IoT and Low-Power Wireless Devices, Circuits, and Systems Series Editor Krzysztof Iniewski Wireless Technologies Circuits, Systems, and Devices Krzysztof Iniewski Circuits at the Nanoscale Communications, Imaging, and Sensing Krzysztof Iniewski Internet Networks Wired, Wireless, and Optical Technologies Krzysztof Iniewski Semiconductor Radiation Detection Systems Krzysztof Iniewski Electronics for Radiation Detection Krzysztof Iniewski Radiation Effects in Semiconductors Krzysztof Iniewski Electrical Solitons Theory, Design, and Applications David Ricketts and Donhee Ham Semiconductors Integrated Circuit Design for Manufacturability Artur Balasinski Integrated Microsystems Electronics, Photonics, and Biotechnology Krzysztof Iniewski Nano-Semiconductors Devices and Technology Krzysztof Iniewski Atomic Nanoscale Technology in the Nuclear Industry Taeho Woo Telecommunication Networks Eugenio Iannone For more information about this series, please visit: https://www.crcpress. com/Devices-Circuits-and-Systems/book-series/CRCDEVCIRSYS IoT and Low-Power Wireless Circuits, Architectures, and Techniques Edited by Christopher Siu Managing Editor Krzysztof Iniewski MATLAB(cid:114)isatrademarkofTheMathWorks,Inc.andisusedwithpermission.TheMath- Worksdoesnotwarranttheaccuracyofthetextorexercisesinthisbook.Thisbook’suse or discussion of MATLAB(cid:114) software or related products does not constitute endorsement or sponsorship by The MathWorks of a particular pedagogical approach or particular use oftheMATLAB(cid:114) software. CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2018byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-0-8153-6971-4(Hardback) This book contains information obtained from authentic and highly regarded sources. Reasonableeffortshavebeenmadetopublishreliabledataandinformation,buttheauthor and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledged,pleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com (http://www.copyright.com/) or contact the Copyright Clearance Center, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not-for-profitorganizationthatprovideslicensesandregistrationforavarietyofusers.For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice: Product or corporate names may be trademarks or registered trademarks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. Library of Congress Cataloging-in-Publication Data Names:Siu,Christopher,author.|Iniewski,Krzysztof,1960-author. Title:IoTandlow-powerwireless:circuits,architectures,andtechniques/ ChristopherSiuandKrzysztofIniewski. Description:BocaRaton,FL:CRCPress/Taylor&FrancisGroup,2018.| “ACRCtitle,partoftheTaylor&Francisimprint,amemberoftheTaylor& FrancisGroup,theacademicdivisionofT&FInformaplc.”|Includes bibliograpicalreferencesandindex. Identifiers:LCCN2018010550|ISBN9780815369714(hardback:acid-freepaper)| ISBN9781351251662(ebook) Subjects:LCSH:Internetofthings–Equipmentandsupplies.|Near-field communication. Classification:LCCTK5105.8857.S572018|DDC621.39/81–dc23 LCrecordavailableathttps://lccn.loc.gov/2018010550 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Table of Contents List of Figures vii List of Tables xix Preface xxi Series Editor xxv Editor xxvii List of Contributors xxix 1 The Internet of Things—Physical and Link Layers Overview 1 Christopher Siu and Kris Iniewski 2 Low-Power Wearable and Wireless Sensors for Advanced Healthcare Monitoring 13 IfanaMahbub,SalvatoreA.Pullano,SamiraShamsir,and Syed Kamrul Islam 3 Biomedical Algorithms for Wearable Monitoring 33 Su-Shin Ang and Miguel Hernandez-Silveira 4 Approaches and Techniques for Maintenance and Operation of Multisink Wireless Sensor Networks 89 Miriam Carlos-Mancilla, Ernesto L´opez-Mellado, and Mario Siller 5 Energy-Efficient Communication Solutions Based on Wake-Up Receivers 119 Heikki Karvonen and Juha Pet¨aj¨aj¨arvi 6 All-Digital Noise-Shaping Time-to-Digital Converters for Mixed-Mode Signal Processing 153 Fei Yuan v vi Table of Contents 7 Power-EfficientCMOSPowerAmplifiersfor Wireless Applications 183 Haoyu Qian, Suraj Prakash, and Jose Silva-Martinez 8 Injection-Locking Techniques in Low-Power Wireless Systems 207 Yushi Zhou and Fei Yuan 9 Low-PowerRFDigitalPLLswithDirect Carrier Modulation 247 Salvatore Levantino and Carlo Samori 10 Frequency Synthesis Technique for 60 GHz Multi-Gbps Wireless 285 TeerachotSiriburanon,HanliLiu,KenichiOkada, Akira Matsuzawa, Wei Deng, Satoshi Kondo, Makihiko Katsuragi, and Kento Kimura 11 60 GHz Multiuser Gigabit/s Wireless Systems Based on IEEE 802.11ad/WiGig 319 Koji Takinami, Naganori Shirakata, Masashi Kobayashi, Tomoya Urushihara, Hiroshi Takahashi, Hiroyuki Motozuka, Masataka Irie, and Kazuaki Takahashi 12 AdaptiveandEfficientIntegratedPowerManagement Structures for Inductive Power Delivery 345 Hesam Sadeghi Gougheri and Mehdi Kiani Index 375 List of Figures 1.1 Simplified IoT system block diagram. . . . . . . . . . . . . . 2 1.2 The 5-layer model in relation to WiFi. . . . . . . . . . . . . 3 1.3 Wake-up radio concept. . . . . . . . . . . . . . . . . . . . . . 4 1.4 Superregenerativereceiver:(a)blockdiagramand(b)internal waveforms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 1.5 Wake-up radio MAC layer requirement. . . . . . . . . . . . . 6 1.6 Thread specification in the 5-layer model. . . . . . . . . . . . 7 2.1 Publications of papers on wearable devices indexed by Scopus in the last 20 years. . . . . . . . . . . . . . . . . . . . . . . . 15 2.2 Classification of crystal symmetry and flexible polymer sub- strate.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17 2.3 Readout circuits for current mode (left) and voltage mode (right). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 2.4 System-level block diagram of an IR-UWB transmitter. . . . 20 2.5 Schematic of the impulse generator block.. . . . . . . . . . . 21 2.6 Signals in different stages of the delay block. . . . . . . . . . 21 2.7 BER simulation using MATLAB(cid:114) for OOK modulation. . . 22 3.1 An example of a feature space and the corresponding hyper- plane, derived from the support vector machine [6]. F1 and F2 are two different features. . . . . . . . . . . . . . . . . . . 37 3.2 A back-propagated artificial neural network, with input x and output y. All of these nodes contain adjustable weights, to minimisetheerrorsbetweentheyandtheexpected outcomes.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39 3.3 A binary decision tree for arrhythmia classification, using features RMSSD and mean Normalised R–R interval (NN) (correctedbeat-to-beatintervals).T1–T8representthresholds derived from the C4.5 algorithm [10]. . . . . . . . . . . . . . 40 3.4 State space diagram for the hidden Markov model. . . . . . 43 3.5 Examples of ECGs from a healthy patient (a) [14] and a patient suffering from atrial fibrillation (b) [15]. . . . . . . . 46 3.6 The chart at the top shows a signal segment containing an ECG QRS complex, while the chart at the bottom shows the compacted spectrum of the DCT. . . . . . . . . . . . . . . . 49 vii viii List of Figures 3.7 (a) DCT-based encoder. (b) DCT-based decoder. . . . . . . 50 3.8 Illustration of the Lagrangian trade-off curve. . . . . . . . . 52 3.9 An indirect calorimeter. . . . . . . . . . . . . . . . . . . . . . 54 3.10 Thebranchequationmodelforcalorieenergyexpenditure estimation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55 3.11 (a) HR and corresponding E. (b) AAC and corresponding E. The dataset comprises of data collected from an indirect calorimeter, corresponding with HR and AAC values, from eight subjects. . . . . . . . . . . . . . . . . . . . . . . . . . . 57 3.12 Bar chart of overall accuracy for a floating-point, fixed-point versions of the calibrated branch equation model in compari- son with indirect calorimetry.. . . . . . . . . . . . . . . . . . 59 3.13 MATLAB graphical user interface (GUI) used for data selec- tion and the specification of prior distribution. . . . . . . . 61 3.14 (a) MATLAB graphical user interface (GUI) used for feature space visualisation. (b) Probe used to investigate the nature of the data point and trace it back to its point of origin . . . 62 3.15 IP signals simultaneously recorded with SensiumVitals(cid:13)R and a reference bedside monitor. The top figure corresponds to a good quality respiration signal. Respiration events (inspira- tionandexhalation)canbeseeninthewaveformsduetotheir quasi-periodic cyclical nature so that valid and accurate RRs can be obtained. In contrast, the bottom figure shows poor quality IP signals for both devices, which were severely cor- rupted by motion artefacts. It is evident that the periodicity of the signals is lost, and RRs are inaccurate and invalid. . . 67 3.16 Process for the development and evaluation of probabilistic machine learning models for inspection of respiration signals acquired with the SensiumVitals(cid:13)R patch. . . . . . . . . . . . 68 3.17 Two-dimensional logistic regression model. The top graph shows a rectilinear decision boundary with its 95% confidence intervalsthatseparatesvectorscorrespondingto‘goodquality’ from‘badquality’signals.Notethatbothclassesarenot100% linearlyseparable,assomeAvectorsoverlapthe‘goodregion’ and some B vectors overlap the ‘bad region’. The bottom-left plotcorrespondstotheROCanalysisforallthemodelscreated from all possible combinations of the eight features contained in the training dataset. . . . . . . . . . . . . . . . . . . . . . 71 3.18 (Right) separation hyperplane for 3D model fitted with a lin- ear function. Note that the hyperplane separates very well valid inputs (B) from invalids. (Left) A 3D model fitted with a quadratic function performing almost as good as its linear counterpart. Note that the separation hyperplane is now a parabolic surface. . . . . . . . . . . . . . . . . . . . . . . . . 72 List of Figures ix 3.19 The chart in the middle shows the RSSs derived from a tri-axialaccelerometer,andillustratesthesignalvariationcor- responding to the biomechanical movements of the stick fig- ure at the top; the figure at the bottom shows a sub-segment of the signal showing the pre-fall and fall phases, extracted from [51]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 3.20 Positionofahipmountedaccelerometerintheinitialreference standing position (a), sitting (b) and kneeling position (c), extracted from [51]. . . . . . . . . . . . . . . . . . . . . . . . 75 3.21 Top-level diagram of the fall detection algorithm: (a) Control flowdiagram(b)Structuraldataflowdiagram,involvingdata from a tri-axial accelerometer - A , A and A [51]. . . . . . 76 x y z 3.22 ROC analysis of the five different impact classification tech- niques, by [53] is licensed under CC by 2.0. . . . . . . . . . . 77 3.23 Data-flow diagram of the adaptive fall prediction algorithm. 78 3.24 Design and build flowchart for biomedical algorithms. . . . . 81 4.1 WSN classification. . . . . . . . . . . . . . . . . . . . . . . . 92 4.2 Centralized strategy. . . . . . . . . . . . . . . . . . . . . . . 94 4.3 Distributed strategy. . . . . . . . . . . . . . . . . . . . . . . 98 4.4 Routing protocol generalization. . . . . . . . . . . . . . . . . 100 4.5 Data aggregation and collection through the network. . . . . 102 4.6 Topology formed from an event detection. . . . . . . . . . . 103 4.7 Cluster-based formation. . . . . . . . . . . . . . . . . . . . . 105 4.8 Cluster-tree based formation. . . . . . . . . . . . . . . . . . . 107 4.9 Tree-based formation. . . . . . . . . . . . . . . . . . . . . . . 107 4.10 Ad hoc formation. . . . . . . . . . . . . . . . . . . . . . . . . 110 5.1 High-level architecture for a hierarchical network with hetero- geneous devices. . . . . . . . . . . . . . . . . . . . . . . . . . 122 5.2 Distributed heterogeneous network example. . . . . . . . . . 124 5.3 Principle for (a) synchronous duty-cycling, (b) asynchronous duty-cycling, and (c) wake-up radio-based MAC. . . . . . . . 126 5.4 Sensor node architecture for dual-radio approach. . . . . . . 127 5.5 Source-initiated mode of the GWR-MAC protocol.. . . . . . 128 5.6 Sink-initiated mode of the GWR-MAC protocol. . . . . . . . 129 5.7 Typicalwake-upreceiverarchitectures:(a)RFenvelopedetec- tion,(b)uncertain-IF,(c)matchedfilter,(d)injection-locking, (e) superregenerative oscillator, and (f) subsampling. . . . . 131 5.8 Comparison of wake-up receivers and their architectures. . . 133 5.9 Main differences between the WSN and the LPWAN. . . . . 134 5.10 Examples of hierarchical WSN architecture application areas and techniques. . . . . . . . . . . . . . . . . . . . . . . . . . 136 5.11 Network energy consumption comparison as a function of event per hour and duty cycle. . . . . . . . . . . . . . . . . . 140
Description: