ebook img

Investigations of dynamic stall and dynamic stall control on helicopter airfoils PDF

207 Pages·2016·22.04 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Investigations of dynamic stall and dynamic stall control on helicopter airfoils

Investigations of dynamic stall and dynamic stall control on helicopter airfoils A cumulative habilitation thesis Dr. Anthony D. Gardner, BSc(Hons),Msc,PhD. 2015 2 3 Investigations of dynamic stall and dynamic stall control on helicopter airfoils Kumulative Habilitationsschrift zur Erlangung der Lehrbefugnis fu¨r das Fachgebiet Stro¨mungsmechanik Vorgelegt von Dr. Anthony D. Gardner, BSc(Hons),Msc,PhD. aus Go¨ttingen Wissenschaftler am Institut fu¨r Aerodynamik und Stro¨mungstechnik des Deutschen Zentrums fu¨r Luft- und Raumfahrt (DLR) in Go¨ttingen Bei der Fakulta¨t fu¨r Mathematik/Informatik und Maschinenbau der Technischen Universita¨t Clausthal 2015 4 5 Abstract Investigations into dynamic stall and dynamic stall control on airfoils are detailed using pitching airfoil experiments and numerical investigations at Mach 0.3, 0.4 and 0.5 on the airfoils EDI-M109, EDI-M112andOA209. Two-dimensionaldynamicstallwasinvestigated,andtheeffectsofthewind tunnelinterference,rotationandthefinitewingonthethree-dimensionalstallprocessweredescribed. The curvature of the stall vortex and its effect in reducing the strength of the dynamic stall compared to a two-dimensional treatment was investigated using CFD and experiments with high-speed pres- sure sensitive paint (PSP) and pressure transducers. Stall control was designed based on its ability to increase the lift in CFD simulations of static stall and implemented by using constant and pulsed blowing with high-pressure air jets in the vertical direction, and the stall was demonstrated to be sig- nificantly reduced at all Mach numbers investigated. Optimal mass flux and jet spacing were found for Mach 0.3 and Mach 0.5, and depended on the test case investigated. Optima for deep stall were aroundCµ=0.12forM=0.3andCµ=0.02forM=0.5. Pulsedblowingwasfoundtobeatbestaseffec- tiveasconstantblowingwiththesamemassflux,forthejetconfigurationandtestcasesinvestigated. Flow control by blowing reduced drag for separated flow, but the energy required in compressed air to achieve this was more than the savings in drag, and no cases were found in which flow control resultedinareductionintotalpowerused. Zusammenfassung Die vorliegende Arbeit beschreibt experimentelle und numerische Untersuchungen des dynamischen Stro¨mungsabrisses und dessen Beeinflussung bei Mach 0,3, 0,4 und 0,5 an den Profilen EDI-M109, EDI-M112 und OA209. Untersucht wurde hauptsa¨chlich der zweidimensionale dynamische Stro¨- mungsabriss. EbensowurdendieEinflu¨ssederWindkanalinterferenz,derRotationundderBlattspitze aufdendreidimensionalenAblaufdesdynamischenAbrissesuntersucht. DiedreidimensionaleKru¨m- mung der Ablo¨sewirbel bewirkte eine Verringerung der Sta¨rke des dynamischen Stro¨mungsabrisses im Vergleich zum zweidimensionalen Ansatz. Diese Verringerung wurde durch Experimente mit schnell reagierender drucksensitiver Farbe (PSP) sowie Drucksensoren und mit CFD untersucht. Methoden zur Beeinflussung des dynamischen Stro¨mungsabrisses wurden unter anderem aufgrund ihrer Fa¨higkeit ausgewa¨hlt, den Auftrieb in CFD-Simulationen mit statischer Stro¨mungsablo¨sung zu erho¨hen. Die Beeinflussung des dynamischen Stro¨mungsabrisses ist durch die Verwendung von konstantem und gepulstem Ausblasen mit Hochdruckluftdu¨sen in der vertikalen Richtung umgesetzt worden. Die negativen Effekte des Stro¨mungsabrisses wurden bei allen Machzahlen deutlich re- duziert. Fu¨rdieMachzahlen0,3und0,5wurdenoptimaleWertefu¨rdenreduziertenMassenstromCµ und den Du¨senabstand bestimmt. Fu¨r Testfa¨lle mit starkem dynamischen Stro¨mungsabriss ergaben sich Werte im Bereich vonCµ=0,12 (M=0,3) bisCµ=0,02 (M=0,5). Fu¨r die untersuchten Luftstrahl- konfigurationen und Testfa¨lle war gepulstes Ausblasen nicht effektiver als konstantes Ausblasen mit dem gleichen Massenfluss. Stro¨mungssteuerung durch Ausblasen reduzierte den Luftwiderstand fu¨r abgelo¨ste Stro¨mung, aber die fu¨r die Druckluft beno¨tigte Energie war immer gro¨ßer als der ener- getische Gewinn durch Reduktion des Widerstandes. Es gab keine Testfa¨lle bei denen Stro¨mungs- steuerungzueinerVerringerungderGesamtleistungfu¨hrte. 6 Foreword This habilitation thesis contains a summary of my work in the field of the flow control of dynamic stall between 2008 and 2014 at the Institute of Aerodynamics and Flow Technology at the German Aerospace center (DLR), in Go¨ttingen, Germany. The work has been published in both the refereed and unrefereed literature, and where the work has been otherwise published, this is indicated in the text. A full list of my publications can be found after the bibliography. The relevant publications are referencedinthetextandlistedtogetherwithotherreferencesinthebibliography. Between 2008 and 2014, a range of experimental and numerical investigations were carried out at the DLR. The experimental work concentrated on pitching airfoil experiments, that is a wing of constantcross-sectionspannedthewholewidthofthewindtunnelandwasmovedwithforced,sinu- soidal pitching oscillations of large amplitude around the quarter-chord axis. The experiments took place in the transonic wind tunnel Go¨ttingen (TWG) at Mach numbers between 0.3 and 0.85, and total pressures between 0.3bar and 1.2bar. My own contributions included investigations of two new helicopter airfoils, the EDI-M109 and EDI-M112 for their dynamic stall performance, and the flow-controlmodelOA209-FCD. Thecontrolofdynamicstallwasinvestigatedusinghighpressureconstantandpulsedblowingof air on an OA209 pitching airfoil model in the TWG. The model design and jet layout was performed using CFD and the experiment was performed with two wind tunnel entries in 2011 and 2012. A large number of new results regarding 2D and 3D dynamic stall and dynamic stall control resulted from these experiments and are detailed in this habilitation thesis. The results included the first use of fast response pressure-sensitive paint for the investigation of dynamic stall and a large amount of high-qualitypressuresensordata. Inaddition,theeffectof3Dstallinrotatingandnonrotatingsystemswasinvestigatednumerically, showing that both systems show significant differences to 2D dynamic stall. Further, the effect of the model-wall connection was investigated both numerically and experimentally showing that the connection method can significantly influence the local aerodynamics of the airfoil while not being directlydetectableontheairfoilcenterline. All of these results are presented in this document, and are connected to an overview of the state ofaerodynamicinvestigationsondynamicstall. 7 8 Acknowledgments The work presented in this document is, to the best of my knowledge and belief, original, except as acknowledged in the text. This material has not been submitted, either in whole or part, for a degree at any university. Parts of the text have been previously published in journals, at conferences and in internalreports,asnotedinthetext. Foreachofthepaperspresentedinthishabilitationthesis,Iwastheprimaryauthor. Thisinvolved theplanning,designandmanagementoftheexperiments,andtheexecutionofallofthecomputations presentedinthiswork,aswellastheanalysisoftheexperimentalandnumericaldataandwritingeach of the papers presented. However, large wind tunnel campaigns are always the result of a large team, and I am very grateful to the scientific and technical staff at the German-Dutch Wind tunnel associ- ation (DNW), the DLR workshops (SHT) and my colleagues at the DLR Institute of Aerodynamics andFlowTechnologyandtheDLRInstituteofAeroelastics. Manyofmycolleaguesareco-authorsonthepapers,andhavethefollowinginputs: • Altmikus,A.R.M.,Klein,A.andRohardt,C.-H.: EDI-M109andEDI-M112airfoildesignteam • Klein,C.,Sachs,W.,Henne,U.: Pressuresensitivepaintteam • Knopp,T.: ImplementationofthepulsingjetboundaryconditionintheTAUCFDcode • Mai, H.: Leader of the experimental team controlling the pitching motion test stand and the datarecordingintheTWGwindtunnel • Neuhaus,D.: DesignandmanufactureofminiaturevalvesfortheFCDwindtunnelmodel • Richter, K.: Project planning and management for the DLR projects SIMCOS and STELAR andtheLUFOprojectECO-HC,scientificsupport • Rosemann,H.: Projectplanningandmanagement A.D.Gardner,Go¨ttingen,2015 9 10

Description:
Period T = 1/f (s). T∞. Freestream temperature (K). T0. Total temperature (K) t. Time (s). Tu. Turbulence intensity. Umax. Maximum inflow velocity (m/s).
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.