ebook img

Investigation of Accuracy Speed and Stability of Hyper-Reduction Techniques PDF

114 Pages·2016·9.44 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Investigation of Accuracy Speed and Stability of Hyper-Reduction Techniques

Department of Precision and Microsystems Engineering Investigation of Accuracy, Speed and Stability of Hyper-Reduction Techniques for Nonlinear FE Thej Kiran Ravichandran Report no : EM 2016.038 Coach & : Dr.ir R.A.J. van Ostayen Professor Specialisation : Engineering Mechanics Type of report : MSc Thesis Date : 29-08-2016 Challengethefuture Investigation of Accuracy Speed and Stability of Hyper-Reduction Techniques for Nonlinear FE by Thej Kiran Ravichandran toobtainthedegreeofMasterofScience attheDelftUniversityofTechnology, tobedefendedpubliclyonMondayAugust29,2016at13:45hrs. Studentnumber: 4412486 Projectduration: December10,2015–August29,2016 Supervisors: Dr.ir.R.A.J.vanOstayen, TUDelft Prof.dr.ir.D.J.Rixen, TUMunich Ir.J.Rutzmoser TUMunich Thesiscommittee: Dr.ir.R.A.J.vanOstayen, 3ME,TUDelft Dr.ir.P.T.L.M.vanWoerkom, 3ME,TUDelft Dr.ir.F.Alijani, 3ME,TUDelft Dr.ir.S.Shroff, AE, TUDelft Anelectronicversionofthisthesisisavailableathttp://repository.tudelft.nl/. Abstract ThefieldofHyper-reductionforNonlinearFiniteElementMethodattemptstoaddressthelargedurations duetorepeatedevaluationandassemblyoftheinternalforceandJacobian.Stability,accuracyandspeedare threeaspectsofthesemethodsthathasbeendealtwithinthisthesis.Therearetwomethodsthatarepopular withintheFEMframework,theseare,DEIManditvariants,andECSW. Byconstruction,DEIMisquiteunstableandhasconvergenceissues,astheLagrangianstructureisnotpre- servedduringhyper-reduction. ArecentpaperbyChaturantabut,preservesthestructurewhileusingDEIM and hence assures stability and passivity of the hyper-reduced model in the context of reducing internal forcesthatarescalar-valued. WiththisthesisthepossibilityofrestoringthestructureinthecontextofFEM, i.e.,reductionofvector-valuedinternalforcesisinvestigated.Itisfoundthat,theextensionofstructurepre- servingDEIMtoFEM,didnotworkasexpected,owingtocertaincharacteristicsofFEM. InDEIM,traditionallythedegreesoffreedoms(dofs)atwhichtheinternalforceisevaluatedisequaltothe numberofforcemodes.Theeffectofhavingmorenumberofevaluationsascomparedtoforcemodesisin- vestigated.Itisfoundthatincreaseinthenumberofevaluationsdoesimproveaccuracyandalsotheresulting stability,withincreasesinthecomputationtime. ECSWisarecenthyper-reductiontechnique,andisstableasaresultofthepreservationoftheLagrangian structure.Thepropertiesofthismethodareinvestigated.Asaconclusiontothisthesis,astudyisperformed onthedifferentmethodsacrossfiveexamplesofvariedcomplexity.ItisfoundthatUDEIMwithnodalcollo- cationperformswellwithaccuracy,speedandstabilityacrossallexamples. iii Acknowledgement IwouldlikeexpressmygratitudetoProfessorRonvanOstayen,fortakingmeunderhiswingforthisthesis.I thankRonforhisvaluablefeedbackandconstantsupportthroughthesemonths. IamgratefultoProfessorDanielJRixen,forgivingmetheopportunitytoworkatTUMunichinhisinstitute. Thelearninghasbeenamazing.Iamreallythankfultotheseverallongdiscussionswehad. IwouldalsoliketothankJohannesRutzmoser,doctoralcandidateatthesameinstituteinTUMunich,for thecountlesshoursofdiscussion,thenumerousteachingsandfeedback. Themostinterestinglearningfor me apart from the theoretical aspect of this thesis was the programming part. Part of the learnings were, regardingthenuancesofwritingcleanmodularcode,thatwilleasytodebugandonethatcanbeusedby others. FinallyI’dliketothankmyfamilyandfriendsallaroundtheworld,forallthelove,supportandpatience. v Contents 1 Introduction 1 1.1 ResearchOutline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2 1.2 Abbreviations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.3 Convention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3 1.4 Overviewofcomingchapters. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4 2 NonlinearFiniteElementMethod 5 2.1 MechanicsofContinuousbodies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5 2.1.1 Boundaryvaluedproblem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.2 Constitutiverelation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6 2.1.3 Principleofminimumpotentialenergy . . . . . . . . . . . . . . . . . . . . . . . . . . 7 2.2 FEMforNonlinearElasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9 3 Modelorderreduction 11 3.1 GalerkinProjection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11 3.2 Properorthogonaldecomposition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12 3.3 ProblemswithcomplexityofGalerkinapproach . . . . . . . . . . . . . . . . . . . . . . . . . 13 4 Hyper-ReductionandDEIM 15 4.1 IntroductiontoDEIM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.2 DEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16 4.3 UDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18 4.4 SUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19 4.5 symUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20 4.6 ModificationstosymUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 4.7 Varyingthecollocationdofs. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32 5 ECSW 35 6 Implementation 37 6.1 Architecture. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37 6.2 Implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38 7 ApplicationandResults 41 7.1 Approach . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42 7.2 Barproblem. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44 7.2.1 ComparisonofCollocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47 7.2.2 ComparingSUDEIMandUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48 7.2.3 ComparingUDEIM,SUDEIMandECSW . . . . . . . . . . . . . . . . . . . . . . . . . 49 7.2.4 Hyper-reductionelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50 7.2.5 Convergenceissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51 7.2.6 Varyingthenumberofmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 7.2.7 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53 7.3 C-shapedbow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 7.3.1 ComparisonofCollocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56 7.3.2 ComparingSUDEIMandUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57 7.3.3 ComparingUDEIM,SUDEIMandECSW . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.3.4 Hyper-reductionelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 7.3.5 Convergenceissues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.3.6 Varyingthenumberofmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60 7.3.7 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61 vii viii Contents 7.4 SnapThrough. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62 7.4.1 ComparisonofCollocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65 7.4.2 ComparingSUDEIMandUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 7.4.3 ComparingUDEIM,SUDEIMandECSW . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.4.4 Hyper-reductionelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67 7.4.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.4.6 Varyingthenumberofmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69 7.4.7 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70 7.5 Finray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71 7.5.1 ComparisonofCollocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74 7.5.2 ComparingSUDEIMandUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75 7.5.3 ComparingUDEIM,SUDEIMandECSW . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.5.4 Hyper-reductionelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76 7.5.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5.6 Varyingthenumberofmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78 7.5.7 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 7.6 3DGate. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80 7.6.1 ComparisonofCollocation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 83 7.6.2 ComparingSUDEIMandUDEIM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.6.3 ComparingUDEIM,SUDEIMandECSW . . . . . . . . . . . . . . . . . . . . . . . . . 84 7.6.4 Hyper-reductionelements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6.5 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85 7.6.6 Varyingthenumberofmodes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86 7.6.7 Statistics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87 7.7 PropertiesofECSW . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88 8 Conclusion 91 Bibliography 95 A AppendixAppendix 97 A.1 Bar . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.2 C-shapedbow. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97 A.3 Snap-throughbeam. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98 A.4 Finray. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99 A.5 3dGate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .102

Description:
AMfe. The work done is shared over GIT. Many people are working on different parts of SIAM Journal on Numerical analysis, 40(2):492–515, 2002.
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.