Ionic Equilibria in Analytical Chemistry Jean-Louis Burgot Ionic Equilibria in Analytical Chemistry 2123 Prof.Jean-LouisBurgot Prof.HonorairedesUniversités France ISBN978-1-4419-8381-7 e-ISBN978-1-4419-8382-4 DOI10.1007/978-1-4419-8382-4 SpringerNewYorkDordrechtHeidelbergLondon LibraryofCongressControlNumber:2012932899 © SpringerScience+BusinessMedia,LLC2012 Allrightsreserved.Thisworkmaynotbetranslatedorcopiedinwholeorinpartwithoutthewritten permissionofthepublisher(SpringerScience+BusinessMedia,LLC,233SpringStreet,NewYork,NY 10013,USA),exceptforbriefexcerptsinconnectionwithreviewsorscholarlyanalysis.Useinconnection withanyformofinformationstorageandretrieval,electronicadaptation,computersoftware,orbysimilar ordissimilarmethodologynowknownorhereafterdevelopedisforbidden. Theuseinthispublicationoftradenames,trademarks,servicemarks,andsimilarterms,eveniftheyare notidentifiedassuch,isnottobetakenasanexpressionofopinionastowhetherornottheyaresubject toproprietaryrights. Printedonacid-freepaper SpringerispartofSpringerScience+BusinessMedia(www.springer.com) Foreword “Ionic Equilibria in Analytical Chemistry” Draft English translation of “Chimie analytique et équilibres ionique” by Jean-Louis Burgot, professeur honoraire de chimieanalytique. When I started writing Ionic Equilibrium in the early 1960s [Addison-Wesley, 1964],Iwastryingtoclarifyinmymindaconfusingpartoftheanalyticalchemistry curriculumthatIwasteaching.Ifoundthekeyinmassandchargebalances,which were already in use in Scandinavia through the efforts of Lars Gunnar Sillén and colleagues(seeL.GSillén,P.W.Lange,andC.OGabrielson,ProblemsinPhysical Chemistry(translatedfromtheSwedish),NewYork:PrenticeHall,1952). Muchlater,aftermyCarbonDioxideEquilibriawaspublished,Iwascontacted by a group of medical scientists who were teaching mass and charge balances in treatingtheequilibriaofphysiologicalfluids. IalsolearnedthatthemethodsIhad been teaching were used in quantifying the dissolution of carbon dioxide in the oceans, an important sink for the greenhouse gas produced by industrial activity. Still more recently, the acidification of the oceans by carbon dioxide has been of concernbecauseofitspotentialdissolutionofcalciumcarbonateskeletonsofmarine organisms. Jean-Louis Burgot presented an elegant version in French of the methods by whichequilibriainaqueoussolutionsarecalculated,butithadyettobebroughtto an English-speaking audience. His special sections on various analytical methods, such as those employing ceric ion, iodine, permanganate ion, and dichromate ion, arevaluable.Heamplifieshisdiscussionofcomplexformationwithexamplesusing mercury,ethylenediaminetetra-aceticacid(EDTA),andotherreagentsinanalysis ofinorganicandorganicmaterials.Followingadiscussionofthesolubilityproduct, he presents detailed precipitation titrations using silver ion and some gravimetric methodsbasedonthesamekindofreactions. Thisbookpresentsthe“arithmetic”ofquantitativeanalyticalchemistry,andthe more students are aware of this background, the more they will understand the methodsandlimitationsofmoreautomatedmethods,aswellasthevariouscomputer methods for calculating solution equilibria. (See Chap. 12 by David R. Cogley in IonicEquilibriumbyJamesN.Butler,1998edition,JohnWiley&Sons,NewYork.) v vi Foreword I am pleased to offer my support to a work that carries on the basic theory of solution chemistry. Even as simple exercises for musical instruments can lead to symphonicworks,Ihopethatstudentswholearntheelementsofsolutionchemistry willbebetterequippedtouseitinmanypracticalapplications. JamesN.Butler Professoremeritus, GordonMcKay, Professorofappliedchemistry, Harvardschoolofengineeringandappliedsciences Preface Alotofoperationsinchemicalanalysisarecarriedoutinsolution, inparticularin aqueous solutions. Because water is both a dissociating and ionizing solvent, the chemical reactions occurring within it are generally ionic reactions. From another standpoint, in order to obtain valid analytical conclusions, the chemical reactions proposedtoperformtheanalysismustbecarriedoutuntiltheirterm, thatis, until theirequilibriumhasbeenreached. Oneofthegreatinterestsintheanalyticalchemistrypracticedinaqueoussolu- tions lies in the fact that it can be quasi-systematically described by mathematical equations,whichcanbegroupedthemselvesinmathematicalsystems,systemsbe- ing, in principle, always determined. Because they are not so easily soluble, they induce the use of informatics or the adoption of pertinent simplifications. Without anydoubt,adoptingpertinentsimplificationsisadifficulttaskforanybodywhohas not thoroughly mastered the discipline. Therefore, in my opinion, it is imperative, systematically,towritefirstalltheequationsdescribingthephenomenainsolution thatmustbesatisfied. Next, oneorseveralsimplificationsmaybemadeaccording totheconditionsoftheexperiment.Theresultsofthecalculationsissuingfromthe precedingsimplificationscanthenbechallengedexperimentallyinthethirdstage. Thismethodologyconstitutestheheartofthisbook. Briefly, it is the fortunate balance existing between the theoretical aspects re- sulting from the mathematical equations governing the phenomena and the purely experimentalaspectsthatconferthegreatacademicinterestonanalyticalchemistry inaqueoussolutions.Therefore,analyticalchemistryappearstobeasclosetopure physicsastochemistry. Furthermore, theIUPACclassifiesanalyticalchemistryin the realm of physical chemistry. It is one of the goals of this book to provide an exampleofsuchanassertion. Analyticalchemistryconsistsofstudyingthephysicalandchemicalphenomena that are applied in chemical analysis. Hence, the two disciplines should not be confused. However, inthisbook, numerousexamplescoming, ofcourse, fromthe realmofchemicalanalysisaregiveninordertoillustratetheprinciplesofanalytical chemistry that are studied. These examples are taken from the fields of inorganic andorganicchemistriesandevenfromthatofbiochemistry.Finally,alargeplaceis giventotheanalysisofpharmaceuticallyactiveingredients. vii viii Preface I particularly want to thank Professor Maurice Bernard, honorary dean of the facultyofsciencesofCaen,forhavingintroducedmetoandhelpedmeintothiskind ofchemistry. IdonotforgettheveryfascinatingtimeduringwhichIworkedwith him. I also thank my wife, Gwenola Burgot, professor of analytical chemistry in thefacultyofpharmacyoftheUniversityofRennesI,who,ofcourse,immediately understoodtheinterestinsuchabookandwhohasalwaysencouragedmetocontinue thegreattaskthatwasitswriting.IstillthankGabrielGorre,holderofthesuperior chairofphysicsintheLyceeJoliot-CurieofRennes,forhisthoroughreadingofthe manuscript. MygreatthanksalsogotoAndréLeGoff,whowasoneofmyEnglishteachers inschool.HehasconsiderablyhelpedmeinthetranslationoftheFrenchversionof thisbookintotheEnglishone.MyEnglishneededhishelp! Finally, I also thankAnnick Simon-Malard for the diligency and devotion she exhibitedduringthepreparationofthedifferentversionsofthisbook. Last but not least, I dedicate this book to James Newton Butler, professor of chemistryinthedivisionofappliedsciencesatHarvardUniversity,forthebookhe wrotein1964entitledIonicEquilibrium,aMathematicalApproach.Mybookhas onlythepretenseofbeingacontinuationofhismasterpieceinanalyticalchemistry. Rennes,France Prof.Jean-LouisBurgot May2010 Contents PartI GeneralConsiderations 1 Solvents—CompositionofSolutions.............................. 3 1.1 Definitions ................................................ 3 1.2 MolecularSolvents ......................................... 3 1.3 SolvationofSolutesinaMolecularSolvent..................... 4 1.4 WaterasSolvent ........................................... 5 1.4.1 AbilitytoGiveHBonds............................... 5 1.4.2 HighValueofItsDipolarMoment ...................... 5 1.4.3 DissociatingPowerofWater ........................... 7 1.5 DefinitionoftheSolutionComposition ........................ 7 1.6 QuantityofaSubstance ..................................... 7 1.7 DifferentExpressionsoftheComposition ...................... 8 1.7.1 CompositionExpressedinQuantityofaSubstance: TheMolarComposition............................... 8 1.7.2 Molality ............................................ 8 1.7.3 MolarFraction ...................................... 9 1.8 CalculationoftheMolalityandtheMolarityofaSolution fromItsMolarFraction...................................... 9 2 ThermodynamicsandEquilibrium............................... 13 2.1 ChemicalPotential ......................................... 13 2.2 GibbsFreeEnergyChange(cid:2)G andUsefulWork syst AvailablefromtheProcess ................................... 16 2.3 MolarReactionGibbsFunction............................... 18 2.4 EvolvingReactionsandEquilibriumConditions................. 19 2.5 EquilibriumConditionsandMassLaw......................... 21 2.6 ChemicalPotentialsandStandardStates ....................... 24 2.7 RedoxReaction:RedoxCouples .............................. 25 2.8 BriefDescriptionofanElectrochemicalCell: Daniell’sGalvanicCell...................................... 26 ix x Contents 2.9 ElectromotiveForceofaGalvanicCell, CellPotentialDifference, MaximumWorkAvailablefromaChemicalReaction, andNernst’s Equation .................................................. 28 2.10 ElectrodePotentials......................................... 30 2.11 AdditionofFreeEnthalpiesandCalculationofStandardElectrode PotentialsfromOtherStandardElectrodePotentials.............. 32 3 ActivitiesandActivityCoefficients ............................... 37 3.1 ChemicalEquilibrium.MassLawandSpeciesActivities.......... 37 3.2 OnthePhysicalMeaningofAnActivity........................ 37 3.3 IonicStrengthofaSolution .................................. 38 3.4 Link Between Activities and Concentrations: The Activity Coefficients ............................................... 40 3.5 StandardStatesandActivityCoefficients ....................... 40 3.6 DifferentWaystoWritetheMassLaw ......................... 41 3.7 UsualConventionsforActivities .............................. 42 3.8 DeterminationofActivities................................... 44 3.8.1 UnchargedSolutes ................................... 44 3.8.2 ActivityofAnIon:ActivityoftheWholeElectrolyte....... 44 3.9 CalculationofActivityCoefficientsandofActivities ............. 44 3.9.1 ActivityCalculationofUnchargedSpecies ............... 44 3.9.2 CalculationofActivityCoefficientsandActivitiesofIons .. 44 3.10 JustificationofDebye-Hückel’sTheory ........................ 47 PartII AcidsandBasesEquilibria—AnalyticalApplications 4 DefinitionsofAcidsandBases:StrengthofAcidsandBases......... 51 4.1 ArrheniusDefinition ........................................ 51 4.2 Brønsted–LowryDefinition .................................. 52 4.3 InexistenceoftheProtoninSolution........................... 53 4.4 BrønstedAcidityandBasicityinWater: NatureoftheHydratedProtoninWater ........................ 54 4.5 Nomenclature ............................................. 55 4.6 About the Equivalence of theArrhenius and BrønstedTheories in AqueousSolutions.......................................... 55 4.7 OtherTheoriesofAcidsandBases ............................ 57 4.8 QualitativeConsiderationsConcerningtheStrength ofAcidsandBasesinWater.................................. 57 4.9 QuantitativeConsiderationsQuantifyingtheStrengths ofAcidsandBases:DissociationAcidConstantsK andpK ..... 58 a a 4.9.1 Acids’Strength ...................................... 58 4.9.2 Bases’Strength ...................................... 60 4.10 WaterDissociation.......................................... 60 4.11 UselessnessoftheK Notion ................................. 61 b 4.12 ABriefViewoftheConceptofpH ............................ 62 Contents xi 4.13 ThePolyacidCase.......................................... 62 4.14 DistributionDiagrams....................................... 63 4.15 MacroscopicandMicroscopicEquilibriumConstants ............ 66 4.16 PredominantSpeciesArea ................................... 68 4.17 PrevisionofAcid–BaseReactions:EquilibriumConstant ofAcid–BaseReaction ...................................... 69 4.18 AcidityScaleinWater....................................... 70 4.19 LevelingofAcidsandBasesinWater.......................... 72 5 CalculationsofpHValuesinAqueousSolutions ................... 77 5.1 AnalyticalConcentration .................................... 77 5.2 pHofPureWater........................................... 78 5.3 CalculationofpHinSolutionsofStrongAcids .................. 78 5.3.1 GeneralRelation..................................... 78 5.3.2 SimplifiedEquations ................................. 79 5.3.3 LogarithmicDiagram................................. 80 5.4 pHinSolutionsofStrongBases .............................. 81 5.5 pHinSolutionsofSaltsofStrongAcidsandBases............... 82 5.6 Ostwald’sDilutionLaw ..................................... 82 5.7 pHinSolutionsof WeakAcids ............................... 83 5.7.1 GeneralEquationPermittingthepHCalculation .......... 83 5.7.2 pHCalculationsbyApproximations..................... 84 5.7.3 CalculationswithHägg’sDiagrams ..................... 86 5.8 pHinaWeakBaseSolution.................................. 88 5.8.1 TheBaseConcentrationIsHigh ........................ 88 5.8.2 TheBasicSolutionIsHighlyDiluted.................... 89 5.9 pHofaMixtureofStrongAcids .............................. 91 5.10 pHofaMixtureofStrongBases .............................. 92 5.11 pHofaMixtureofaStrongandaWeakAcid: IonizationRepression ....................................... 92 5.12 pHofaMixtureofaStrongandaWeakBase ................... 93 5.13 pHofanEquimolecularMixtureofaWeakBase andaWeakAcid ........................................... 93 5.14 pHofPolyacidandPolybaseSolutions......................... 94 5.15 pHofaMonosaltofaDiacidSolution—pHofan AmpholyteSolution......................................... 95 5.16 pHofaSolutionofanAmino-Acid............................ 96 5.17 pHofaMixtureofTwoWeakAcids........................... 100 5.18 pHofaMixtureofaWeakAcidandaWeakBase inAnyProportion:InterestinthePrincipalReactionConcept...... 100 5.19 pHCalculationsTakingActivitiesintoAccount.................. 104 6 BufferSolutions ............................................... 107 6.1 pHofaBufferSolutionBeforeAdditionofaStrong AcidorBase............................................... 107 6.2 pHofaBufferSolutionAfteraProtonAddition ................. 109
Description: