Ionic liquid performance in pilot plant contactors for aromatics extraction Citation for published version (APA): Onink, S. A. F. (2011). Ionic liquid performance in pilot plant contactors for aromatics extraction. [Phd Thesis 1 (Research TU/e / Graduation TU/e), Chemical Engineering and Chemistry]. Technische Universiteit Eindhoven. https://doi.org/10.6100/IR715602 DOI: 10.6100/IR715602 Document status and date: Published: 01/01/2011 Document Version: Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers) Please check the document version of this publication: • A submitted manuscript is the version of the article upon submission and before peer-review. There can be important differences between the submitted version and the official published version of record. People interested in the research are advised to contact the author for the final version of the publication, or visit the DOI to the publisher's website. • The final author version and the galley proof are versions of the publication after peer review. • The final published version features the final layout of the paper including the volume, issue and page numbers. Link to publication General rights Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights. • Users may download and print one copy of any publication from the public portal for the purpose of private study or research. • You may not further distribute the material or use it for any profit-making activity or commercial gain • You may freely distribute the URL identifying the publication in the public portal. If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please follow below link for the End User Agreement: www.tue.nl/taverne Take down policy If you believe that this document breaches copyright please contact us at: [email protected] providing details and we will investigate your claim. Download date: 31. Jan. 2023 Ionic Liquid Performance in Pilot Plant Contactors for Aromatics Extraction PROEFSCHRIFT ter verkrijging van de graad van doctor aan de Technische Universiteit Eindhoven, op gezag van de rector magnificus, prof.dr.ir. C.J. van Duijn, voor een commissie aangewezen door het College voor Promoties in het openbaar te verdedigen op woensdag 31 augustus 2011 om 16.00 uur door Steven Adrianus Ferdie Onink geboren te Tiel Dit proefschrift is goedgekeurd door de promotor: prof.dr.ir. A.B. de Haan Copromotor: dr.ir. G.W.Meindersma A catalgue record is available from the Eindhoven University of Technology Library. ISBN: 978-90-386-2538-6 Printed by: Gildeprint Drukkerijen, Enschede, The Netherlands Cover design: Ferdy Onink ©2011, Ferdy Onink The research described in this work has been financially supported by BASF. Voor pa en ma Promotie commissie Voorzitter Prof. dr. ir. J.C. Schouten Promotor Prof. dr. ir. A.B. de Haan Copromotor Dr. ir. G.W. Meindersma Leden Prof. Dipl.-Ing. Dr. techn. H.J. Bart Prof. dr. G.J. Witkamp Prof. dr. ir. M. van Sint Annaland Reserve-lid Prof. dr. J. Meuldijk Adviseurs Dr. U. Vagt Dr. ir. J. van der Schaaf “…if I could start again a million miles away I would keep myself I would find a way…” Johnny Cash, Hurt, (2002) Contents Summary ........................................................................................................................... viii 1 General Introduction ................................................................................................. 1 1.1 Overview .............................................................................................................. 1 1.2 Liquid-Liquid Extraction ...................................................................................... 2 1.2.1 Aromatics Extraction ................................................................................... 3 1.2.2 Liquid-Liquid Extraction Equipment .......................................................... 3 1.2.3 Rotating Disc Contactor .............................................................................. 5 1.2.4 Pulsed Disc and Dougnut Column ............................................................... 5 1.2.5 Kühni Column ............................................................................................. 6 1.3 Room Temperature Ionic Liquids ........................................................................ 7 1.4 Objectives and Structure of Thesis ....................................................................... 9 1.5 References .......................................................................................................... 11 2 Modeling of a Rotating Disc Contactor .................................................................. 16 2.1 Abstract .............................................................................................................. 16 2.2 Introduction ........................................................................................................ 16 2.3 Modeling Approach ........................................................................................... 17 2.3.1 Mass Balances ........................................................................................... 19 2.4 Hydraulic Characteristics ................................................................................... 20 2.5 Hold-up .............................................................................................................. 22 2.6 Axial Dispersion Coefficient .............................................................................. 23 2.6.1 Axial Dispersion in the Continuous Phase ................................................ 24 2.6.2 Axial Dispersion in the Dispersed Phase ................................................... 24 2.7 Mass Transfer Coefficient .................................................................................. 25 2.7.1 Single Drop Continuous Phase Mass Transfer Coefficient ....................... 25 2.7.2 Single Drop Dispersed Phase Mass Transfer Coefficient .......................... 27 2.7.3 Mass Transfer Coefficients in an Extraction Column................................ 28 2.8 Specific Surface Area ......................................................................................... 29 2.9 Sauter Mean Drop Diameter .............................................................................. 30 2.10 Operating Regime .............................................................................................. 32 2.11 Conclusions ........................................................................................................ 35 2.12 Nomenclature List .............................................................................................. 35 2.13 References .......................................................................................................... 37 3 Liquid-Liquid Equilibria and Physical Properties of the Ternary Systems n- Heptane + Toluene + [4-Mebupy]BF and [3-Mebupy] [DCA] ..................................... 42 4 3.1 Abstract .............................................................................................................. 42 3.2 Introduction ........................................................................................................ 42 3.3 Experimental Section ......................................................................................... 43 3.3.1 Chemicals .................................................................................................. 43 3.3.2 Liquid-Liquid Equilibrium Measurements ................................................ 44 3.3.3 Analysis ..................................................................................................... 45 3.3.4 Density Measurements .............................................................................. 45 3.3.5 Viscosity .................................................................................................... 46 3.3.6 Interfacial Tension ..................................................................................... 46 3.4 Results and Discussion ....................................................................................... 47 3.4.1 Liquid-Liquid Equilibrium Measurements ................................................ 47 3.4.2 Density ...................................................................................................... 50 3.4.3 Viscosity .................................................................................................... 52 3.4.4 Interfacial Tension ..................................................................................... 56 3.5 Conclusions ........................................................................................................ 59 3.6 Nomenclature List .............................................................................................. 60 3.7 References .......................................................................................................... 61 4 Solvent Comparison in a Rotating Disc Contactor................................................ 64 4.1 Abstract .............................................................................................................. 64 4.2 Introduction ........................................................................................................ 64 4.3 Experimental Section ......................................................................................... 65 4.3.1 Materials .................................................................................................... 65 4.3.2 Analysis ..................................................................................................... 66 4.3.3 Experimental Setup ................................................................................... 67 4.3.4 Model ........................................................................................................ 68 4.3.5 Column Operation and Characterization ................................................... 68 4.4 Results and Discussion ....................................................................................... 75 4.4.1 Hydraulic Characteristics .......................................................................... 75 4.4.2 Mass Transfer ............................................................................................ 88 4.5 Conclusions ........................................................................................................ 97 4.6 Nomenclature List .............................................................................................. 98 4.7 References ........................................................................................................ 101 5 Solubilities of Room-Temperature Ionic Liquids in Aliphatic/Aromatic Mixtures ............................................................................................................................ 105 5.1 Abstract ............................................................................................................ 105 5.2 Introduction ...................................................................................................... 105 5.3 Experimental Section ....................................................................................... 107 5.3.1 Materials and Equipment ......................................................................... 107 5.3.2 Standard Preparation ............................................................................... 108 5.3.3 Chromatographic Conditions ................................................................... 108 5.3.4 Recovery Test .......................................................................................... 108 5.3.5 Solubility Measurements ......................................................................... 109 5.4 Results and Discussion ..................................................................................... 109 5.4.1 [4-mebupy]BF ........................................................................................ 109 4 5.4.2 [3-methyl][DCA] ..................................................................................... 113 5.4.3 Recovery test ........................................................................................... 116 5.4.4 Solubilities of [4-mebupy]BF and [3-mebupy][DCA] ........................... 117 4 5.5 Conclusions ...................................................................................................... 121 5.6 Nomenclature List ............................................................................................ 122 5.7 References ........................................................................................................ 122 6 Recovery and regeneration of [3-mebupy][DCA]............................................... 125 6.1 Abstract ............................................................................................................ 125 6.2 Introduction ...................................................................................................... 125 6.3 Experimental Section ....................................................................................... 126 6.3.1 Materials .................................................................................................. 126 6.3.2 Analysis ................................................................................................... 127 6.3.3 Experimental Setups ................................................................................ 128 6.4 Results and discussion ...................................................................................... 131 6.4.1 Recovery of [3-mebupy][DCA] from raffinate ....................................... 131 6.4.2 Regeneration of [3-mebupy][DCA] ......................................................... 137 6.5 Conclusions ...................................................................................................... 144 6.6 Nomenclature list ............................................................................................. 144 6.7 References ........................................................................................................ 145 7 Contactor comparison ........................................................................................... 147 7.1 Abstract ............................................................................................................ 147 7.2 Introduction ...................................................................................................... 147 7.3 Experimental Section ....................................................................................... 148 7.3.1 Materials .................................................................................................. 148 7.3.2 Analysis ................................................................................................... 149 7.3.3 Experimental Setup ................................................................................. 149 7.3.4 Column Operation and Characterization ................................................. 152 7.3.5 Hydraulic Characteristics ........................................................................ 154 7.3.6 Mass Transfer .......................................................................................... 157 7.4 Results and discussion ...................................................................................... 159 7.4.1 Hydraulic Characteristics ........................................................................ 159 7.4.2 Mass Transfer .......................................................................................... 167 7.5 Conclusions ...................................................................................................... 171 7.6 Nomenclature List ............................................................................................ 171 7.7 References ........................................................................................................ 173 8 Conclusions and Outlook ....................................................................................... 177 8.1 Conclusions ...................................................................................................... 177 8.1.1 Applicability of RTILs as solvent for extraction ..................................... 177 8.1.2 Contactor comparison .............................................................................. 179 8.2 Outlook ............................................................................................................. 179 Appendices ....................................................................................................................... 181 Appendix A: Data physical properties .......................................................................... 181 Appendix B: Process scheme of pilotplant RDC .......................................................... 185 Appendix C: Overview of sample ports on RDC .......................................................... 186 Appendix D: Aspen Custom Modeler model ................................................................ 187 Appendix E: Aspen Custom Modeler output ................................................................ 201 Dankwoord ....................................................................................................................... 207 Publications ...................................................................................................................... 209 Curriculum Vitae ............................................................................................................. 212 Summary Summary The main objectives of this study were an investigation into the applicability, in this case extraction capacity and equipment performance, of room temperature ionic liquids as solvent in the extraction of aromatics from aliphatics and a comparison of three types of contactors (a rotating disc contactor (RDC), a Kühni contactor and a pulsed disc and doughnut column (PDDC)) for this extraction. The separation of aromatic hydrocarbons (benzene, toluene, ethylbenzene and xylenes) from C4 – C10 aliphatic hydrocarbon mixtures is challenging since these hydrocarbons have boiling points in a close range and several combinations form azeotropes, ruling out conventional distillation processes. The contactors, RDC, PDDC and Kühni were selected since they are amongst the most commonly used extractors, or are most promising for (aromatics) extraction in the (petro)chemical industry. Early research showed that ionic liquids are promising solvents for the extraction of aromatics from aliphatics, but these studies are mainly based on a thermodynamic approach and only a conceptual process design was suggested. However, successful introduction of RTILs into extraction operations also requires knowledge on their physical properties, hydrodynamics, mass transfer characteristics, stability after long term usage and, since the costs of replacement of lost solvent plays an important role, recovery of the RTIL from the raffinate stream. Model To fully understand the behavior of Room Temperature Ionic Liquids as solvent for aromatics extraction, a theoretical model was developed using existing theory on rotating disc contactors. This model described the operational and mass transfer characteristics of an RDC for the extraction of toluene from n-heptane with RTILs. Mass transfer characteristics were modeled with a differential axial dispersion model, with correlations for the mass transfer coefficient and the axial dispersion coefficient. The modeled hydraulic characteristics covered the Sauter mean diameter, the hold-up of the dispersed phase and the operational window, being correlated using physical properties, operational parameters, and geometrical characteristics of the column. Since all applied equations were originally derived for conventional solvents, corrections might be necessary, which need to be confirmed by pilot experiments. All equations are based on the physical properties and operational parameters of the system, geometrical characteristics of the column and internals as well as certain fit parameters, describing the influence of each variable. viii Summary Physical properties and Liquid-Liquid Extraction Equilibiria (LLE) The input of above mentioned model consisted of physical properties and data on the liquid-liquid extraction equilibrium. Density data were correlated well using a linear relation for the influence of the concentration of solute, whereas the volumetric thermal expansion coefficient is used to describe the temperature influence on the system. The absolute values of the relative error (AARE’s) varied between 0.10 and 0.76%. The density of sulfolane was the largest, followed by that of [4-mebupy]BF and followed by that of [3- 4 mebupy][DCA]. Viscosity data were correlated using the Nissan and Grunberg equation for the influence of concentration, taking into account the influence of temperature on the binary interaction parameter. The Vogel equation was used to accurately describe the influence of temperature on the viscosity of the pure solvents, leading to AARE’s of 0.30 to 4.03%. The viscosities of both investigated ionic liquids exceeded the viscosity of the commonly used solvent sulfolane, but with increasing toluene content the viscosities of both RTILs decreased dramatically. Interfacial tension data were fitted with the Szyzkowski equation and the Jasper equation for the temperature influence on the binary system. The influence of concentration on the ternary systems was described via the concentration of toluene in the organic phase, which resulted in good fits. An influence of the temperature on the Szyzkowski coefficients for [3-mebupy][DCA] was observed, but for [4-mebupy]BF , this influence was not clearly present. The resulting AARE’s were 4 between 2.5 and 3.2%, hence indicating that a good representation of the interfacial tension for all systems was obtained using this approach. LLE phase compositions for the the systems n-heptane + toluene + [4-mebupy]BF 4 and n-heptane + toluene + [3-mebupy][DCA] were determined at 313 K. Regarding extraction capacity, [3-mebupy][DCA] outperformed [4-mebupy]BF and sulfolane when 4 applied as solvent for the extraction of toluene from a mixture of toluene and n-heptane with a toluene content below 40 wt%. The weight based distribution coefficient decreased from 0.45 to 0.34 and from 0.32 to 0.25 for [3-mebupy][DCA] and [4-mebupy]BF , 4 respectively and increased from 0.26 to 0.34 for sulfolane for concentrations of 6 to 40 weight percent toluene in n-heptane. The selectivity decreased from 65 to 29, from 30 to 13 and from 25 to 11 for [3-mebupy][DCA], sulfolane and [4-mebupy]BF , respectively. 4 Solvent comparison The use of the ionic liquids [4-mebupy]BF and [3-Mebupy][DCA] as solvents for 4 the extraction of toluene from n-heptane on a pilot plant rotating disc contactor has been investigated and benchmarked against the conventional solvent sulfolane. It has been found that both RTILs could be applied as solvent for the extraction of toluene from n-heptane. Furthermore, the studied hydrodynamic parameters, drop size, hold-up and operational area, indicated that the use of the ionic liquids [4-mebupy]BF and [3-mebupy][DCA] as 4 extraction solvents was not limited by their higher viscosity of 80 mPa s and 20 mPa s for pure [4-mebupy]BF and [3-mebupy][DCA], respectively. The pure IL viscosities 4 ix
Description: