ebook img

Investigating Alternative Climate Data Sources for Hydrological PDF

18 Pages·2016·5.22 MB·English
by  
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Investigating Alternative Climate Data Sources for Hydrological

water Article Investigating Alternative Climate Data Sources for Hydrological Simulations in the Upstream of the Amu Darya River AyetiguliSidike1,2,XiChen1,2,*,TieLiu1,2,KhaydarDurdiev1,2,3andYueHuang1,2 1 StateKeyLaboratoryofDesertandOasisEcology,XinjiangInstituteofEcologyandGeography, ChineseAcademyofSciences,818SouthBeijingRoad,Urumqi830011,China;[email protected](A.S.); [email protected](T.L.);[email protected](K.D.);[email protected](Y.H.) 2 UniversityofChineseAcademyofSciences,No.19A,YuquanRoad,ShijingshanDistrict, Beijing100049,China 3 MinistryofAgricultureandWaterResourcesoftheRepublicofUzbekistan,ScientificResearchInstituteof IrrigationandWaterProblemsundertheTashkentInstituteofIrrigationandMelioration, Tashkent100187,Uzbekistan * Correspondence:[email protected];Tel.:+86-991-788-5320 AcademicEditor:Karl-ErichLindenschmidt Received:13August2016;Accepted:27September2016;Published:11October2016 Abstract: The main objective of this study is to investigate alternative climate data sources for long-termhydrologicalmodeling. Toaccomplishthisgoal,oneweatherstationdataset(WSD)and threegrid-baseddatasetsincludingthreetypesofprecipitationdataandtwotypesoftemperaturedata wereselectedaccordingtotheirspatialandtemporaldetails.Anaccuracyassessmentofthegrid-based datasetswasperformedusingWSD. Then, the performances of corrected data combination and non-correctedgrid-basedprecipitationandtemperaturedatacombinationsfrommultiplesourceson simulatingriverflowintheupstreamportionoftheAmuDaryaRiverBasin(ADRB)wereanalyzed using a Soil and Water Assessment Tool (SWAT) model. The results of the accuracy assessments indicated that all the grid-based data sets underestimated precipitation. The Asian Precipitation Highly Resolved Observational Data Integration Towards the Evaluation of Water Resources (APHRODITE)precipitationdataprovidedthehighestaccuracy(correlationcoefficients(CF)>0.89, rootmeansquareerror(RMSE)<41.6mm),followedbytheCRUNCEPreanalysisdata(acombination oftheCRUTS.3.2dataandtheNationalCentersforEnvironmentalPrediction(NCEP)reanalysis data)(CF>0.5,RMSE<58.1mm)andPrinceton’sGlobalMeteorologicalForcingDataset(PGMFD) precipitationdata(CF>0.46,RMSE<62.8mm).ThePGMFDtemperaturedataexhibitedahigher accuracy(CF>0.98,RMSE<7.1◦C)thantheCRUNCEPtemperaturedata(CF>0.97,RMSE<4.9◦C). In terms of the simulation performance, the corrected APHRODITE precipitation and PGMFD temperaturedataprovidedthebestperformance.TheCFandNash-Sutcliffe(NSE)coefficientsin thecalibrationandvalidationperiodswere0.96and0.92and0.93and0.83,respectively. Inaddition, the combinations of PGMFD temperature data and APHRODITE, PGMFD and CRUNCEP precipitation data produced good results, with NSE ≥ 0.70 and CF≥0.89. The combination of CRUNCEP temperature data and APHRODITE precipitation produced a satisfactory result, withNSE=0.58 and CF = 0.82. The combinations of CRUNCEP temperature data and PGMFD andCRUNCEPprecipitationdataproducedpoorresults. Keywords: climatedatasources;differentcombinationsofmultisourcedata;riverflowsimulation; SWATmodel Water2016,8,441;doi:10.3390/w8100441 www.mdpi.com/journal/water Water2016,8,441 2of18 1. Introduction One of the challenges in modeling watershed hydrology is obtaining accurate weather input data[1,2],whicharegenerallyoneofthemostimportantdriversofwatershedmodels[3,4].Spatialand temporalvariabilityarekeycharacteristicsofhydrologicalprocesses[5].Inmanyinstances,distributed hydrologicalmodelsrequiredailydistributedmeteorologicaldatatosimulatethehydrologicalcycle. However,somemodelingscenariosrequirehourlyormonthlydata. Lacksofdataandinaccuracies indatahavethelargestimpactonmodelsimulations[6,7]. Distributedhydrologicalmodelsrequire spatially distributed, long-term, continuous data to simulate the impact of climate change and managementpracticesonhydrologicalprocesses. However,conventionalweatherstationsareoften sparselydistributedandcannotfullyrepresenttheclimateconditionsacrossawatershed,particularly iflargehydroclimaticgradientsexist[8–10]. Inaddition,weatherstationrecordsoftendonotcover theproposedsimulationperiodorcontaingaps. To solve this problem, some researchers have used grid-based data (e.g., atmospheric model analysisorreanalysisoutputs, radardataandgriddedstationobservations, i.e., observationsthat havebeeninterpolatedtoaregulargrid). Oneofthemostcommonwaysofdeterminingqualityisto assesstheaccuracyofthedatasourceandtestitsperformanceinahydrologicmodel,oruncertainty assessmentsofthepotentialimpactsofweatherinputsformodelpredictionusinglatentvariables[11], simultaneousdataassimilationandparameterestimation[12]andusingprobabilistictechniquessuch asBayesianModelAveraging(BMA)ortheIntegratedBayesianUncertaintyEstimator(IBUNE)[13,14]. Moststudieshavefocusedonevaluatingtheperformanceofgrid-basedprecipitationdatainsimulating hydrologicprocesses[15–25],whileothershavefocusedonevaluatingtheperformancesofdifferent parametersinonedatasetinsimulatinghydrologicprocesses[26–29]. Somestudieshaveevaluated the respective performances of different variables associated with multisource grid-based data in hydrologicmodeling[30,31]. However,nearly80%ofwaterresourcesinthecurrentregionofinterest aregeneratedfromsnowandglaciermelt. Thus,theimpactoftheaccuracyoftemperaturedataon runoff modeling in this region cannot be neglected. In addition, different types of data sets have varyingaccuracylevelsacrossdifferentregionswithvariousweatherstationdistributions. Therefore, alternativeclimatedatasourcesmustbeidentifiedindata-scarceregions[32]. The hydrologic regime of the Amu Darya River Basin (ADRB) is complex and vulnerable to climatechange[8]. Waterdiversionforagricultural,industrialanddomesticusershassignificantly reducedflowsindownstreamregions[33],resultinginsevereecologicaldamage[34]. Thescarcityof meteorologicaldataremainsamajorhindranceinusinghydrologicmodelsinthisregion.Somestudies havebeendesignedtoovercomethesedatalimitations. MonthlyreanalyzeddatafromtheClimate ResearchUnit(CRUTS.3.2)havebeenusedinnumerousstudies[9,33,35,36]. Precipitationestimation from remotely sensed information using artificial neural networks (PERSIANN) precipitation products [8], the Willmott archived data set, the GSMaP satellite-driven data set [37], the global climatologyprecipitationproduct(GPCP),theGlobalPrecipitationClimatologyCenter(GPCC)[38] andERA-15data[39]havebeenusedtosimulatetheinfluenceofclimatechangeonwaterresourcesin thisregion. However, most of these studies have used data sets on monthly time scales [9,33,35,36], useddailytimestepswithoutcorrectionforshort-termsimulations[8,16,20,22,37,40,41]orevaluated the performances of different variables associated with multisource gridded data in hydrologic modeling[23,24]. Inaddition,previousstudiesfocusedonevaluationoftheprecipitationdataand neglectthetemperaturedataevaluation. Thus,itisessentialtoidentifyalternativeclimatedatasources onadailytimestepandevaluatetheireffectivenessforlong-termhydrologicalmodeling. Toachieve thisgoal,oneweatherstationdataset(WSD)andthreetypesofdatasetswithdailytimestepsover long-termperiodsweretestedinthisstudytosimulateriverflowusingtheSoilandWaterAssessment Tool(SWAT).Thus,themajorgoalofthisstudyistoinvestigatealternativeclimatedatasourcesfor improving the performance of distributed hydrologic models and to provide a practical basis for furtheranalysisonhydrologicalprocessesandothertopics. Therefore,wefocusedonadataaccuracy Water2016,8,441 3of18 assessmentandperformanceevaluationsbutdidnotconsiderthesimulationuncertaintycausedby weatherinputsduetothelengthofthepaper. Toachievethisgoal, theCentralAsiaTemperature andPrecipitationData(CATPD),AsianPrecipitationHighlyResolvedObservationalDataIntegration TowardstheEvaluationofWaterResources(APHRODITE)data,Princeton’sGlobalMeteorological ForcingData(PGMFD)andCRUNCEPreanalysisdata(acombinationoftheCRUTS.3.2monthlydata andtheNWaatteiro 2n01a6,l 8C, 4e41n tersforEnvironmentalPrediction(NCEP)reanalysisdata)werese3l eofc 1t8e ddueto theirspatialandtemporalrepresentativenessoftheprocessesbeingmeasured. Ourfirstobjectivewas simulation uncertainty caused by weather inputs due to the length of the paper. To achieve this  toevaluatetheaccuracyofgrid-baseddata. Thesecondobjectivewastoinvestigatetheperformances goal, the Central Asia Temperature and Precipitation Data (CATPD), Asian Precipitation Highly  ofcorrectReedsodlvaetda Ocbosmerbvaintioantiaol nDaatan dIntnegornat-icoonr Treowctaerddsg trhied E-vbaaluseatdiodn aotf aWcaotemr Rbeinsoautricoens s(AoPfHpRrOecDiIpTiEt)a tionand temperatduartea, dParitnaceftroonm’s Gmloubaltl iMpleetesooroulorgciecsal oFnorcsiinmg uDlaattai n(PgGrMivFDer) aflnodw CRinUNthCeEPu rpesantraelyasmis dpaotar t(iao n of the combination of the CRU TS.3.2 monthly data and the National Centers for Environmental Prediction  AmuDaryaRiverBasin(ADRB),andweselectedthesuitablecombinationsforsimulatingriverflow (NCEP) reanalysis data) were selected due to their spatial and temporal representativeness of the  inthisregion. processes being measured. Our first objective was to evaluate the accuracy of grid‐based data. The  second  objective  was  to  investigate  the  performances  of  corrected  data  combination  and  2. Materials non‐corrected grid‐based data combinations of precipitation and temperature data from multiple  sources on simulating river flow in the upstream portion of the Amu Darya River Basin (ADRB),  2.1. StudyArea and we selected the suitable combinations for simulating river flow in this region.  Thewatershedislocatedbetween38.66◦ N–39.86◦ Nand70.28◦ E–73.71◦ Eandcoversanarea 2. Materials  of 19,638 km2. This area is a mountainous area, and the elevation ranges from 1294 m to 7198 m (Figure 12)..1.T Shtuedyd Arraeian age area includes land cover types such as forest (3.64%), pasture (3.04%), agricultural lTahned w(a0te.r1s7h%ed) ,is sloncoawteda bnetdweicene 3(81.566.5° 3N%–3)9,.8b6a° rNe alnadn 7d0.(2183° .E3–97%3.7)1°a En dansdp caovrseresl yanv aeregae otfa ted area (64.23%)(1F9i,6g3u8r kem12).. TThhise amreaa iisn as moiolutnytpaiensouins athreias, raengdi tohne ealreevastaionnd ryansgoeisl f(r2o9m.3 122%94) ,mm too l7l1i9c8l emp (tFoisgoulrse (21.27%), 1). The drainage area includes land cover types such as forest (3.64%), pasture (3.04%), agricultural  cumulicanthrosols(19.23%),haplickastanozems(17.03%)andcalcicchernozems(13.14%). Ingeneral, land (0.17%), snow and ice (15.53%), bare land (13.39%) and sparsely vegetated area (64.23%) (Figure  theclimateinthisregionexhibitscontinentalandsubtropicalfeatures.Theaverageannualtemperature 1). The main soil types in this region are sandy soil (29.32%), mollic leptosols (21.27%), cumulic  ranges fraonmthr−os7o.l7s (◦1C9.23to%)8, .h3ap◦lCic, kaanstdantohzeemasn (n17u.0a3l%a)v aenrda gcaelcpicr echceiprniotazetimosn (1is3.1743%9). mInm ge(nienratlh, tehep eriod of 1965–2007cl)i.mWatei tihn itnhitsh reegmiono uexnhtiabiitns croanntgineesn,tatlh aencdl simubatrtoepdiciaflf feerastuarcesr.o Tshsed aivfefreargeen atnenlueavl atetmiopnerbaatunrde s. Inthis study, theranegleesv afrtoimon −s7.o7 f°tCh eto L8y.3a i°rCu, na,ndD tahrea uantn-Kuaul ragvaerna,geS aprryectiapsithatiaonn dis F7e3d9 cmhmen (kino tGhel apceireiords toaf tions are 1965–2007). Within the mountain ranges, the climate differs across different elevation bands. In this  2008m,2470m,3153m,and4169m,respectively. Thetemperaturedecreaseswithincreasingelevation, study, the elevations of the Lyairun, Daraut‐Kurgan, Sarytash and Fedchenko Glacier stations are 2008  whereasprecipitationpresentsdifferenttrendsindifferentelevationbandsandindifferentaspects. m, 2470 m, 3153 m, and 4169 m, respectively. The temperature decreases with increasing elevation,  More thawnh8er0e%as porfectihpeitaptiroenc pipreisteanttiso dniffoecrecnutr tsrefnrdosm in Odifcfteorebnet relteovaMtioany baonfdtsh aendf oinl ldoiwffeirnegnt yasepaerct(sF. igure 2). ThemaximMourme thaannd 80m%i nofi mthue mprepcirpeictaiptioitna oticocnurtso frtoamls Oocctcoubreri ntoM Maayy oafn thdeA foullgowusint,gw yehaer r(eFaigsutrhe e2)p. Tehaek andlow maximum and minimum precipitation totals occur in May and August, whereas the peak and low  flowsoccurinAugustandMarch,respectively(Figure2). Themainwaterresourcesofthisregionare flows occur in August and March, respectively (Figure 2). The main water resources of this region  precipitation,snowmeltandglaciermelt. are precipitation, snowmelt and glacier melt.    Figure 1. Location of the study area in the Amu Darya River Basin and the land cover map.  Figure1.LocationofthestudyareaintheAmuDaryaRiverBasinandthelandcovermap. Water2016,8,441 4of18 Water 2016, 8, x FOR PEER REVIEW 4 of 18 Figure 2. Long-term monthly averages of precipitation and temperature at four stations (a) Figure2.Long-termmonthlyaveragesofprecipitationandtemperatureatfourstations(a)long-term lmonogn-tthelryma mveornagthelsyo afvperreacgipeist aotfi opnreacnipdittaetmiopne raantdu rteematpfeoruartustraet iaotn fso;u(rb )stlaotniogn-tse;r (mb)m loonngt-htleyrmav meroangethsloyf asvtreeraamgefls oowf satnredapmr efcloipwit aatniodn p(rLeyc,iDpikta,tSiao,na n(LdyF, GDka,r eSaL,y aanirdu nF,GD aarrea uLty-Kaiururgna, nD,aSraaruytta-KshuargnadnF, eSdacrhyetanskho aGnlda cFieerdcshtaetnioknos ,Grleascpieerc tsitvaetliyo)n.s, respectively). 2.2. Data 2.2. Data 22..22..11.. CClliimmaattee DDaattaa SSoouurrcceess CClliimmaattee ddaattaa ssoouurrcceess aarree pprriimmaarriillyy ddiivviiddeedd iinnttoo ppooiinntt--bbaasseedd ((wweeaatthheerr ssttaattiioonnss)) aanndd ggrriidd--bbaasseedd ssoouurrcceess,, ssuucchh aass aattmmoosspphheerriicc mmooddeell aannaallyyssiiss oorr rreeaannaallyyssiiss oouuttppuuttss,, rraaddaarr ddaattaa aanndd ggrriiddddeedd ssttaattiioonn oobbsseerrvvaattiioonnss, ,ii..ee.,. ,oobbsseerrvvaattiioonnss tthhaatt hhaavvee bbeeeenn iinntteerrppoollaatteedd ttoo aa rreegguullaarr ggrriidd.. TToo iiddeennttiiffyy aalltteerrnnaattiivvee ddaattaa ssoouurrcceess ffoorr uussee iinn lloonngg--tteerrmm hhyyddrroollooggiiccaall mmooddeelliinngg,, aavvaaiillaabbllee cclliimmaattee ddaattaa wweerree ccoolllleecctteedd ffrroomm ddiiffffeerreenntt ssoouurrcceess ((TTaabbllee 11)).. ThreetypesofWSDcanbeusedintheADRB.TheseincludeCATPDatthemonthlytimescale,the Three types of WSD can be used in the ADRB. These include CATPD at the monthly time scale, GlobalSummaryOftheDay(GSOD)andtheGlobalHistoricalClimatologyNetwork-Daily(GHCND). the Global Summary Of the Day (GSOD) and the Global Historical Climatology Network-Daily ThelattertwodatasetscanbeobtainedfromTheNationalClimaticDataCenterforeverywhereinthe (GHCND). The latter two data sets can be obtained from The National Climatic Data Center for world. Althoughallofthesedatasetsprovidedprecipitation,maximumtemperatureandminimum everywhere in the world. Although all of these data sets provided precipitation, maximum temperaturedata,theGSODandGHCNDdonotprovidedatainourstudyareauntil1973,andno temperature and minimum temperature data, the GSOD and GHCND do not provide data in our dataexistsbetween1994and2005. Inaddition,thereisalotofmissingdatafortheavailableperiods. study area until 1973, and no data exists between 1994 and 2005. In addition, there is a lot of TheCATPDfrom1965to1990wasselectedforthisstudyduetoitscompleteness. Thesedataprovided missing data for the available periods. The CATPD from 1965 to 1990 was selected for this study datafromfourweatherstations(showninFigure1)inourstudyarea. TheCATPDcanonlybeusedto due to its completeness. These data provided data from four weather stations (shown in Figure 1) in evaluatetheaccuracyofgrid-baseddatabecausetheSWATmodelrequiresweatherdataatthedaily our study area. The CATPD can only be used to evaluate the accuracy of grid-based data because scaleformodelingriverflow. the SWAT model requires weather data at the daily scale for modeling river flow. Ameteorologicalreanalysisisameteorologicaldataassimilationproject,whichaimstoassimilate A meteorological reanalysis is a meteorological data assimilation project, which aims to historical observational data spanning an extended period using a single consistent assimilation assimilate historical observational data spanning an extended period using a single consistent (or“analysis”)schemethroughout.ThereanalysisdatasetslistedinTable1canbeusedinhydrological assimilation (or “analysis”) scheme throughout. The reanalysis data sets listed in Table 1 can be modeling. However,differenttypesofdatasetshavedifferentspatialandtemporalresolutionsand used in hydrological modeling. However, different types of data sets have different spatial and varyingaccuracylevelsacrossdifferentregionsbecauseofthevarietyofdatasourcesandassimilation temporal resolutions and varying accuracy levels across different regions because of the variety of methodsused. Inthispaper,accordingtothespatialandtemporalresolutionsofthedata,thePGMFD data sources and assimilation methods used. In this paper, according to the spatial and temporal andCRUNCEPreanalysisdatasetswerechosenforhydrologicalmodeling,andtheywereevaluated resolutions of the data, the PGMFD and CRUNCEP reanalysis data sets were chosen for andtestedfurtherinSections4.1and4.3. Bothofthemprovideddailyprecipitation,maximumand hydrological modeling, and they were evaluated and tested further in Sections 4.1 and 4.3. Both of minimumtemperature,dailytotalsolarradiation,dailyaveragerelativehumidityanddailyaverage them provided daily precipitation, maximum and minimum temperature, daily total solar radiation, windspeedforSWATmodelconstruction. However,onlydailyprecipitation,maximumtemperature daily average relative humidity and daily average wind speed for SWAT model construction. However, only daily precipitation, maximum temperature and minimum temperature were tested, Water2016,8,441 5of18 andminimumtemperatureweretested,andotherparametersweresimulatedusingtheSWATweather generatorduetothelackofmeasuredrelativehumidity,windspeedandsolarradiationdata. Table1.Sourcesofclimatedata. DataSet Period Resolution(◦) Temporal Region Weatherstationdata CATPD 1879–2003 - monthly CentralAsia GSOD 1901–2016 - daily Global GHCND 1763–2016 - daily Global Reanalysisdata ERA-15 1979–1993 2.5 6hourlyandmonthly Global NCEP/NCAR 1948–present 2.5 6hourlyanddaily Global JRA-25 1979–2004 1.125 6hourlyanddaily Global MERRA 1979–present 1/2×2/3 hourly Global CFSR 1979–present 0.5 hourly Global CRUNCEP 1948–present 0.5 6hourlydata Global ERA-Interim 1979–present 0.75 6hourlyanddaily Global ERA-40 1957–2002 2.5 6hourlyandmonthly Global PGMFD 1948–2010 0.5 daily Global GLDAS 2000–present 0.25 3hourly Global Wilmott 1900–2008 0.5 monthly Global WFDEI 1979–2012 0.5 3hourlyanddaily Global Griddeddata APHRODITE 1951–2007 0.25 daily MonsoonAsia TRMM 1998–present 0.25 3hourly Nearglobal PERSIANN 2000–present 0.25 3hourly Nearglobal GPCP 1997–present 1.00 daily Global CMORPH 2002–present 0.25 3hourly Global GSMaP 2002–present 0.1 hourly 60◦N–60◦S WFD 1958–2001 0.5 3hourly Global Thereareseventypesofgriddeddatasets,asshowninTable1. OnlytheAPHRODITEdatahas thehighspatialandtemporalresolutionsneededinthisanalysis. Therefore,theAPHRODITEdataset wasselectedasanalternativedatasourceforhydrologicalmodeling. 2.2.2. OtherDataforModelConstruction ASWATmodelrequiresspatialdatasuchasadigitalelevationmodel(DEM),alanduse/cover map and a soil map. The following were used to construct the SWAT model: a DEM with a 90 m resolution [42]; land use/cover maps from the 1970s and 2005 with a 1000 m resolution, and the Harmonized World Soil Database (HWSD) soil map with a scale of 1:5,000,000 [43]. The land use/covermapswereobtainedfromtheCentralAsialandcoverchangedatasetofthe“973Program”, describingtheresponseoflarge-scalelanduse/coverchangetoglobalclimatechange. InadditiontothespatialdataanddailyweatherdatamentionedinSection2.2.1,aSWATmodel alsorequiresphysicalandchemicalsoilpropertiessuchasmoistbulkdensity,depthfromthesoil surfacetothebottomofthesoil,claycontent,siltcontentandsandcontent.Riverflowdataonacertain timescalewererequiredformodelcalibrationandvalidation. TheHWSDprovidessoilpropertiessuchasthedepthsofsoillayers,claycontent,siltcontent, sand content and so on for each soil layer. Other properties, such as the available water capacity andsaturatedhydrologicconductivity,werecalculatedusingSoil-Plant-Air-Water(SPAW)software developedbytheU.S.DepartmentofAgriculture. Monthlyaverageriverflowdatafrom1965to1978 and1979–1985fromtheGlobalRunoffDataCenter(GRDC)wereusedforcalibrationandvalidation. Water2016,8,441 6of18 3. Methodology 3.1. AccuracyAssessmentsoftheGrid-BasedDataSets Precipitationandtemperaturedatafrom1965to2007wereextractedfromthegrid-baseddatasets correspondingtothefourweatherstationsusingthenearestneighborinterpolationmethod. Thereare otherinterpolationmethodssuchasbilinearinterpolation,inversedistance-weightedmethod[44,45]. Thenearestneighbormethodisthemostsimplemethodtoextractpointvaluesfromraster. Inorderto savethecomputingpower,thenearestneighbormethodwasusedinthisstudy. Infurtherstudythe impactofdifferentinterpolationmethodsontheextracteddataaccuracywillbediscussed.Anaccuracy assessment was conducted by comparing the annual cycles and statistical box plots of grid-based datasetswithWSDbasedonindicatorcriteria. Theannualcycleisusefulforevaluatingtheseasons throughouttheyear,anditisnormallyestimatedfromobservationaldataormodeloutputbytaking theaverageofeachmonthforagivennumberofyears[46]. Aboxplotwithmedian,upperquartile (75thpercentile),lowerquartile(25thpercentile),minimumandmaximumvaluesisusedtodisplay thequartiledistributionofthedata. The following indicator criteria were applied to evaluate the grid-based data sets based on WSD: the linear correlation coefficient (CF), root mean square error (RMSE), mean absolute error (MAE),multiplicativebias(MBias)andNash-SutcliffeCoefficient(NSE)[32,45,47]. Themathematical expressionsofthesecriteriaareasfollows: ∑n [(x −x)(y −y)] CF= (cid:113) i=1 i i , (1) ∑n [(x −x)2]∑n [(y −y)2] i=1 i i=1 i (cid:114) RMSE= 1 ∑n (x −y )2, (2) n i=1 i i 1 ∑n MAE= |(x −y )| (3) i i n i=1 ∑n x MBias= i=1 i (4) ∑n y i=1 i ∑n (x −y )2 NSE=1− i=1 i i (5) ∑n (x −y)2 i=1 i where x and y are the gridded and stationary data sets (WSD), respectively. The CF is used to assesstheagreementbetweenthegrid-baseddatasetandtheWSD.TherangeofCFvaluesisbetween −1and+1.ACFvalueofexactly+1indicatesaperfectpositivefit,whileavalueofexactly−1indicates aperfectnegativefit. TheMAEwasusedtorepresenttheaveragemagnitudeoftheerror. TheRMSE, whichassignsalargerweighttolargererrorsrelativetotheMAE,wasusedtomeasuretheaverage errormagnitude. TheoptimalvaluesoftheRMSEandMAEare0. TheMBiasistheratioofgrid-based datatoWSD.AperfectestimationwouldresultinanMBiasvalueof1.Underestimationwilllead to values less than 1 and overestimation to values greater than 1 [48]. NSE was used to describe thegoodnessoffitofthegriddeddatasetsandtheobserveddataset. TherangeofNSEis −∞~1, with1beingthebestvalue. 3.2. DataCorrectionandCombinations Due to the lack of daily WSD, the APHRODITE precipitation data and the maximum and minimumtemperaturesofthePGMFDwereselectedandcorrectedformodelconstruction. Thesimple and widely used linear bias correction [49] method was used to correct the precipitation and temperature data. The APHRODITE daily precipitation amounts P are transformed into P* such thatP*=aP.ThevariableaisascalingparameterequaltoO/P,whereOand Paremonthlymean Water2016,8,441 7of18 valuesofprecipitationbasedonWSDandAPHRODITEdata,respectively. Themonthlyscalingfactor isappliedtoeachuncorrecteddailytimeseries. ThemaximumandminimumtemperaturesofPGMFD werealsocorrectedusingthelinearbiascorrectionmethod. Thescalingparameterfortemperatureis b =O −T,whereO andTaremonthlymeanWSDandPGMFDmaximumorminimumtemperatures. t t Themonthlyscalingfactorisappliedtoeachuncorrectedtimeseries. Fordailytimeseriesfrom1991 to2007,forwhichnoobserveddatawereusedforcorrection,thelong-termaveragemonthlymean correctionfactorswereappliedtouncorrecteddailytimeseriesofeachmonth. Toinvestigatetheperformancesofcorrecteddatacombinationandnon-correctedprecipitation andtemperaturedatacombinationsfrommultiplesourcesonsimulatingriverflowinthestudyarea, thefollowingcombinationswereused.CAPisthecombinationofcorrectedAPHRODITEprecipitation and PGMFD temperature data. The six combinations include the combination of non-corrected APHRODITEandPGMFDtemperaturedata(AP),thecombinationofprecipitationandtemperature fromthePGMFDdataset(PP),thecombinationofCRUNCEPprecipitationandPGMFDtemperature data(NP),thecombinationofAPHRODITEandCRUNCEPtemperaturedata(AN),thecombination ofPGMFDprecipitationandCRUNCEPtemperaturedata(PN)andthecombinationofprecipitation andtemperaturefromtheCRUNCEPdataset(NN).TheAP,PPandNPmodelswereusedtoevaluate thesuitabilityoftheprecipitationdadatothemodelandthemodel’ssensitivitytotheaccuracyofthe precipitationdata. TheAN,PNandNNmodelswereusedtoanalyzethesuitabilityoftemperature dataandthesensitivityofthemodeltotheaccuracyoftemperaturedata. 3.3. TheSWATHydrologicalModel TheSWATmodelisaphysicallybased,temporallycontinuous,semi-distributedhydrologymodel thatcanoperateatadailytimestep. Itcansimulatecomplexhydrologicalprocessesandpredictthe impactsofclimatechangeandlandmanagementpracticesonwater,sediment,andagriculturechemical yieldsinlarge,complexwatershedswithvaryingsoils,landuses,andmanagementconditionsover longperiods[50,51]. Itrunsonadailytimestepandrequiresspecificinformationregardingweather, soilproperties,topography,vegetationandlandmanagementpractices[52]. Asasemi-distributed hydrological model, SWAT possesses a simpler structure and requires less data than the fully distributedMIKESHEmodel. However,themodelstructureuncertaintyinherentintheconceptual lumpedmodelwillsignificantlyimpactthepredictionresults[53]. Inaddition,theconceptuallumped modelcannotspecificallyanalyzehydrologicalprocessessuchasthespatialandtemporalvariability associatedwithsnowandtheimpactsofsoilmoistureonirrigation. Thus,themainobjectiveofthis paperistoinvestigateclimatedatasourcesfortheSWATmodelandprovideatheoreticalbasisfor furtheranalysisofhydrologicalprocessesandothertopics. The Soil Conservation Service (SCS) curve number procedure [54] and the Green and Ampt infiltrationmethodareincludedintheSWATmodel.AlthoughtheGreenandAmptinfiltrationmodelis morephysicallybasedthantheSCSmodel,theGreenandAmptinfiltrationmodelrequireslessreadily availablesub-dailyprecipitationrecordsanddetailedsoilinformation.Thisisalargeobstacleforusing thismodelindatascarceregions[55]. Thus, theSCSmethodisappliedinthisresearch.Thereare two alternative functions of SCS method (antecedent soil moisture and plant evapotranspiration). Inthisstudy,theantecedentsoilmoisturemethodwasusedbecauseofitssuitabilityinsemi-humid and humid regions (this study area belong to the semi-humid region with annual precipitation of 739 mm) [56–60]. The model offers three options for estimating potential evapotranspiration: theHargreaves[61],Priestley-Taylor[62]andPenman-Monteithmethods[63]. ThethreePETmethods included in SWAT vary in the number of required inputs. The Hargreaves method requires only maximum,minimumandaverageairtemperature,whilethePriestley-Taylormethodrequiressolar radiation,airtemperatureandrelativehumidity. TheinputsforPenman-Monteithmethodarethe sameasthoseforthePriestley-Taylormethod,butitalsorequireswindspeed. TheHargreavesmethod isappliedinthisstudybecauseofmeteorologicaldatalimitations. Water2016,8,441 8of18 In SWAT, a watershed is divided into multiple sub-watersheds. Then, these watersheds are divided into homogeneous spatial units with similar geomorphologic and hydrologic properties, namely,hydrologicresponseunits(HRUs)[64]. Inthisstudy,thebasinwasdividedinto52sub-basins and361HRUs. 3.4. ModelCalibrationandValidation TheSWATmodelwasrunatamonthlyscaleinthisstudybecauseobserveddailyrunoffdata were not available for model calibration and validation. The calibration period was from 1965 to 1978,andthefirsttwoyearswerethewarm-upperiod. Thevalidationperiodwasfrom1979to1985. TheNSEandCFbetweensimulatedandobservedflows[65]wereusedtoevaluatetheresultsofthe model.Therangesofthecriteriaforverygood, good, satisfactoryandunsatisfactoryresultswere basedonthoseproposedbyBressianietal.[26]. Becauseofthelackofdailyweatherstationdata, theAPHRODITEprecipitationdataandthemaximumandminimumtemperaturesofthePGMFD wereusedtocalibrateandvalidatethemodelafterbiascorrection(selectedaccordingtotheaccuracy assessmentinSection4.1). Twentysensitiveparameterswereselectedaccordingtopreviousstudies[5,47,66,67]andtested in the SWAT-CUP to perform a sensitivity analysis. Fourteen sensitive parameters were selected accordingtotheirperformancesinthesensitivityanalysis,andmanualcalibrationandauto-calibration were performed using a Sequential Uncertainty Fitting (SUFI-2) algorithm to achieve acceptable performance[68–73].Thetopographiceffectswerealsoconsideredbydividingthewatershedinto 10elevationbandsandcorrectingthedatausingthetemperaturelapserate(TLAPS)andtheprecipitation lapserate(PLAPS). 4. Results 4.1. EvaluationofDataAccuracy Thepatternoftheannualcycleofprecipitationshowsthatthestudyareareceivedthemaximum amountofrainfallinthespring(Figure3).TheAPHRODITEdatapatternwassimilartothedistribution patternofWSD.BoththeCRUNCEPandPGMFDdatasetsoverestimatedprecipitationinthespring andwinteratDaraut-Kurganstation,andthetrendatSarytashstationwasalmostthesame. However, the CRUNCEP and PGMFD data sets underestimated precipitation in the spring and winter at FedchenkoGlacier,andthetrendatLyairunstationwasalmostthesame.Theannualcycleofmaximum andminimumtemperature(Figure3)indicatedthatthePGMFDunderestimatedthetemperature andtheCRUNCEPdatasetoverestimatedthetemperatureatthreestations,excludingFedchenko Glacierstation. ThePGMFDdatapatternmorecloselymimickedthedistributionpatternofweather stationdata. Theaveragemonthlyvaluesof25-yearprecipitationandmaximumandminimumtemperature boxplotsatthefourstationsareplottedinFigures4and5basedontheWSDandgriddeddatasets. Theinter-quartilerangeofthegriddeddatasetsillustratesthattheAPHRODITEdataprovidedthe bestperformance. TheAPHRODITEdataspanalmostthesamerangeastheWSDatSarytashand Daraut-Kurganstations. TherangesoftheAPHRODITEdataattheotherstationsareslightlynarrower thantheweatherstationdata. However,thedifferencesareverysmall. TheCRUNCEPprecipitation dataperformedbetterthanthePGMFDprecipitationdata. Intermsoftheannualaverageprecipitation inthewatershed,allofthegriddeddatasetsunderestimatedprecipitation. TheAPHRODITEdataset hadthehighestvalue,followedbythePGMFDandCRUNCEPdatasets.Themaximumandminimum temperaturerangesofthePGMFDwereclosertotheWSDthanwerethoseoftheCRUNCEPdata (Figure5).Therefore,weconcludethattheAPHRODITEdataandPGMFDdataareoptimalforforcing the hydrologic model. In this study, this data was used to calibrate and validate the model after correction. Theperformanceofcorrecteddatacombinationandnon-correcteddatacombinationswere analyzedinSections4.2and4.3. Water2016,8,441 9of18 Water 2016, 8, 441  9 of 18  Water 2016, 8, 441  9 of 18    FigureF i3g.u Aren3n.uaAl ncnyuclaels coyfc lteesmopfetreamtupreer aatnudr eparencdippitraetciiopnit abtaiosendb oanse dtheo nWtShDe WanSdD garnidddgedri dddaetda sdeattsa. (a)    AFnignuursaeel  t3cs.y. Ac(alne)n Aoufna npl urceyaclcilcpeysitc aloetfi ootefnmp arpte ecDriapatirutaarutei toa‐nKndaut rpgDraaenrc aipsutitat-atKitoiuonrn;g  ab(bna)ss etAdatn iononnu ;ath(lb ec) yWAclnSeDn ou faa nlpdcry egccrliepidiodtafetpdior ednca iaptati  tsFaeteitdos.cn h(aaet)n ko  GAlancniueFare l dsctcyahcteiloen nko;of  (Gpc)rl aeAcciinpernitsuattaailot inoc ynac;tl( ecDs) aAoranf unmtu‐aKalxuicrmygcualenms s ot(faTtmmioaanxx;i )m( bau)n mAd n(mTnmuinaailxm )cyuacnmlde  m(oTfi mnpiirmnec)u ipmteitm(aTtpimoenrina )atutt erFmee pdaetc hrSaeatnurkyroeta sh  sGtaltaicoinear;t  S(sdatar)y tAitoannshn; u(scta)al t Aicoynncn;lu(edsa) lo Acfyn Tcnlmueasa lxoc fya cnmledas xToimfmTuimnm aa xt(T aDmnadarxTa)um tai‐nnKdau trmDgiaannriam sututa-mKtiou (nrTg;m a(nein)s )tA attneiomnnup;ae(elr )actAyucnrlene usa atol fSc yaTrcmyletasaxso hfa nd  Tsmtaitnio Tanmt;  L(adyx)a aAinrundnnTu smatali ntciyoacntl;Le (syf a)o iAfr uTnnmnsuataaxtl i aconyndc;l (eTfs)m Aoifnn T namuta aDlxca yarcanludets ‐TKomfuTringm aaantx  FsateandtdicohTnem;n (ikeno) a AGtFnlaencduiceahrl  escntyakctolieoGsn lo.a fc iTemrsatxat iaonnd.  Tmin at Lyairun station; (f) Annual cycles of Tmax and Tmin at Fedchenko Glacier station.  (a)  (b)  (a)  (b)  Figure4.Cont. Water2016,8,441 10of18 Water 2016, 8, 441  10 of 18  Water 2016, 8, 441  10 of 18  (c)  (d)  (c)  (d)  Figure 4. Box plots of precipitation based on WSD and gridded data sets at four stations. (a) box plot  Figure4.BoxplotsofprecipitationbasedonWSDandgriddeddatasetsatfourstations.(a)boxplotof Figure 4. Box plots of precipitation based on WSD and gridded data sets at four stations. (a) box plot  of precipitation at Lyairun station; (b) box plot of precipitation at Fedchenko Glacier station; (c) box  precipitationatLyairunstation;(b)boxplotofprecipitationatFedchenkoGlacierstation;(c)boxplot of precipitation at Lyairun station; (b) box plot of precipitation at Fedchenko Glacier station; (c) box  plot of precipitation at Sarytash station; (d) box plot of precipitation at Daraut‐Kurgan station.  ofprecipitationatSarytashstation;(d)boxplotofprecipitationatDaraut-Kurganstation. plot of precipitation at Sarytash station; (d) box plot of precipitation at Daraut‐Kurgan station.  (a)  (b)  (a)  (b)  (c)  (d)  (c)  (d)  Figure 5. Box plots of temperature based on WSD and gridded data sets at four stations. (a) box plot  Figure5.BoxplotsoftemperaturebasedonWSDandgriddeddatasetsatfourstations.(a)boxplotof of temperature at Sarytash station; (b) box plot of temperature at Daraut‐Kurgan station; (c) box plot  tFeimgupreer a5t.u Broexa tpSloatrsy otaf sthemstpaetiroantu;(rbe )bbaosxedp olont WofSteDm apnedr agtruidredaetdD daartaau ste-Ktsu artg faonurs tsattaitoino;n(sc.) (ba)o xbopxlo ptlooft  of temperature at Lyairun station (d) box plot of temperature at Fedchenko Glacier station.  toefm tepmerpaeturarteuarte Layt aSiaruryntasstaht isotanti(odn);b (obx) pblooxt polfotte mofp teermatpuerreatautrFee adtc DheanrkauotG‐Klaucrigearns tsattaiotino.n; (c) box plot  of temperature at Lyairun station (d) box plot of temperature at Fedchenko Glacier station.  Table 2 presents the comparative statistics at four stations on a monthly scale from 1965 to 1990.  TThae bAlePH2RpOreDsIeTnEts ptrheecipcoitmatipoanr adtaivtae psrtoavtiisdteicds tahte fhoiugrhesstta taicocnusraocny, afomlloownethdl ybys ctahlee CfrRoUmNC19E6P5  to Table 2 presents the comparative statistics at four stations on a monthly scale from 1965 to 1990.  1990p.rTechipeiAtaPtiHonR dOaDtaI sTeEt. pTrheec CipFi toaft itohne AdaPtHaRpOroDvIiTdEe dprtehceiphiitgathioenst daactcau arta fcoyu,rf ostlalotiwonesd wbayst hhieghCeRr UthNanC EP The APHRODITE precipitation data provided the highest accuracy, followed by the CRUNCEP  prec0i.p89it,a wtihoenredaas ttahes eCt.F TvhaeluCesF oof fthteh eCRAUPNHCREOPD aInTdE PpGrMecFi ppirteactiipointadtiaotna daattaf owuerres thaitgiohners twhaans 0h.5ig0 her precipitation data set. The CF of the APHRODITE precipitation data at four stations was higher than  thanan0d.8 90.,4w6, hreersepaescttihveelyC,F evxcaelpute sato fDtahreauCt‐RKUuNrgCanE PstaatniodnP. GThMe FMpAreEc iopfi ttahtei oAnPdHaRtaOwDIeTrEe hmigohnethrlyth an 00..5809p,a rwencdhipe0ir.te4aa6tis,o rnteh sdepa CetacF tw ivvaeasll yul,oeewsx eocref  tpthhtaean t C3DR0a UmraNmuC,t -wEKPhu erargneaadns  PtshGtaeMt MioFnA p.ETrse hoceifp MtihteaA tCiEoRnoUf dNthaCteaEA PwP aeHnredR  hOPiGDghMITeFrED tmh daoannt at0 h.5ly0  parnedcs iep0t.si4t aw6t,ei orrene s1dp6ae.9tca2t–iwv4e1a.ls5y6l, o mewxmecre aptnhtd aa n2t2 3.D604am–r4am7u.,2t‐5wK mhuemrrge,a arnes stpshteeacttMiiovAnel.Ey T.s Thohefe t MhCeFAC aERn dUo fNN tSChEeE  vPAaalPunHedsR PoOGf DtMhIeFT PDEG dmMaoFtanDts heltys  wpreercaeinp1di6 t.Ca9tR2io–U4nN1 d.C5aE6tPam  wtmemasap nleodrwa2tue2rr.6 et4 hd–aa4nt7a . 32w05 emmremm h,,i grwehshepre ertcehtaaisnv  et0hl.y9e.  aTMnhdAe E0C.s5F 7oa,f n rtedhsepN eCSctREivUveaNlylu,C beEasPsoe afdnt hodne P PtGhGeMM WFFDSDD d,a antda  setsa wnde rteh e1 6R.M92S–E4,1 M.56A mE amn da nMdB 2ia2s.6 o4f– t4h7e. 2P5G mMmFD, r edsaptae cwtievreel ylo.w Tehre t hCaFn  athnods eN oSfE t hvea lCuReUs NofC tEhPe  PdaGtaM. FD  CRUNCEPtemperaturedatawerehigherthan0.9and0.57,respectively,basedontheWSD,andthe andO CvRerUalNl, CthEe PP GteMmFpDe rtaemtupree rdatautrae  wdaetrae e hxhigibhieterd t ha ahnig 0h.e9r  aanccdu r0a.c5y7 ,t hreansp tehcet iCvReUlyN, bCaEsPe dte monp etrhaetu Wre SD,  RMSE,MAEandMBiasofthePGMFDdatawerelowerthanthoseoftheCRUNCEPdata. Overall, andd tahtae.  RMSE, MAE and MBias of the PGMFD data were lower than those of the CRUNCEP data.  thePGMFDtemperaturedataexhibitedahigheraccuracythantheCRUNCEPtemperaturedata. Ove rall, the PGMFD temperature data exhibited a higher accuracy than the CRUNCEP temperature  data.

Description:
Therefore, the APHRODITE data set was selected as an alternative data source for hydrological modeling. 2.2.2. Other Data for Model Construction. A SWAT model requires spatial data such as a digital elevation model (DEM), a land use/cover map and a soil map. The following were used to construct
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.