Rakesh Kumar Palani • Ramesh Harjani Inverter-based Circuit Design Techniques for Low Supply Voltages 123 RakeshKumarPalani RameshHarjani DepartmentofElectrical DepartmentofElectrical andComputerEngineering andComputerEngineering UniversityofMinnesota UniversityofMinnesota Minneapolis,MN,USA Minneapolis,MN,USA ISSN1872-082X ISSN2197-1854 (electronic) AnalogCircuitsandSignalProcessing ISBN978-3-319-46626-2 ISBN978-3-319-46628-6 (eBook) DOI10.1007/978-3-319-46628-6 LibraryofCongressControlNumber:2016952245 ©SpringerInternationalPublishingAG2017 ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland Preface Rapid advances in the field of integrated circuit design has been advantageous fromthepointofviewofcostandminiaturization.Althoughtechnologyscalingis advantageoustodigitalcircuitsintermsofincreasedspeedandlowerpower,analog circuitsstronglysufferfromthistrend.Thisisbecomingacrucialbottleneckinthe realization of a system on chip in scaled technology merging high-density digital partswithhigh-performanceanaloginterfaces.Thisisbecausescaledtechnologies reduce the output impedance (gain) and supply voltage which limits the dynamic range(outputswing).Onewaytomitigatethepowersupplyrestrictionsistomove tocurrentmodecircuitdesignratherthanvoltagemodedesigns. This thesis focuses on designing process, voltage, and temperature (PVT)- tolerant base band circuits at lower supply voltages and in lower technologies. Inverter amplifiers are known to have better transconductance efficiency, better noise, and linearity performance. But inverters are prone to PVT variations and havepoorCMRRandPSRR.Tocircumventtheproblem,wehaveproposedvarious biasing schemes for inverters like semi-constant current biasing, constant current biasing, and constantgm biasing. Each biasing technique has its own advantages, like semi-constant current biasing allows to select different PMOS and NMOS current.Thisfeatureallowforhigherinherentinverterlinearity.Similarlyconstant currentand constantgm biasing allows for reducedPVT sensitivity. The inverter- based OTA achieves a measured THD of (cid:2)90:6dB, SNR of 78.7dB, CMRR of 97dB, and PSRR of 61dB while operating from a nominal power of 0.9V and at output swing of 0.9Vpp;diff in TSMC 40nm general purpose process. Further, themeasuredthirdharmonicdistortionvariesapproximatelyby11.5dBwith120ı variationintemperatureand9dBwithan18%variationinsupplyvoltage. The linearity can be increased by increasing the loop gain and bandwidth in a negative feedback circuit or by increasing the over drive voltage in open loop architectures. However both these techniques increases the noise contribution of the circuit. There exist a trade off between noise and linearity in analog circuits. Tocircumventthisproblem,wehaveintroducednonlinearcancellationtechniques andnoisefilteringtechniques.Ananalog-to-digitalconverter(ADC)driverwhichis capableofamplifyingthecontinuoustimesignalwithagainof8andsampleonto theinputcapacitor(1pF)of110bitsuccessiveapproximationregister(SAR)ADC isdesignedinTSMC65nmgeneralpurposeprocess.Thisexploitsthenon-linearity cancellation in current mirror and also allows for higher bandwidth operation by decouplingclosed loop gain from the negativefeedbackloop. The noise from the outofbandisfilteredbeforesamplingleadingtolownoiseoperation.Themeasured designoperatesat100MS/sandhpasanOIP3 of40dBm attheNyquistrate,noise power spectral density of 17nV/ Hz, and inter-modulation distortion of 65dB. The intermodulation distortion variation across ten chips is 6 and 4dB across a temperaturevariationof120ıC. Non-linearitycancellationisexploitedindesigningtwofilters,ananti-aliasfilter and a continuously tunable channel select filter. Traditional active RC filters are based on cascade of integrators. These create multiple low impedance nodes in thecircuitwhichresultsin a highernoise.We proposea reallow passfilter-based filterarchitectureratherthanthetraditionalintegrator-basedapproach.Further,the entire filtering operation takes place in current domain to circumvent the power supply limitations. This also facilitates the use of tunable non-linear metal oxide semiconductorcapacitor(MOSCAP)asfiltercapacitors.Weintroducetechniquesof self-compensationtousethefilterresistorandcapacitorascompensationcapacitor for lower power. The anti-alias filter designed for 50MHz bandwidth that is fabricated in IBM 65nm process achieves an IIP3 of 33dBm while consuming 1.56mWfrom1.2Vsupply.Thechannelselectfilteristunablefrom34to314MHz and is fabricated in TSMC 65nm general purpose process. This filter achieves an OIP3 of 25.24dBm at the maximum frequency while drawing 4.2mA from 1.1Vsupply.Themeasuredintermodulationdistortionvariesby5dBacross120ıC variation in temperature and 6.5dB across a 200mV variation in power supply. Further,thisfilterpresentsahighimpedancenodeattheinputandalowimpedance nodeattheoutputeasingsystemintegration. SAR ADCs are becoming popular at lower technologies as they are based on device switching rather than amplifyingcircuits. But recentSAR ADCs that have good energy efficiency have had relatively large input capacitance increasing the driverpower.Wepresenta2Xtimeinterleaved(TI)SARADCwhichhasthelowest inputcapacitanceof133fFinliterature.Thesamplingcapacitorisseparatedfrom thecapacitivedigitaltoanalogconverter(DAC)arraybyperformingtheinputand DACreferencesubtractioninthecurrentdomainratherthanasdonetraditionallyin chargedomain.TheproposedADCisfabricatedinTSMC’s65nmgeneralpurpose process and occupies an area of 0.0338mm2. The measured ADC spurious free dynamicrange(SFDR)is57dB,andthemeasuredeffectivenumberofbits(ENOB) atNyquistrateis7.55bitwhileusing1.55mWpowerfrom1Vsupply. Minneapolis,MN,USA RakeshKumarPalani RameshHarjani Contents 1 Introduction .................................................................. 1 1.1 TraditionalOperationalTransconductance ............................ 4 1.2 DifferentialPairVersusInverter........................................ 7 1.3 NonLinearityAnalysis................................................. 9 1.4 NoiseAnalysis .......................................................... 10 1.5 InverterTransconductor................................................. 11 1.6 Non-linearityCancellationTechniques................................ 13 1.7 Organization............................................................. 14 2 Biasing ........................................................................ 17 2.1 Semi-constantCurrentBiasing......................................... 17 2.1.1 OptimalNMOS-PMOSRatioing .............................. 19 2.1.2 NonLinearityCancellationinInverters ....................... 20 2.1.3 Case1:SmallInput............................................. 21 2.1.4 Case2:LargeInput............................................. 22 2.1.5 Simulation....................................................... 23 2.2 ConstantCurrentBiasing............................................... 23 2.3 Constant-gmBiasing.................................................... 25 2.4 Conclusion .............................................................. 27 3 InverterBasedOTADesign ................................................ 29 3.1 OTADesign ............................................................. 30 3.1.1 CommonModeRejectionStage ............................... 31 3.1.2 GainandDriverStage.......................................... 32 3.2 MeasurementResults ................................................... 34 3.3 Conclusion .............................................................. 39 4 ADCDriver .................................................................. 41 4.1 ADCDriver ............................................................. 42 4.2 OTADrivingLoad...................................................... 42 4.2.1 DrivingLoadCapacitorDirectly............................... 42 4.2.2 DrivingLoadCapacitorThroughResistor .................... 43 4.3 ContinuousandDiscreteTimeADCDriver........................... 46 4.3.1 ContinuousTimeDriver........................................ 46 4.3.2 DiscreteTimeDriver ........................................... 48 4.4 SimulationtoVerifyNoiseFiltering................................... 49 4.5 ADCDriverArchitecture............................................... 51 4.6 ComponentsoftheADCDriver........................................ 52 4.6.1 CurrentMirrorDesign.......................................... 52 4.6.2 Trans-ImpedanceAmplifier(TIA)Design .................... 54 4.6.3 Anti-AliasFilter ................................................ 56 4.6.4 Sampler.......................................................... 56 4.6.5 PassiveAmplification........................................... 57 4.7 Measurements........................................................... 57 4.8 Conclusion .............................................................. 61 5 CurrentMirrorBasedFilter ............................................... 63 5.1 IntegratorDesign........................................................ 65 5.1.1 Non-LinearityCancellation .................................... 67 5.1.2 BandwidthLimitationEffects.................................. 69 5.1.3 GainLimitationEffects......................................... 70 5.1.4 NoiseAnalysis.................................................. 71 5.2 FilterDesign............................................................. 72 5.2.1 Current-DomainBiquad........................................ 72 5.2.2 EffectofOTANonidealitiesonBiquad ....................... 73 5.2.3 ButterworthFilterDesign ...................................... 74 5.2.4 CompensationoftheAmplifiers............................... 75 5.2.5 NoiseComparisonwithActiveRCIntegratorFilter.......... 78 5.3 Measurements........................................................... 82 5.4 Conclusion .............................................................. 85 6 AllMOSCAPBasedContinuouslyTunableFilter ....................... 87 6.1 FilterArchitecture....................................................... 88 6.1.1 RootLocus...................................................... 88 6.1.2 First-OrderSystem.............................................. 90 6.1.3 ThirdOrderFilter............................................... 95 6.2 BiasingandCMFB...................................................... 95 6.3 MeasurementResults ................................................... 96 6.4 Conclusion .............................................................. 100 7 ADC ........................................................................... 103 7.1 ADCArchitecture....................................................... 106 7.2 DACDesign............................................................. 107 7.3 SamplerDesign ......................................................... 108 7.4 PreampDesign.......................................................... 108 7.4.1 InputVoltageRange............................................ 110 7.4.2 PreampTransconductanceLinearity........................... 111 7.4.3 InputCapacitanceLinearity.................................... 113 7.4.4 GateLeakage.................................................... 113 7.5 MeasurementResults ................................................... 114 7.6 Conclusion .............................................................. 120 References......................................................................... 123 Figures Fig.1.1 ITRSroadmap ........................................................ 2 Fig.1.2 Developmentinmobileindustry .................................... 2 Fig.1.3 TypicalRFreceiver .................................................. 3 Fig.1.4 Analogdesignoctagon ............................................... 3 Fig.1.5 Fivetransistordifferentialpair ...................................... 4 Fig.1.6 TelescopicfoldedOTA ............................................... 5 Fig.1.7 FoldedcascodeOTA ................................................. 5 Fig.1.8 CurrentmirrorOTA .................................................. 6 Fig.1.9 TwostagetelescopiccascodedOTA ................................ 6 Fig.1.10 Inputandoutputswingsof(a)differentialpairand (b)inverterOTAs ..................................................... 8 Fig.1.11 Output current of a differential pair and pseudo-differentialinverter .......................................... 10 Fig.1.12 Outputimpedancevariationwith outputswing in differentialpairandinverter ......................................... 10 Fig.1.13 Nautainvertertransconductor ....................................... 11 Fig.1.14 Inverterbased2stageOTA .......................................... 12 Fig.1.15 Traditionalnon-linearitycancellationtechniques .................. 14 Fig.2.1 Circuitschematicforsemi-constantcurrentinverter biasing ................................................................ 18 Fig.2.2 Biasingnetworkcurrentwithpowersupplyvariation .............. 18 Fig.2.3 Variationofinvertertransconductancewithtemperature andsupply ............................................................ 19 Fig.2.4 Variationofinvertertransconductanceswithpower supplyacrossprocesscornerfortraditionalreplica biasedinvertersandSCCBinverters ................................ 20 Fig.2.5 Circuitschematic forconstantcurrentbiasingfor inverters ............................................................... 23 Fig.2.6 Variationofconstantcurrentbiasedinvertergmwith powersupplyacrossprocesscornersat27ıCandwith temperatureintypicalcorner ........................................ 24 Fig.2.7 Choice of bias currentbased on intermodulation distortion ............................................................. 24 Fig.2.8 Circuitschematicforconstantgmbiasingforinverters ............ 25 Fig.2.9 Variation of constant gm biased inverter transconductancewithpowersupplyacrossprocess corners ................................................................ 26 Fig.2.10 MonteCarlosimulationforaconstantgminverter................. 27 Fig.3.1 BlockdiagramoftheproposedinverterbasedOTA ................ 31 Fig.3.2 CircuitschematicofCMRSstage ................................... 31 Fig.3.3 Simulated CMRS gainwith inputcommonmode voltage ................................................................ 32 Fig.3.4 Circuitschematicofgainanddriverstage .......................... 33 Fig.3.5 Simulateddrivergainwithoutputswing ............................ 33 Fig.3.6 Biasingoftransistorsingainstage .................................. 34 Fig.3.7 MicrographofproposedOTA ....................................... 35 Fig.3.8 TestsetupoftheOTA ................................................ 35 Fig.3.9 MeasuredmagnituderesponseoftheOTA ......................... 36 Fig.3.10 MeasuredslewrateoftheOTA ...................................... 37 Fig.3.11 Measuredcommonmoderejectionratio(CMRR)and powersupplyrejectionratio(PSRR)ofOTA ....................... 37 Fig.3.12 ScreenshotofsingleendedmeasuredspectrumofOTA outputat9.5MHz900mV ...................................... 38 ppdiff Fig.3.13 Measuredthirdorderdistortionversusfrequencyover temperature ........................................................... 38 Fig.3.14 Measuredthirdorderdistortionversusfrequencyover powersupply ......................................................... 39 Fig.4.1 ADCdriver ........................................................... 43 Fig.4.2 LoopgainoftheADCdriver ........................................ 43 Fig.4.3 ADCdriver ........................................................... 44 Fig.4.4 LoopgainoftheADCdriverwhiledrivingcapacitive loadthroughresistor ................................................. 44 Fig.4.5 BodeplotofloopgainofADCdriver .............................. 45 Fig.4.6 ContinuoustimeADCdriver ........................................ 47 Fig.4.7 DiscretetimeADCdriver ............................................ 48 Fig.4.8 Simulation test bench to verify noise filtering. (a)Withoutresistor;(b)Withresistor................................ 50 Fig.4.9 Outputnoisepowerspectraldensitywithandwithout seriesresistorR ...................................................... 50 f Fig.4.10 Cumulativenoiseintegralwithandwithoutseries resistorR ............................................................. 51 f Fig.4.11 Blockdiagramoftherail-to-railoutputsampledADC driver .................................................................. 51 Fig.4.12 CircuitschematicfortheADCdriver ............................... 52 Fig.4.13 Simulationofthevoltagetocurrentconvertercircuit overdifferentclosedloopgain ...................................... 53 Fig.4.14 CircuitschematicfortheOTAs ...................................... 55 Fig.4.15 Comparisonofinverting(a)andtransimpedance(b)amplifiers.... 55 Fig.4.16 MicrographoftheADCdriver ...................................... 58 Fig.4.17 MagnituderesponseoftheADCdriver ............................. 58 Fig.4.18 MeasuredIIP3at50MHzusingtwotoneswith1MHz offset .................................................................. 58 Fig.4.19 MeasuredIMDfor2V outputwith1MHztones pp-diff separation.Red,blueandgreenlinesindicatethree differentchips ........................................................ 59 Fig.4.20 MeasuredIMDfor2V outputwith1MHztones pp-diff separationatdifferenttemperatures ................................. 59 Fig.4.21 MeasuredIMDwithtonesat50MHzseparatedby 1MHzacrosschips .................................................. 60 Fig.4.22 MeasuredIMDwithtonesat50MHzseparatedby 1MHz ................................................................. 60 Fig.4.23 SimulatedMonteCarloanalysisonIMD ........................... 61 Fig.4.24 Screencaptureofthenoisemeasurement ........................... 61 Fig.5.1 PassiveRClowpasscircuit(a)anditsfeedbackmodel(b) ........ 64 Fig.5.2 ActiveRCintegrator ................................................. 64 Fig.5.3 PolesinanactiveRCfilter.(a)Conventionalbiquad poles;(b)proposedbiquadpoles..................................... 65 Fig.5.4 A conventionalactive-RC integrator(a) and the proposedintegrator(b) ............................................... 66 Fig.5.5 AconventionalG -Cintegrator(a)andafunctional m diagramoftheproposeddesignwhichlinearizesits G -Coutputsection(b).............................................. 66 m Fig.5.6 Non-linearcancellationinproposedintegrator ..................... 68 Fig.5.7 MonteCarlosimulationonthecurrentmirror ...................... 69 Fig.5.8 Noisesourcesintheproposedintegrator ........................... 71 Fig.5.9 Currentmodelowpassfilterbasedbiquad ......................... 72 Fig.5.10 EffectofOTAnon-idealitiesonbiquad ............................. 74 Fig.5.11 Schematicofthethirdorderfilterusingtheproposed integratorandcurrent-modebiquad ................................. 75 Fig.5.12 Compensationofnegativefeedbackloopsinbiquad usingfiltercomponents .............................................. 76 Fig.5.13 Schematicofloopgainofonestageinbiquad ..................... 76 Fig.5.14 MonteCarlosimulationonanegativefeedbackloopin biquad ................................................................. 78 Fig.5.15 Cornersimulationonanegativefeedbackloopinbiquad.......... 78