AppliedCatalysisA:General373(2010)1–56 ContentslistsavailableatScienceDirect Applied Catalysis A: General journal homepage: www.elsevier.com/locate/apcata Review Ionic liquids and catalysis: Recent progress from knowledge to applications H. Olivier-Bourbigou*, L. Magna1, D. Morvan2 IFPLYON,De´partementCatalyseMole´culaire,Rond-pointdel’e´changeurdeSolaize,BP3,69360Solaize,France AR TI CLE I NFO ABS TRA CT Articlehistory: Thisreviewgivesasurveyonthelatestmostrepresentativedevelopmentsandprogressconcerningionic Received20May2009 liquids,fromtheirfundamentalpropertiestotheirapplicationsincatalyticprocesses.Italsohighlights Receivedinrevisedform11September2009 theiremerginguseforbiomasstreatmentandtransformation. Accepted6October2009 (cid:2)2009ElsevierB.V.Allrightsreserved. Availableonline12October2009 Keywords: Ionicliquids Biphasiccatalysis SupportedIonicLiquidCatalysis(SILC) Taskspecificionicliquids(TSIL) Proticionicliquids(PILs) Thermoregulatedionicliquids Biomass Lignocellulose Cellulose Contents 1. Generalintroduction................................................................................................ 3 2. Ionicliquids:properties,evolutionandnextgenerations................................................................... 3 2.1. Propertiesofionicliquids....................................................................................... 3 2.2. Awideningrangeofionicliquidsavailable......................................................................... 5 2.2.1. Generalremarks ...................................................................................... 5 2.2.2. Proticionicliquids(PILs)................................................................................ 7 2.2.3. (Multi)-functionalionicliquids........................................................................... 8 2.2.4. ChiralILs ........................................................................................... 10 2.2.5. Switchable-polaritysolvents(SPS)....................................................................... 11 2.2.6. ILsatthefrontierbetweenorganicandinorganicmaterials................................................... 11 Abbreviations: IL(s),ionicliquid(s);[BMI]+,1-butyl-3-methylimidazolium;[BMMI]+,1-butyl-2,3-dimethylimidazolium;[MMI]+,1-methyl-3-methylimidazolium;[HMI]+,1- hexyl-3-methylimidazolium; [OMI]+, 1-octyl-3-methylimidazolium; [AMI]+, 1-allyl-3-methylimidazolium; [AEI]+, 1-allyl-3-ethylimidazolium; [MI]+, 1-methyl-3-H- imidazolium; [BMPy]+, N-butyl-3-methylpyridinium; [BPy]+, N-butylpyridinium; [PrMI]+, 1-propyl-3-methylimidazolium; [BMP]+, N-butyl-N-methylpyrrolydinium; [PMP]+,N-propyl-N-methylpyrrolidonium;[NTf2](cid:2),bis(trifluoromethylsulfonyl)amide(CF3SO2)2N(cid:2);[OTf](cid:2),trifluoromethylsulfonateCF3SO3(cid:2);[OMs](cid:2),mesylateCH3SO3(cid:2); [Fm](cid:2),formateHCOO(cid:2);[Ac](cid:2),acetateCH3COO(cid:2);TPPTS,triphenylphosphinetrisulfonatesodiumsalt;TPP,triphenyphosphine;PEG,poly(ethyleneglycol);LAB,linearalkyl benzene;COD,1,3-cyclooctadiene;SWNT,singlewallcarbonnanotube;TSIL,taskspecificionicliquid;SILP,supportedionicliquidphasecatalysis;PSIL,polystyrene supportedionicliquids;SPS,switchablepolaritysolvent;PTC,phasetransfercatalysis;LSER,linearsolvationenergyrelationship;MD,moleculardynamics;DFT,density functionaltheory;QSAR,quantitativestructure–analysisrelationship;HDS,hydrodesulphurationprocess;MAO,methylaluminoxane;CIL,chiralionicliquid;PIL,proticionic liquid;DMSO,dimethylsulfoxide;DMAc,dimethylacetamide;PPN,bis(triphenylphosphorylidine)ammoniumcation;DBU,1,8-diazabicyclo-[5.4.0]-undec-7-ene;DABCO, 1,4-diazabicyclo[2.2.2]octane;REACH,registration,evaluationandauthorisationofchemicals;EINECS,europeaninventoryofexistingcommercialchemicalsubstances; EXAFS,extendedX-rayabsorptionfinestructure;ESI-MS,electrosprayionization-massspectrometric;NOESY,nuclearoverhauserenhancementspectroscopy;HOESY, heteronuclearversionoftheNOESYexperiment;ROESY,rotatingframeoverhausereffectspectroscopy. * Correspondingauthor.Tel.:+33478022889;fax:+33478022066. E-mailaddresses:[email protected](H.Olivier-Bourbigou), [email protected](L.Magna),[email protected](D.Morvan). 1 Tel.:+33478022886;fax:+33478022066. 2 Tel.:+33478023874;fax:+33478022066. 0926-860X/$–seefrontmatter(cid:2)2009ElsevierB.V.Allrightsreserved. doi:10.1016/j.apcata.2009.10.008 2 H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 2.3. LatestadvancesinthepreparationandpurificationofILs............................................................ 12 2.3.1. ThedifferentwaysofILspreparations.................................................................... 12 2.3.2. PurificationofILsandanalysisoftraceimpurities .......................................................... 13 3. Structureandself-organisationofILsatthesupramolecularlevel........................................................... 13 3.1. Solventpropertiesandsolventeffect............................................................................. 13 3.2. Structureandorganisation..................................................................................... 15 3.3. Towardamesoscopicorganisation .............................................................................. 16 3.4. Solute-ILsinteractions:whatimpactonorganicreactions?........................................................... 17 3.4.1. Interactionwithwater ................................................................................ 18 3.4.2. Interactionwitharomatichydrocarbon.Clathratebehaviour.................................................. 18 3.4.3. Interactionwithchiralsubstrates:inductionofchirality? .................................................... 19 3.4.4. Interactionwithacidandbase:towardnewscaleofacido-basicity ............................................ 19 3.5. Molecularmodelling.......................................................................................... 19 4. HowtheILscanaffectthecatalyticreactionspathway?................................................................... 20 4.1. Some‘‘unexpected’’effectsofILs................................................................................ 20 4.1.1. EffectofILsimpurities ................................................................................ 20 4.1.2. Effectofwaterandacidicprotons ....................................................................... 20 4.1.3. Effectofbases ....................................................................................... 21 4.1.4. ILsasadditives:surprisingeffect! ....................................................................... 21 4.2. Whenionicliquidsareinvolvedintheformationofmetalcomplexes.................................................. 22 4.2.1. Complexformationinvolvinganions..................................................................... 22 4.2.2. Complexformationinvolvingcations..................................................................... 23 4.3. ILsspeciallydesignedforcatalysis............................................................................... 25 4.3.1. Changeinmechanismpathwaybystabilisationofchargedtransitionstate,activespeciesorligands ................. 25 4.3.2. Solventfornon-chargedcatalysts........................................................................ 26 4.3.3. Solvent/stabiliserfornanoparticles....................................................................... 27 4.4. Ionicliquidsasmediumfor‘‘insitu’’spectroscopicinvestigations ..................................................... 28 4.5. Removingsulfurfromrefinerystreams........................................................................... 28 5. ConceptsforusingILsinhomogeneouscatalysis......................................................................... 28 5.1. MultiphasicILsystems........................................................................................ 29 5.1.1. Somechallengesandopportunitiesofmultiphasicsystems................................................... 29 5.1.2. UseofscCO asthetransportvectorforsubstratesandproducts .............................................. 29 2 5.1.3. Demonstrationofcontinuouscatlyticperformances......................................................... 30 5.2. Supportedionicliquidphasesystem(SILP)........................................................................ 31 5.2.1. ILssupportedonsolidinorganicsolid .................................................................... 31 5.2.2. ILssupportedonhybridorganic–inorganicmaterial......................................................... 32 5.2.3. ILssupportedonorganicpolymers....................................................................... 32 5.3. Switchablepolaritysolvents.................................................................................... 32 5.4. ThermoregulatedILs.......................................................................................... 34 5.5. Phasetransfercatalysis ....................................................................................... 34 6. Overviewofindustrialapplicationsandeconomicissues.................................................................. 35 6.1. Selectedexamplesofindustrial/pilotscaleapplicationsofILs......................................................... 36 6.1.1. Dimerizationandoligomerisationofolefins:ILassolventandNi-co-catalyst..................................... 36 6.1.2. Friedel-Craftsalkylationandacylationofaromatichydrocarbons:ILassolventandcatalyst......................... 37 6.1.3. Alkylationofolefinswithisobutane:ILassolventandacidcatalyst............................................ 37 6.1.4. Chlorinationandfluorinationreactions................................................................... 38 6.1.5. Ethercleavage....................................................................................... 39 6.1.6. Acidscavenging...................................................................................... 39 6.1.7. Hydrosilylation:ILassolventandnanoparticlestabiliser..................................................... 40 6.1.8. Isomerisation:ILasasolvent........................................................................... 40 6.1.9. Methanolcarbonylation ............................................................................... 40 6.1.10. Otherexamples...................................................................................... 41 6.2. Mainprocessengineeringchallengesandissues.................................................................... 41 6.2.1. ILstability,lifetimeandrecyclability..................................................................... 41 6.2.2. Safetyandenvironmentalissues:........................................................................ 42 7. ILsapplicationinthebiomasstransformationintofuelandchemicals ....................................................... 42 7.1. Processingoflignocellulosicandcellulosicmaterials................................................................ 43 7.1.1. Directsolventfordissolutionofcelluloseandsugars........................................................ 43 7.1.2. Treatmentoflignocellulosicmaterials.................................................................... 46 7.2. ApplicationsoftheuseofILsinthedissolutionofligno-cellulosicmaterials............................................. 48 7.2.1. Animprovementintheanalysisoflignocellulosicmaterial................................................... 48 7.2.2. Transformationofpoly-saccharidesinsugarsusingILs ...................................................... 48 7.2.3. Catalytictransformationofsugars....................................................................... 49 7.3. Transformationofvegetableoils................................................................................ 50 7.3.1. Transesterificationoftriglycerides:biodieselproduction ..................................................... 50 7.3.2. Methyloleatemetathesis............................................................................... 51 8. Generalconclusionandperspectives .................................................................................. 51 Acknowledgements................................................................................................ 51 References ....................................................................................................... 51 H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 3 1. Generalintroduction TheperformanceofanILwillstronglydependonthetechnologyin which it is implemented. They can be utilised in very different Ionic Liquids (ILs) have attracted rising interest in the last ways:homogeneous,multiphase,heterogeneous,inbiotransfor- decadeswithadiversifiedrangeofapplications(Fig.1).Thetypes mationsorinorgano-catalysis.Theyplayaspecificroleinallthese ofionicliquidavailablehavealsobeenextendedtoincludenew approaches. families and generations of ionic liquids with more specific and Evenmorethandiversity,anotherkeywordfortheend-useris targetedproperties.Thisexpandinginteresthasledtoanumberof prediction.Whenwillitbepossibletomoveaheadtorationaldesign reviews on their physico-chemicalproperties,the design of new ofionic liquids?Isit possibletopredict whichioniccombination families of ionic liquids, the chemical engineering and the wide results in a given set of properties? Most work towards under- range of arrangements in which ILs have been utilised (liquid standing and knowledge has been achieved on imidazolium phase, multiphase, immobilized on supports, ...) and pilot or cations, certainly the most popular cation but not the only one. industrialdevelopments[1]. NewfamiliesofILswithvariousothercationshavebeendeveloped theselastdecades.ILsarenottrivial.Theyaregenerallycomposed WhyILshaveattractedsomuchattentioninthelastfewdecades? of asymmetric and flexible ions, with components of highly differentsizesandshapes,andinvolvedifferenttypesofdominant Inadditiontothefactthattheyarenowcommerciallyavailable, interactions. Theoretical treatment and interpretations are com- there is a better understanding of the effect of ionic liquids plicated.However,itisimportanttohaveabetterunderstandingof (chemical and physical properties as well as engineering fluids). neat IL’s properties, and their properties and interactions with Consequently, ionic liquids have been used more widely and other species such as molecular species or metal complexes to efficiently, with better control over the overall process. The betterunderstandtheirroleincatalysis. introductionofstructuralfunctionalitiesonthecationicoranionic Theaimofthisreviewisnottoprovideanexhaustivelist(orstate part has made it possible to design new ILs with targeted oftheart)ofthewiderangeofcatalyticreactionsoccurringinILs. properties [2]. More recently, ILs appear to be the subject of Several good, recent reviews have already illustrated that point fundamentalpublicationsaimedatimprovingtheunderstanding (Table1).Thisreviewfocusesmainlyonrecentlypublishedmaterial. ofthesesolvents,predictingtheirphysico-chemicalpropertiesand Wehaverestrictedourselvestogiveasurveyonthelatest,most publicationsdescribingtheir use inincreasingly diverseapplica- representative developments and progress on ionic liquids and tions such as sensors, fuel cells, batteries, capacitors, thermal catalysis.ThisreviewalsocoversthedifferentaspectsofILs,fromthe fluids,plasticizers,lubricants,ionogels,extractantsandsolventsin knowledgewehaveofthesemediatotheuseoftheirpropertiesfor analysis, synthesis, catalysis and separation, to name just a few. catalysis,catalyticprocessesandengineering.Moreparticularly,the Somenewapplications,suchasenergeticcompoundsorpharma- followingarereported:(i)thedesignofnewgenerationsofILs:the ceuticalILs,arestillemerging.ILscanbeusedasmorethanjusta evolutionsandkeyevents(ageneralhistoryoftheILsisdescribedby alternative‘‘green’’solvents.Theydifferfrommolecularsolvents J. Wilkes [3]). (ii) fundamental properties of ILs: structure and bytheiruniqueioniccharacterandtheir‘‘structureandorganisa- organisation,IL-soluteinteractions,(iii)theIL’seffect:howILscan tion’’ which can lead to specific effects. They are tuneable, impacttheoutcomeofthereactionandhowitispossibletocontrol multipurposematerials. thereactionprocess,(iv)thediversityofILuseincatalyticprocesses: WhenreadingpapersonILs,oneofthekeywordsisdiversity. homogeneous, multiphase, heterogeneous, (v) comments on Diversity of anion–cation combinations, diversity of modes of industrial applications and commercial aspects of ILs: barriers to preparation, modes of purification and nature of impurities overcome? (vi) key events in environmental catalysis: this last (quality),diversityofproperties,diversityofmodeofuse,diversity chapterfocusesontherolethatILscanplayinthetreatmentand ofapplications.Thisisoneofthereasonswhyitissodifficultto transformationofbio-resourcesandinbio-processes. makegeneralisationsabouttheirphysicalpropertiesortheiruse. ThecontributionILsmaketohomogeneouscatalysishasmoreto 2. Ionicliquids:properties,evolutionandnextgenerations do with the enhancement of catalytic performances (activity, selectivity or new chemistry) and the possibility of catalyst 2.1. Propertiesofionicliquids separation and recycling by immobilizationin the IL-phase than with environmental concerns. They can act as solvents, as Consideringthebroadrange ofILs andapplications[46],itis multifunctional compounds like solvents and ligands, solvents difficult to generalise their properties and to report general andcatalysts,stabilisingagentsforthecatalystsorintermediates. tendencies. Sometimes the authors emphasise their differences Fig.1.EvolutionofILgenerations. 4 H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 Table1 described in open literature and can be easily found in a good GeneralreviewsonILs(from2003to2008). database (e.g. ‘‘ILThermo—managed by the US National Institute of Year Ref. Standards and Technologies)’’ [48]. They will not be reported in detailinthisreview—onlyalistofcriticalremarksisgivenbelow. General(catalysis) Task-specificILs 2004 [4] ILsincatalysis 2004 [5] (cid:3) Melting point: Data must be considered with caution as the CatalysisinILs 2006 [6] meltingpointofmanyILsmaybeuncertainastheycanundergo HomogeneouscatalysisinILs 2007 [7] supercoolingandbecauseofthepotentialpresenceofimpurities. CatalysisinILs 2007 [8] (cid:3) Volatility:FortypicalILs,normalboilingtemperatures(T ),which Transitionmetal-catalysedreactionsin 2007 [9] b non-conventionalmedia correlatewiththeirvapourpressureat1atmosphere,cannotbe ThepathaheadforILs 2007 [10] experimentally determined as ILs decompose at a lower ApplicationsofILsinthechemicalindustry 2008 [11] temperature. It has nevertheless been reported that ILs can be CatalystswithionictagandtheiruseinILs 2008 [12] distilledat200–3008Cbutundersignificantlyreducedpressure Specificreaction/topic(catalysis) andatverylowdistillationrate(<0.01gh(cid:2)1)[47].Thequestion PolymerizationprocessesinILs 2004 [13] is how ionic are ILs? The ionic nature (or ionicity) of ILs can Supportedionicliquidphase(SILP)catalysis 2006 [14] partiallyexplaintheirnegligeablevapourpressureintheliquid OxidationsoforganiccompoundsinILs 2006 [15] FunctionalisedimidazoliumsaltsforTSILs 2006 [16] state, which distinguishes them from molecular solvents. andtheirapplications Quantitative descriptions of the ionicity would be a useful OlefinhydroformylationinILs 2007 [17] indicator for characterizing ILs. This has tentatively been done BrønstedacidsinILs 2007 [18] usingtheeffectiveconcentrationofions[49]. EnantioselectivecatalysisinILs 2007 [19] (cid:3) Nonflammability:MuchoftheinterestforILshasbeencentredon AsymmetricsynthesisinILs 2007 [20] LanthanidesandactinidesinILs 2007 [21] their possible use as ‘‘green’’ alternatives to volatile organic ILsinseparations 2007 [22] solvents,mainlybecauseILsareconsideredasnon-volatileand OlefinmetathesisinILs 2008 [23] consequently non-flammable at ambient and higher tempera- Palladium-catalysedreactionsinILs 2008 [24] tures. However there are many other potential solvents that ILstowardssupercriticalfluidapplications 2007 [25] ILsinheterocyclicsynthesis 2008 [26] meet these criteria but that have not been subject to such ApplicationsofchiralILs 2008 [27] interest. It is worth mentioning that it is not because they are SynthesisandapplicationofchiralILs 2008 [28] non-flammablethatILscanbeusednearaheatsource.ILsare ElectrochemicalreactionsinILs 2008 [29] combustible.Theyevencanbefine-tunedforenergeticcontent Bio-catalysis/biomass andreplacehydrazineanditsderivatives[50,51]. BiocatalysisinILs—advantagesbeyondgreentechnology 2003 [30] (cid:3) Thermalandchemicalstability:Theonsetofthermaldecomposi- BiocatalytictransformationsinILs 2003 [31] tion calculated from fast thermogravimetric analysis (TGA) ILs:Greensolventsfornonaqueousbiocatalysis 2005 [32] indicateshighthermalstabilityformanyILs,generally>3508C. ChemicalandbiochemicaltransformationsinILs 2005 [33] Biocatalysisinnon-conventionalmedia(ILs,scFluids.) 2007 [34] However,lowervaluesarefoundforlong-termstabilitywhichis BiocatalysisinILs 2007 [35] importanttoconsiderwhenILsareusedincatalyticprocesses. Ionicgreensolventsfromrenewableresources 2007 [36] PhosphoniumILs with[NTf ](cid:2)or [N(CN) ](cid:2)anionsdecompose 2 2 OxidoreductasebehaviourinILs 2008 [37] completelytovolatileproductsinasinglestep.Thedegradation BiotransformationsandorganocatalysiswithILs 2008 [38] DissolutionandfunctionalmodificationofcelluloseinILs 2008 [39] products indicate that Hofmann elimination process and/or dealkylation reactions occur. On the contrary, ILs based on Synthesis(inorganic&organic) nitrogencationsdonotdecomposecompletelyandgeneratechar Metal-containingILsandILscrystalsbasedon 2005 [40] imidazoliummoiety residue(cyanogroupsarepronetopolymerization)[52]. ILssolventpropertiesandorganicreactivity 2005 [41] (cid:3) Conductivity and electrochemical window: ILs conductivity is an ApplicationofzeolitesinsupercriticalfluidsandILs 2007 [42] interestingpropertytoconsiderasILscanplaytheroleofboth Thephosphorusaspectsofgreenchemistry 2007 [43] solventsandelectrolytesinelectrochemicalreactions.ILsexhibit ApplicationofILsinpolymerscience 2009 [44] broadrangeofconductivitiesspanningfrom0.1to20mScm(cid:2)1.In Analysis generalhigherconductivitiesarefoundforimidazolium-basedILs ILsinchromatographicandelectromigrationtechniques 2008 [45] incomparisonwiththeammoniumones.Manyfactorscanaffect their conductivity, such as viscosity, density, ion size, anionic andnottheirsimilarities.Someofthepropertiesdescribedsome chargedelocalization,aggregationsandionicmotions[29].Strong years ago are now subject to controversy: e.g. electrochemical ion-pair associations have been invoked in the case of [NTf2](cid:2) window; long-term thermal stability (thermal stability was basedILs,tounderstandtheirlowerconductivityincomparison certainly overestimated in the past); polarity; volatility (some with [BF4](cid:2) based ILs [53]. Concerning their electrochemical ILsaredistillableundercertainconditions[47]).Whyallofthese window,itistypicallyfoundintherange4.5–5V,whichissimilar conflictingresults?Becauseanevolutiontowarda betterunder- to or slightly larger than that found in conventional organic standing of these media, better characterization with improved solvents,butlargerthanthatofaqueouselectrolytes.Quaternary knowledge and quantificationof theirimpurities(ionchromato- ammonium is generally more stable toward reduction than graphy, ICP-MS) which are well-known to affect the thermo- imidazoliumwhichcan lead tothe formationof N-heterocyclic physicalpropertiesofILs,havebeenachievedinrecentyears.The carbenes. The challenge here is still to design ILs with wide differentexperimentaltechniquesusedandtheestimationofdata electrochemicalwindowalongwithgoodelectricalconductivity. uncertaintymayalsohaveinfluencedthediscrepanciesintermsof (cid:3) Density:AconsiderableamountofdataonthedensityofILsare physico-chemical properties. However, ILs have widely accepted available in the literature [54]. ILs are generally denser than generic properties. They consist entirely of ions (Scheme 1). For either organic solvents or water, with typical density values example,in[BMI][PF ]whichmeltsat128C,theionicconcentra- rangingfrom1to1.6gcm(cid:2)3.Thedensityofionicliquidsversus 6 tion is 4.8mol/L. The melting point of ILs should be less than pressureandtemperaturehasalsobeenmodelled[55]. 1008C, even if this is an arbitrary temperature limit, and their (cid:3) Viscosity: From the engineering aspect, the viscosity of ILs can ionicity should be >99%. All these generic properties have been affecttransportpropertiessuchasdiffusionandmaybeanissue H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 5 Scheme1.Maincationsandanionsdescribedinliterature. inpracticalcatalyticapplications.Itplaysamajorroleinstirring, ‘‘chemical’’properties.ProticILsandBrønstedand/orLewisILs mixing and pumping operations. The viscosity of many ILs is canbeusedasacidcatalystsandsolvents.BasicILshavealso relativelyhighcomparedtoconventionalsolvents,onetothree recently been reported as playing a dual role of solvent and orders of magnitude higher. For a variety of ILs it has been base-catalyst with a particular interest and potential for reportedtorangefrom66to1110cPat20–258C.Thedesignof celluloseacetylation[63].ILsbearingafunction(phosphorous, lessviscousILsisstillachallengeformanyapplications[56]. nitrile,imine,amine,alkyne)havebeenappliedasbothligands (cid:3) Polarity:Thepolarityisoneofthemostimportantpropertiesfor andsupportsforimmobilizingandrecyclingtransitionmetal characterizingthesolventeffectinchemicalreactions[57].Itis homogeneous catalysts [64] or as protective agents and also the property which has probably been the most widely solvents for the stabilisation of metal nanoparticles. ILs discussed in the case of ILs. Why? Because there is no single supportedorgano-catalysts(suchasprolineasachiralcatalyst parameter and direct measurement that can characterize IL inasymmetricsynthesis)havebeendevelopedtoimprovethe polarity.Solvatochromicdyescanbeusedtodetermineempirical recovery of the catalyst which is often used in substantial polarityparametersbuttheseparameters(Kamlet-Taftequation) quantities[65].ChiralILs,suchassolventsandchiralinducting areprobablynottrulyindependentontheprobemoleculeused. agents,havebeenmodifiedinvariousways,thechiralitybeing ThedifficultyinthecaseofILsistofindasuitablesolubleprobe incorporatedonthecationicoranionicpartoftheILs. which measures the polarity parameters as independently as (2) Thetuneabiliyofcombinationsofcationsandanionsandthe possibleoftheotherinfluencesofthesolvent[58,59]. possibility to achieve modification of the cation and/or the (cid:3) Toxicityandbiodegradability[50,60]:Theearlyclaimsofthelow anion part offer access to ILs with targeted properties. For toxicity and biodegradability of ILs has often been reduced to examples, the hydrophilicity/hydrophobicity flexibility, the theirnegligiblevapourpressurewhich,ofcourse,isnotrealistic. decreaseofILsviscosity,andtheincreaseofILsstabilityarestill Ithasbeenconfirmedthatcommonlyusedionicliquidsarenot challenging targets. [NTf ](cid:2) and [N(CN) ](cid:2) anions already 2 2 easily biodegradable. But should this be a major limitation to appearasgoodcandidatestogetILswithlowerviscosity.The theiruseonindustrialcases? replacement of alkyl group on the imidazolium by more (cid:3) Surfacetension:Ithasbeenthetopicofarelativelyminornumber flexibleethergroupwasalsoawaytodecreasebothviscosity of studies. ILs have relatively moderate surface tensions andmeltingpoint(Scheme2).Thereplacementofalkylgroups comparedtoorganicsolvents[61]. by oligoether groups has been shown to decrease the ionic liquid’s viscosity significantly. This effect has been demon- Forindustrialimplementation,someILpropertiesmustbe investi- stratedbothforsubstituentsattheanion(suchassulfate)[66] gatedunderrealprocessconditions.Ascreeningofsomeproperties such as compressibility has been examined under long-term conditionsandunderhighpressure[62].Howcantheybecompared toconventionalsolvents?Fig.2givesatentativequalitativedescription of ILs compared to alternative solvents, in terms of polarity and volatility. 2.2. Awideningrangeofionicliquidsavailable 2.2.1. Generalremarks ThenumberofILshasexpandedexponentiallyrecentyears.A compilationofallthedescribedcationsandanionsisnotpossible. The main reviews can provide an overview. Many diverse motivations can explain the design of new IL families. Some of themaredescribedinthefollowingpoints. (1) Agreatdealofattentionhasbeendevotedto(multi)functional ILs (often termed task-specific ILs) aimed at using synergic Fig.2.Typicalpolarityandvolatilitycharacteristicsofalternativesolvents. 6 H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 Scheme2.ILswithtargetedproperties(decreaseviscosityanddensity). Scheme3.NewmethimazolebasedILs. andforsubstituentsatthecation(suchasPEG-functionalised is replaced with ILs based on dicyanamide anions, have been imidazolium dialkylphosphates) [67]. Novel ILs with Si proposed.ItisexpectedthattheseILscanbefine-tunedforbetter substitutedcationswerealsoreportedandpresentareduction energy content and physical properties [51]. ILs such as ofviscositythankstoamoreflexiblesidechainthananether dialkylimidazolium formate were produced as liquids having [68]. This may be important since mass transfer may be strong hydrogen bond accessibility. They are good solvents for important, reaction rate can be increased by reducing the polysaccharidesdissolution[77] undermildconditionsand high viscosityoftheILs[69]. concentrations(Section7.1.1). TherehasbeenanincreasedinterestforILsthatpresentbetter (3) Costandbiodegradabilityhavealsobeenamainconcernand inertness under reaction conditions. The hydrolysis of [PF ](cid:2) or newfamiliesofILsderivedfromrenewablefeedstockorfrom 6 [BF ](cid:2) anions to generate HF in situ has been the object of ‘‘lowcost’’startingmaterialshavebeendescribed(Scheme5). 4 numerousreports.Reactionscatalysedbyproticacidshaveoften These‘‘Bio-ILs’’areentirelycomposedofbiomaterials[78].An beendescribedin[PF ](cid:2)basedILs,probablythankstothepresence example is given by the development of the ‘‘deep eutectic 6 of HF. The formation of transition metal fluoride under certain mixtures’’ liquid systems based on chloline chloride [79] for conditionshasalsobeenobserved[70,71].Theionicliquidbased whichthequalificationof‘‘ionicliquids’’isstillthesubjectof onthe[(C F ) PF ](cid:2)anionhasbeenrecentlyproposedasamore controversies. Choline can be used as alternative cation in 2 5 3 3 chemicallystablealternativeto[PF ](cid:2)[72]. combination with suitable anion to generate ILs (choline 6 TheactivationoftheC(2)-Hoftheimidazoliumtoleadtothe salicylate melts at 508C and was described in 1960). The N-heterocycliccarbene(NHC)inpresenceofbaseisalsolargely physicalproperties(viscosity,meltingpoint,thermalstability, described[73].Consequently,increasedinteresthasbeenfound polarity)ofdifferentcarboxylateanionssuchasacetate,tartrate, in phosphonium ILs because of their higher stability under lactate,succinate,glycolate,maleatecoupledwithcholinecation basic conditions, such as in Grignard reactions [74]. To protect have been described. Surprisingly glycolate presents a Tm of the acidic C(2)-H, 2-methylimidazole based ILs are often used. 388C. The thermal stability range of the series is 183–2238C By analogy, methimazole based ILs have been described in [78].Themaleategivesmoderateviscosity.OtherinterestingILs whichtheC(2)protonisreplacedbyathiollinkage(Scheme3) based on choline cations have been prepared by direct [75]. neutralisationofcholinehydroxidewithdifferentaromaticor The latest applications of ILs concern ILs with biological cyclicaliphaticcarboxylicacids(Scheme6).Surprisingly,some properties (Scheme 4) [76]. Hypergolic fuels in which hydrazine oftheseILsshowlowTgandTm.Thebiodegradabilityproperties H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 7 Scheme4.ExamplesofILswithtargetedfunctions. Scheme5.Cost-effectiveILs. oftheseILshavebeenreported[80].Veryrecently,itwasshown (5) ILs recyclability [84] becomes one of the main issues when thattheincorporationofestersidechainmoietyonpyridinium process developments are envisioned: distillable ILs (under ornicotiniumcationcouldleadtobiodegradableILscontraryto relativelynormalpressureandtemperatureconditions)orILs thepyridiniumanaloguesILs[81]. presentinglowthermalstabilityhavebeendesigned.TheseILs (4) New materials have been developed using imidazolium as cancontainaweaklybasicanionandacationformedfroma backbonetoaccesstofunctionalsilicagelsorcarbonnanotubes tertiary amine and an exchangeable proton (Scheme 7). By withflexibleproperties[82].TheILisimmobilizedonthesolid distillation,theneutralacidorbase(ifvolatileenough)canbe supportbycovalentbonds generallybetweenthesilylgroup separatedfromtheionizedspecies.Theycansubsequentlybe andtheimidazoliumcation.Theimmobilizationofmetalions recombinedtoreformtheIL.Thereisavastnumberofcation– on silica surface offers a novel class of materials where the anioncombinationofsuchproticILs.CarbamatebasedILsform environmentofthemetaliscomparabletothatfoundinofthe anotherclassofdistillableILs(seeswitchablesolvents).Each type[BMI] [MX ][83]. applicationrequiresspecificproperties,thereisnoILsthatcan 2 4 satisfyallofthem.Wewillfocushereonthelastdevelopments. 2.2.2. Proticionicliquids(PILs) WhileoneofthefirstIL,describedin1914byWalden[85],wasof ‘‘the protictype’’[EtNH ][NO ](withamp=12.58C,describedin 3 3 nearly all reviewson ILs!), aproticILs largely dominatethe open literature due to their inertness relative to organometallic com- poundsandtheirpotentialofapplications,particularlyincatalysis. However,therehasbeenaresurgenceofinterestfortheseProticILs essentially because of their great potential for proton transfer applicationsinfuelcelltechnologies.AreviewwaswrittenbyPoole includingtheuseoftheseProticILsinchromatography[86].Someof theseILspresentlowmeltingpoints(wellbelow1008C)andhigh conductivities(over10(cid:2)2Scm(cid:2)1at1308C)[87].Mostofthenon- proticILsaresynthesisedbytransferringanalkylgrouptothebasic nitrogensitethroughS 2reactions.ProticILsareformedthrough N Scheme6.‘‘Bio’’ILs. directprotontransferfromaBrønstedacidtoabase(oraBrønsted 8 H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 Scheme7.ProticILssynthesisedbydirectprotonation(X(cid:2)=[NTf2](cid:2),[CF3SO3](cid:2),[CF3CO2](cid:2),[CH3SO3](cid:2),[HCOO](cid:2),[HSO4](cid:2),[H2PO3](cid:2)). base).Theypresenttheadvantageofbeingcost-effectiveandeasily prepared as their formation does not involve the formation of residualby-products.ExamplesofProticILsaregiveninScheme7 [88,89].ManyoftheseProticILsinvolveverystrongacids,suchas HNTf ,andhencetheequilibriumisheavilyshiftedtotherightthus 2 Scheme8.N,N-dimethylethanolammoniumformateILs. producingILsascompletelyionicsalts.TheseILsaregenerallyliquid atroomtemperature. NMR measurements show that the N–H proton is not labile, low temperatures compared with their alkylated homologues whichtendstoindicatethattheseILscannotbereallyconsidered while this property has been advanced as an advantage for as Brønsted acids [90]. The acidic properties of these ILs could recycling. ratherbeascribedtothepresenceofresidualacidinthemedium AnotherinterestingexampleofProticILsisbasedontheuseof comingfromthesynthesis.Thepurityhastobecheckedproperly hydrophilic monodispersed and hyperbranched dendrimer poly- byamoresensitivemeanthanNMR.Inthecaseofweakacid,such mers base such as polyamidoamine (Fig. 3). Protonation of this as acetic acid, the neutralisation reaction will reach a point of polymerwithBrønstedacid,followedbymetatheticexchangeof equilibrium.The‘‘completeornot’’ionicityofthesemixtureshave anionwith[NTf ](cid:2)leadstotheformationofanhydrophobicILthe 2 been discussed by different groups and the challenge is still to low T of which being ascribed to the flexible nature of the m provideanunambiguousmeasurementofthisdegreeofionization, dendritic backbone (T =(cid:2)2.58C). Conductivity and thermal m since the values for equilibrium constants are not known under degradation (near 3508C) were determined. This IL, beside its non-aqueousconditions[91].Theseliquidscanprobablybebest use as proton conductive electrolytes, could be well suited for describedas‘‘liquidmixtures’’ofionicandneutralspecies.Ithas particlesencapsulation[95]. beensuggestedthattobeclassifiedasILs,accordingtoaformal BrønstedILscanbeclassifiedbesidesthePILs.Anoverviewon definition,theproductsmustbe>99%ionized,andthusacareful theseILsincorporatingcarboxylicestersandacidgroupsandtheir selectionofacidsandbases(basedonpK )isrequired[92]. zwitterionic counterpart has been written in 2004 [96]. Another a Thecaseofproticbases(suchasdialkylamines)hasalsobeen recentreviewgivesanoverviewonthedifferentBrønstedILsand studied (Scheme 8). In 1:1 mixtures, the boiling point is usually theirapplicationsinorganicsynthesisandcatalysis[18]. much higher than the average value of the acid and the base precursors. This may suggest that significant and fast proton 2.2.3. (Multi)-functionalionicliquids transferbetweenacidandbasemoleculesoccurs[93]. Recently, ILs based on different cations and anions bearing One can predict a growing interest in near future in ILs with functionalgroupshavebeentheobjectofseveralrecentreviews ‘‘dissociable protons’’ not only as potential solvents but also for [12,16,96–100]. theirdifferentpropertiesandbehaviours,theirabilitytoformH- bonds (proton donor and acceptor) and their use to build a 2.2.3.1. Solvent and acid or base function. Acidic and basic ILs hydrogen-bond network [94]. However, a limitation of these representnewclassesofILs(Scheme9).Theacidorbasicfunction protonatedimidazoliumsaltsisthattheydecomposeatrelatively canbeattachedeitherontheanion,eitheronthecation[63].ILs Fig.3.ILsbaseddendrimerpolymersbase(reprintedwithpermissionfrom[95].Copyright2009AmericanChemicalSociety). H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 9 Scheme9.AcidandbasicILs. containingpolynuclearmetallicanionssuchaschloroaluminates, ILs,eitheronthecation,eitherontheanion(Scheme11).Byadding havebeenknownforalongtimefortheirpotentialLewisacidity CO pressure to the solutions, the basicity can be significantly 2 andsuperacidityinpresenceofprotons.Theyhavebeenextended reduced.ThebasicitycanberepeatedlyrecoveredbyremovingCO 2 tootherpolynuclearanionsthatarestableinpresenceofwaterand bybubblingN totheILs.Thissimpleandreversiblemethodcould 2 oxygen such as chloroferrate or chlorozincate. The chloroferrate havepotentialapplicationsindifferentfields[113].Further,some anionshavebeenassociatedwith[NEt H]+togeneratecheapand basic ILs containing biodegradable components, including ILs 3 easy to make acidic catalysts. Interestingly,Brønsted acidity can derivedfromnaturalaminoacidshavebeendeveloped[113]. alsobeintroducedbyadditionofBrønstedacidssuchasHForHCl Finally, ILs synthesised by the reaction of [RMI][OH] with intohalidebasedILs.Thisisawaytoreducethevolatilityofthe differentpoly-acidssuchasoxalicacid,malicacid,phthalicacid, acid bysupporting it intheILsthroughtheformationofX(HX) tartaricacid.canbementioned.Accordingtothequantityofacid n type anion ([X](cid:2)=[F](cid:2) or [Cl](cid:2)) [101]. The species [HCl ](cid:2), added,theseILscandisplayacertainaciditylevel.Theyhavebeen 2 [H Cl ](cid:2), and [H Cl ](cid:2) are also known to form when Brønsted usedasbuffersinpHsensitivecatalyticreactionforcontrollingthe 2 3 3 4 acidsaredissolvedinchloride-richchloroaluminateionicliquids acidity in non-aqueous media. The interest is that they may [102,103].Butsomeleachingoftheacidinpresenceofanorganic presentsolubilisationpropertiesinorganicsolvents[114]. phasecanbeexpected. InthecaseoftheseacidorbasicILs,itisworthemphasisingthat Alkanesulfonicorcarboxylateacidgroupshavebeencovalently thepresenceofimpurities,suchaswater,halide,organicbasesor tethered to different cations such as imidazolium, benzimidazo- acidsortracesofsolvents,mainlycomingfromthesynthesisofthe lium [104], pyridinium [105], ammonium, or phosphonium tethered sulfonic acid tosylate [106]. An interesting IL has been described with the acidity linked to a quaternary ammonium ([Me N-(CH ) -CO H][X]),associatedwiththe[NTf ](cid:2)anion,this 3 2 2 2 2 compoundhasameltingpointof578C.Itisknowntosolubilise metaloxide[107]. ThehydrogenatomintheC(2)-positionofthedialkylimidazo- liumcationcanalsobeproposedassourceofacidity.Forexample,N- heterocyclic carbenes have been electrogenerated by cathodic cleavageofthe C(2)-hydrogenbond of imidazolium-based room- temperatureionicliquids.Thesecarbenesprovedtobequitestable basesthatcanbeusedforthedeprotonationofbromoamines[108]. Basic ILs have been less developed than acidic ones. Amine organicbaseshavebeentetheredtoILcations.ThesefunctionalILs Scheme10.ExamplesofbasicILs. werefirstlysynthesisedtocaptureCO [109,110].Mono-charged 2 diamine based ILs which incorporate Lewis basicitysite (DABCO type) on the cation with both thermal stability and low melting pointcanbeobtainedwhenassociatedwith[NTf ](cid:2)anion(Scheme 2 10)[111,112]. One interesting concept has been described to switch the basicityofILs.Thisisachievedbyusingamino-groupcontaining Scheme11.ExampleofswitchableLewisbasicILs. 10 H.Olivier-Bourbigouetal./AppliedCatalysisA:General373(2010)1–56 Scheme12.FunctionalILsasligandsandsupportsfortransitionmetalcomplexes. ILs, can dramatically modify their acido-basic properties. The 2.2.4. ChiralILs determinationofthelevelofacidityoftheseILshasmostoftime The number of publications dealing with chiral ILs (CILs) not been determined which can sometimes lead to misunder- grew rapidly [28]. The source of chirality can be provided standingintheroleoftheILs. either on the cation, on the anion or both on anion and cation (Scheme 13). 2.2.3.2. Full-sizeimage. AlargerangeofCILshavebeenpreparedbasedonchiralamino- Solventandligand. Inmultiphasecatalysis,themainchallengeisto acids anions and ammonium, imidazolium and phosphonium recyclethecatalyst,tomaintainthetransitionmetalintheILphase cations[116,117].Besideimidazolium,guanidiniumcationshave and to prevent its loss by leaching on workup. The number of also opened the opportunity to create a new family of chiral ILs described tagged ligands is huge and their field of applications basedonnaturalchiralanions.TheapplicationsoftheseCILscanbe covernearlyallcatalyticreactions.Greatprogress,especiallyinthe found in asymmetric catalysis, but also in spectroscopic and organic synthesis of tagged ligands, has been achieved (Scheme chromatographicapplications.Inasymmetricsynthesis,itisoften 12).Ionicphosphorusligandsarethesubjectofongoingresearch believedthatCILscanbeusedaschiralsolventsandassoleinducer fordifferentcatalyticreactions.ILsopenanewfieldfortheuseP–O ofchiralityduetotheirpolymer-likebehaviourandpotentialhigh basedligands,rarelyusedinwaterbecauseoftheirsensitivityto degree of organisation. However, very few results are reported hydrolysis.Almostadozenofcationicphosphiteligandshavebeen whichdemonstratesuchpotential.Thefirstresultwasreportedby recently described, some of them could have been produced on the group Vo-Thanh in the Baylis-Hillman reaction [118] The IL quitelargescale[115]. usedisbasedonthechiralephedriniumcation(Scheme14).The Scheme13.ExamplesofchiralILs.