationpa- where e(ν) are the tetrad basis vectors for ν = t,r,θ,φ (see µ rameter.Theeffectoftheincidenceangleisevident. Bardeen,Press&Teukolsky1972). Inordertocalculatethetrajectoryof aphoton emittedat an angle δ′ from themoving source, wetransform fromthe moving frametothestationary,locallynon-rotatingframeatthesamelo- 3 ANEXTENDEDRAY-TRACINGCODE cation.Thismeansthatthephoton isemittedatanangleδ inthe stationarysystemaccordingto Sofarweassumedthattheemittingprimarysourceisatrestwith respecttotheblackhole.Iftheprimaryemitteristhebaseofthe cosδ′ β cosδ= − , (24) jet, however, then it is far more likely that the primary source is 1 βcosδ′ moving. Typical speeds at the jet base can already be relativistic − depending on the velocity of the source. Following, e.g., Krolik (McKinney 2006). Furthermore, if the irradiating source is a jet, (1999), itcan beeasilyshown that thisapproach impliesthat the then we need to relax our assumption of a point-like emitter and intensityobservedinthestationaryframewillbealteredbyafactor includetheradialextentofthejet.Asweshowinthissectionby of takingintoaccountbothoftheseextensions,thelineshapeissig- nificantlyaffected. 2 , (25) D where isthespecialrelativisticDopplerfactor,whichisdefined D inourcaseas 3.1 AMovingJetBase 1 Firstinvestigationsofamovingsourceirradiatingtheaccretiondisc = , (26) D γ(1+βcosδ) anditsimplicationfortheFeKαweredonebyReynolds&Fabian (1997).Beloborodov(1999)investigatedthecouplingbetweenthe with γ = 1/ 1 β2 being the Lorentz factor of the moving movingprimarysource andthereflectedradiation. Usinggeneral source.Usingtphetr−ansformedintensity,wecannowcanapplythe relativistic ray tracing techniques, Fukumura&Kazanas (2007) stationarycalculationsfromSect.2.3tothenewemissionangleδ andWilkins&Fabian(2012)calculatedtheilluminationprofileon toobtaintheirradiationoftheaccretiondiskbyamovingsource. theaccretiondisc. Additionally,wehavetocalculatetheproperenergyshiftbe- Wefirstassumethattheemittingprimarypointsourceismov- tweentheaccretiondiscandthemovingsource,withthe4-velocity ingataconstantvelocityβ =v/c.Themostprominenteffectofa givenbyequation(22).Similarlytoequation(14)thisenergyshift movingjetbasecomparedtoajetbaseatrestistheDopplerboost- isgivenby ingofradiationinthedirectionofthemovingblob,i.e.,awayfrom theaccretion disc. Thisboosting alsomeans that theenergy shift g = (pd)µuµd = glp(β=0) . (27) ofthephotonbetweenprimarysourceandaccretiondiscchanges lp (ph)νuνh γ 1 √(h2+a2)2−∆(q2+a2)β withvelocity.The4-velocityisthengivenby (cid:16) ∓ h2+a2 (cid:17) uµh =uth 1,ddrt,0,0 (22) lNimotiet,tghlapt=for lagrlgpe(βhe=igh0ts).gUlpsisnigmtphleifireessutoltsitwsespaelcreiaaldyreolabttiaviinsteidc (cid:16) (cid:17) D forastationaryprimarysource(seeSect.2.3),wecanfinallywrite Thevelocityβ asseenbyanobserveratthesamelocationinthe downthetotalfluxtheaccretiondiscseesfromamovingsource: locallynon-rotatingframe(LNRF)isconnectedtodr/dtthrough 2F(r,h,β=0) β= ee(µ(νrt))uuνhµh = r2+∆a2 · ddrt , (23) Fi(r,h,β)= hγ(cid:16)1∓D√(h2i+ah22)2+−a∆2(q2+a2)β(cid:17)iΓ . (28) (cid:13)c 2012RAS,MNRAS000,1–15 8 T. Dauseret al. spinKLfoMcoMMeNOoPdQPRSTUV {|}~(cid:127)(cid:128)(cid:129)(cid:130)(cid:131)(cid:132)(cid:130)(cid:131)(cid:131)(cid:133)(cid:134)(cid:135)(cid:130)(cid:136)(cid:137)(cid:138)(cid:136)(cid:139)(cid:140)(cid:141)(cid:142)(cid:143) +,99 * &’ EFGG * &’ (a) /b6 (cid:23)(cid:24)(cid:24)(cid:24) (cid:10)(cid:11)3(cid:12)(cid:13) @ (cid:4)(cid:5)(cid:6)(cid:7)(cid:8)(cid:9) (cid:0)(cid:1)25(cid:2)(cid:3) (cid:25)(cid:26)(cid:26) h=100rg (cid:19) (cid:27)(cid:28) z qw A k j x (cid:29) ‘ Jlu ^v^ty B (cid:30).(cid:31) ^__ m \ > ! " -% C #$ -4 #$ D (cid:20) (cid:19) (cid:22)(cid:17) (cid:18)(cid:17) (cid:16)(cid:17) (cid:21)(cid:15)(cid:15) (cid:14)(cid:15)(cid:15) > < (cid:27)(cid:28) ;(cid:28) :(cid:28) ?88 788 H [HI] W XWYZ Figure6.(a)Irradiatingfluxand(b)EmissivityprofilessimilartoFig.3,whichshowtheimpactofamovingjetbasewithvelocitiesv=0c(solid),v=0.5c (dotted),andv=0.9c(dashed). Figure6showsthedependencyoftheemissivityindexonthe The influence of changing the location of the jet base while velocity of the jet base. In general the irradiating flux decreases fixingthetopheightisdepictedinFig.7a,b.Interestinglytheemis- significantlywithincreasingspeed ofthejetbase, asthephotons sivity profile is not very sensitive to the location of the jet base. areboostedawayfromtheblackhole(Fig.6a). On the other hand, fixing the jet base at a low value (3r ) and g Comparingtheshapeoftheemissivityprofilesforamoving thenincreasingtheradialextentofthejet(Fig.7c)stronglyalters jetbase(Fig.6b),theintermediateregionoftheaccretiondisc(3– theemissivityprofile.Themorethetopisawayfromthebase,the 100r )experiences anincreaseof irradiationwithincreasingve- largerthedeviationsbecomecomparedtotheprofileofthejetbase g locity of thejet base. On the other hand the emissivity profileof (red, dashed line) and the more the irradiation resembles the one theveryinnerregionsoftheaccretiondiscdoesnotdependonthe fromtheupperpartofthejet.Comparingtheextendedprofilesto movementofthejet.Forhighspin(a>0.9)theaccretiondiscex- theonesforapoint-likeprimarysource(dashedlines)revealsthat tendsdowntotheseverysmallradiiandduetothesteepemissivity theextendedemissioncreatesanirradiationpatternthatcouldhave most of thereflected radiation comes fromthere. If the accretion similarlybeenproducedbyapointsourceatanintermediateheight disconlyextendsdownto6r ,asisthecasefora=0,theirradi- in between h and h , too. This implies that if we measure g base top ationoftheinnermostregionscandifferalmostuptoafactorof2 anemissivityprofilesimilartooneforalowsourceheight(Fig.7, inemissivityindexdependingonthevelocityofthejetbase. dashedredline),thejetcannotbeextendedorthereisnosignifi- cantamountofradiationfromtheupperpartsirradiatingthedisc. Onewaytoexplainthelackofphotonsisthatthejetdoesnothave auniformvelocity,butthejetbaseisatrestandfromthereonthe 3.2 IrradiationbyanElongatedJet particlesareveryefficientlyaccelerated(see McKinney2006)such It is straightforward to extend the previous discussion of a thattheradiationisbeamedawayfromtheaccretiondisc. moving jet base to the the case of an extended jet (see also Wilkins&Fabian2012).Wesimplydescribetheincidentradiation for an elongated jet by many emittingpoints at different heights, 3.3 JetwithConstantAcceleration weightedbythedistancebetweenthesepoints.Emissivityprofiles fortheextendedjetareshowninFig.7.Ingeneral,theshapeofthe Havinganalysedtheeffectofamovingprimarysourceandthepro- emissivityprofileinthecaseofanextendedsourcedoesnotdiffer fileofanextendedjet,weareabletocombinetheseeffectstoform significantlyfromthatofapoint-likesource.Similartothemoving amorerealisticapproach.Itislikelythattheactualbaseofthejet jet base(seeSect. 3.1),the irradiationof theinnerregions of the isstationaryorhasatleastavelocitynormaltothediscplanethat accretion disc (r < 2r ) only differs in normalisation but not in ismuchlessthanthespeedoflight.Abovethejetbasetheparti- g shape(Fig.7).However,theregionsofthediscthatarealittlebit clesareefficientlyaccelerated(McKinney2006)tohigherenergies furtheroutwards(>3r )areaffectedatamuchgreaterfractionby andintheendtoveryfastvelocitiesseen,e.g.,inVeryLongBase- g extendingtheemissionregion.Butdespitetheselargedifferences, lineInterferometry(VLBI)measurements(see,e.g., Cohenetal. theoverallshapeoftheemissivityprofiledoesnotchange,i.e.,that 2007).Inthefollowingwewillassumethesimplestcasebyusing thegeneralpropertiesanalysedinSect.2.4arestillvalidinthecase aconstantacceleration oftheparticles.Inthiscasethevelocity A ofelongatedjets. evolvesas(see,e.g.,TorresDelCastillo&Pe´rezSa´nchez2006) (cid:13)c 2012RAS,MNRAS000,1–15 Irradiationofan AccretionDiscbyaJet 9 LMinNOfPQRPQQSTUPVdWVXYZ\^ LMinNOfPQRPQQSTUPVdWVXYZ\^ LMinNOfPQRPQQSTUPVdWVXYZ\^ (cid:18)(cid:19)99 (cid:30) (cid:28)(cid:29) (cid:18)(cid:19)99 (cid:30) (cid:28)(cid:29) (cid:18)(cid:19)99 (cid:30) (cid:28)(cid:29) (cid:13)(cid:14) (a) (cid:31) ! DcE (cid:1)(cid:7)(cid:8)(cid:9)(cid:10) (cid:2)3(cid:5)(cid:6) (cid:1)(cid:7)(cid:8)(cid:9)(cid:10) (cid:2)3(cid:5)(cid:6) (cid:1)(cid:7)(cid:8)(cid:9)(cid:10) (cid:2)3(cid:5)(cid:6) hb(cid:0)se =10rg "#$%& ’67,/ > HHHHHH > (cid:15) (cid:151)hb(cid:151)(cid:0)se(cid:151)=(cid:151)2(cid:151)5(cid:151)rg "8#8$%&8’8*8+8,/ ? mq (cid:1)(cid:1)ttoopp (cid:2)(cid:2)F(cid:3)G(cid:4)(cid:5)(cid:5)(cid:6)(cid:6) ? mq (cid:1)top (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6) (cid:1)top (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6) vw (cid:1)top (cid:2)(cid:3)(cid:4)(cid:4)(cid:5)(cid:6) vw (cid:16).(cid:17) w w @ vy @ vy Klux (cid:18)(cid:19)(cid:18)(cid:20) A vz{|} A vz{|} ~ ~ (cid:127) (cid:127) -(cid:23) B (cid:128) B (cid:128) (cid:21)(cid:22) (cid:129) (cid:129) -4 (cid:15) (cid:15) (cid:21)(cid:22) (cid:26)(cid:27) C C (cid:24)(cid:25) (cid:15) (cid:13)(cid:14) (cid:11)(cid:12)(cid:12) < :; (cid:11)(cid:12)(cid:12) < :; (cid:11)(cid:12)(cid:12) I [IJ] _ ‘_jk _ ‘_jk Figure7.EmissivityprofilessimilartoFig.3,whichshowtheimpactofanelongatedjetcomparedtoapointsource.Forcomparisonthedashedlinesshow theemissivityofapoint-likeemittingsourcewithsamecoloursasinFig.3,i.e.,red,blue,green,andorangefor3rg,10rg,25rg,and100rg,respectively. Forvaryingthebaseoftheemittingregiontheirradiatingflux(a)andtheemissivityprofile(b)isshown.In(c)thetopheightofthejetisaltered. β(t)= At , (29) Thecalculationsinthelamppostgeometryareusedtodeter- √c2+ 2t2 minetheproperirradiationprofileandreplacetheartificialbroken A wherethetimetisgivenby powerlawemissivityintheRELLINEmodel.Besidesthestandard point source inthelamp post geometry, wealsoincluded theex- x2 x tended geometries presented in Sect. 3, i.e., elongated and mov- t= +2 (30) rc2 ingprimarysources. Astheinformationof theraytracingis tab- A ulated,the RELLINE LPmodel isevaluated veryquicklyandthus forx = h h .Thereforetheaccelerationtoreachaspecific base wellsuitedfordatamodelling. − velocityβatheighthisgivenby γ 1 = − , (31) A h h 4.2 Influenceofthelamppostparametersontheshapeofthe base − reflectionfeatures whereγistheLorentzfactor.Figure8adisplaysthevelocity(equa- tion29)insidethejetforconstantacceleration. WiththeRELLINE LPmodelitispossibletocalculatethepredicted Theirradiationoftheaccretiondiscinthissetupisshownin lineshapesofbroademissionlinesforthedifferentparametersde- Fig.8b.Theeffectoftheacceleratedmovementshowsupatlarger terminingthesetupinthelamppostgeometry.Figure9showsthat radiibysteepeningtheemissivitycomparedtothestationaryjetand thelineshapeisverysensitiveforcertainparametercombinations the for all heights the profile gets more similar to a point source andalmostindependentinothercases. at the jet base. Thisresult confirms the general picture that for a The line shape is highly sensitive to a change in height of large acceleration the accretion disc sees only the lowest part, as the primary source (Fig. 9a and b). Especially when assuming a mostoftheupperpartofthejetisstronglybeamedawayfromthe rapidly rotating black hole, the line shape dramatically changes disc.Thismeansthatifwemeasurealocalised,lowheightofthe from a really broad and redshifted line to a narrow and double- emittingsource,itcouldalsobethebaseofastronglyaccelerating peakedstructurewhenincreasingtheheightofthesource(Fig.9a). jet.Additionally,Fig.8crevealsthatthestrongertheacceleration, Thesamebehaviourcanbeobservedforanegativelyrotatingblack themoretheemissivityprofilesresemblesthecanonical r−3 case hole(Fig.9b),butheredifferencesarenotaslargeasintheprevi- forallbuttheinnermostradii(r>2rg). ouscase.Broadlinesseenfromaconfiguration ofalow primary source and a highly rotating black hole are also sensitive to the photonindexΓoftheincidentspectrum(Fig.9c).Inthiscasethe lineshape gets broader fora softer incident spectrum. When fix- 4 DISCUSSION ingtheheightoftheirradiatingsource(Fig.9d–f),foralowsource heighttheshapeisstillsensitivetothespin(Fig.9d).Butalready 4.1 RELLINE LP—Anewrelativisticlinemodel foramediumheightof25r thelineshapesvirtuallycoincidefor g UsingtheapproachmentionedinSect.2.3,thelamppostgeometry allpossiblevaluesofblackholespin.Inthiscase,evenforarapidly wasincorporatedintheRELLINEmodel(Dauseretal.2010).This rotatingblackhole,thelineshapedoesnotdependonthesteepness model was designed to be used withcommon data analysis tools ofincidentspectrum(Fig.9f). suchasXSPEC(Arnaud1996)orISIS(Houck&Denicola2000)for UsingtheRELLINE LP-code,wearealsoabletocompareline modelling relativisticreflection. It caneitherpredict asingleline shapes for moving (Sect. 3.1), elongated (Sect. 3.2), and acceler- shapeoritcanbeusedasaconvolutionmodelsmearingacomplete ating(Sect.3.3)primarysources.Achangeinvelocityonlyalters ionised spectrum (such as the REFLIONX model Ross&Fabian thelineshape ifthesource isat low height andtheblack hole is 2007). The new RELLINE LP model can be downloaded from rapidly rotating (Fig. 9g). Changing either of these to negatively http://www.sternwarte.uni-erlangen.de/research/rerloltaitinneg/(.Fig.9h) oralargersource height (Fig.9i),different ve- (cid:13)c 2012RAS,MNRAS000,1–15 10 T. Dauseret al. XYZn\^f_‘d_‘‘jkm_qwzq{|}~(cid:127) (cid:141)(cid:142)(cid:143)(cid:144)(cid:145)(cid:146)(cid:147)(cid:148)(cid:149)(cid:150)(cid:148)(cid:149)(cid:149)(cid:152)(cid:153)(cid:154)(cid:148)(cid:155)(cid:156)(cid:157)(cid:155)(cid:158)(cid:159)(cid:160)¡¢ (cid:10)(cid:11)99 (cid:7) (cid:17)(cid:18) %&’’ (cid:7) (cid:17)(cid:18) (a) (cid:8)b(cid:9) (c) (cid:2) (cid:31) (cid:151)(cid:151)(cid:151)(cid:151)hhhh(cid:21)(cid:21)(cid:21)(cid:21)(cid:151)(cid:151)(cid:151)(cid:151)(cid:22)(cid:22)(cid:22)(cid:22)sssseeee(cid:151)(cid:151)(cid:151)(cid:151)====(cid:151)(cid:151)(cid:151)(cid:151)3333(cid:151)(cid:151)(cid:151)(cid:151)rrrr(cid:151)(cid:151)(cid:151)(cid:151)gggg (cid:2) (cid:23)(cid:23)(cid:23)(cid:23)(cid:24)(cid:24)(cid:24)(cid:24)(cid:25)(cid:25)(cid:25)(cid:25)(cid:26)(cid:26)(cid:26)(cid:26) (cid:27)(cid:27)(cid:27)(cid:27)(cid:28)(cid:28)(cid:28)(cid:28)(cid:29)(cid:29)(cid:29)(cid:29)(cid:30)(cid:30)(cid:30)(cid:30) (cid:5)(cid:6)8 (cid:140) 5 hhhhttttoooopppp ====(cid:19)(cid:19)(cid:19)(cid:19)(cid:20)(cid:20)(cid:20)(cid:20)rrrrgggg lACDEyFGIK (cid:3).6 QuRSTUuUW (cid:10)(cid:11)(cid:10)(cid:12) (cid:131)(cid:130)(cid:132)(cid:130)(cid:133)(cid:134)(cid:135)(cid:136)(cid:137)(cid:138)(cid:139) ! hhhhttttoooopppp ====(cid:19)(cid:19)(cid:19)(cid:19)(cid:20)(cid:20)(cid:20)(cid:20)(cid:20)(cid:20)(cid:20)(cid:20)rrrrgggg V@ (cid:3).4 P (cid:13)(cid:14)-(cid:15) (cid:130)(cid:131) " (cid:129) (cid:128) (cid:3).2 # -(cid:16) (cid:13)(cid:14) $ (cid:7) (cid:3).(cid:4) (cid:2) (cid:0)(cid:1) 100 (cid:2) (cid:0)(cid:1) 100 (cid:2) (cid:0)(cid:1) 100 H*i+,/7:;v*J*/B7<*x[>?] L MLNO L MLNO Figure8.(a)Velocityofthejetassumingaconstantaccelerationandthejetbaseatrest.Thespinoftheblackholeisa=0.998,andthepowerlawindex Γ=2.Theaccelerationisparametrisedbyspecifyingthevelocityv100thejethasat100rgabovethejetbase.Linesareplottedforv100 =0.9c(dashed), v100 =0.99c(dotted),andv100 =0.999c(dashed-dotted).(b)and(c)Emissivityprofilesforanextendedjetwiththeconstantaccelerationshownin(a). Parametersarethesameasina).Thesolidlinedisplaystheemissivityprofileforastationaryjet.Despitethedifferentheights,eachjetisassumedtohavean equalluminosity. locitiesoftheirradiatingsourceonlyhaveamarginaleffectonthe Insummary,Fig.9confirmsthattherelativisticreflectionfea- line shape. Similarly, measuring the radial extent of the primary tureissensitivetoverydifferentparametersinthelamppostgeom- sourceisalsonotpossibleforallparametercombinations. Firstly, etry.However,assoonastheprimarysourceisnotveryclosetothe therestrictionsofmeasuring aandΓforlargerheights,asseenin blackholeoriselongatedintheradialdirection,thedependencyon Fig.9eandf,alsoapplyhere.Thereforewefixthesetwovaluesat parameterssuchasthespinoftheblackholeortheincidentspec- a = 0.99andΓ = 2.0.Settingthebaseofthesourceat3r and trumisnotlarge. g alteringitsheight (Fig.9j) doesindeed result ingreat changes in thelineshape.Thesechangesareverysimilartoachangeinheight ofapoint-likeprimarysource(seeFig.9a).Hence,anelongatedjet 4.3 ImplicationsforMeasuringtheSpinofaBlackHole producesareflectionfeaturesimilartoapoint-likesource withan effectiveheight.Asimilarbehaviourcanbeobservedwhenchang- If we are interested in measuring the spin of the black hole by ing the base of the primary source and leave the upper boundary analysing the relativistic reflection, Fig. 9 and the discussion in constantat100rg.However,asthelargeupperpartnowdominates theprevioussectionhelpustodecideunderwhichconditionswe theirradiationoftheaccretiondisc,theprofileisnotverysensitive arecapable in doing so. Generally, these conditions can be sepa- to the location of the base of the source. Finally, an accelerating rated into two classes: Either the primary source is compact and jet(Fig.9l)onlyinfluencesthelineshapeifalreadyrelativelyhigh veryclosetotheblackhole,ortheirradiatingemissioncomesfrom velocitiesareobtainedataheightof100rg (v100 > 0.99c),asin largerheightsoranelongatedstructure.Ashasbeenshowninthe theupperpartofthejetmoreandmorephotonsarebeamedaway previoussection,thelattercase,alargeheightoftheprimarysource fromtheaccretiondiscduetothehighlyrelativisticmovementof and an elongated structure, produces avery similarirradiation of the emitting medium. The line profiles for a strong acceleration theaccretion disc and therefore weuse followingpicture forthis thusresembleverycloselytheonesforalowertopoftheemitting discussion:Thebaseoftheprimarysourceisalwayslocatedat3r g source(Fig.9j),whichmeansthatinrealitywewillnotbeableto andsimplythetopheight oftheelongatedstructureisallowedto measureiftheemittingsourceisacceleratingwithoutknowingthe change.Forsimplicitywecallita“compact jet”ifthetopheight fullgeometryofsuchaprimarysource. ofthesourceiscloseto3r and“extendedjet”forlargervaluesof g In some sources with a low mass accretion rate, the disc thetopheight. mightbetruncatedfurtherawayfromtheblackholethantheISCO Asanexample,Fig.10showshowalineprofilefordifferent (see Esin,McClintock&Narayan 1997 and, e.g., the observa- spinwouldlooklikeforacompactandextendedjet.Inthecaseof tionsbyMarkowitz&Reeves 2009;Svoboda,Guainazzi&Karas acompact jetthesensitivityonthespinishigh(seeFig.9d)and 2010). Generally, relativistic emission lines from such truncated thereforewecanclearlyseethedifferenceofareallybroadlinefor discsareevennarrowerthanfornonornegativelyspinningblack highspin(Fig.10a)comparedtoamuchnarrowerlineforlowspin holes.However,suchlinescanalsobeexplainedbytheirradiation (Fig. 10b). If the irradiating source is elongated, the line profiles fromanlargelyelevated (Chiangetal.2012)orelongated source forhighandlowspinareverysimilarandespeciallyreallynarrow (Fig.9k). (Fig. 10c,d). At first this underlines what was already discussed Besidesthespin,theinclinationofthesystemhasalsoastrong aboveinthecontextofFig.9:Ifwehaveanelongatedsourcewe effectonthelineshape(see,e.g., Dauseretal.2010).Astheincli- wewillnotbeabletoconstrainthespinatall. nationismainlydeterminedbydefiningthemaximalextentofthe ButthediagraminFig.10revealsamuchlargerproblemwe lineattheblueside(Fig.9),thesteepdropisalwaysatthesame havetodealwith.NamelythreeofthefourlinesintheFigurewill locationforafixedinclinationandcanthereforebedeterminedal- bedetected asnarrow linesand when fittedwithany model sim- mostindependentlyofthegeometry. ulating broad lines, will result in very low spin values. But this (cid:13)c 2012RAS,MNRAS000,1–15

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.