ebook img

Inverter-Based Circuit Design Techniques for Low Supply Voltages PDF

139 Pages·2017·4.95 MB·English
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inverter-Based Circuit Design Techniques for Low Supply Voltages

ACSP · Analog Circuits And Signal Processing Rakesh Kumar Palani Ramesh Harjani Inverter-Based Circuit Design Techniques for Low Supply Voltages Analog Circuits and Signal Processing SeriesEditors: MohammedIsmail,Dublin,USA MohamadSawan,Montreal,Canada Moreinformationaboutthisseriesathttp://www.springer.com/series/7381 Rakesh Kumar Palani • Ramesh Harjani Inverter-Based Circuit Design Techniques for Low Supply Voltages 123 RakeshKumarPalani RameshHarjani DepartmentofElectrical DepartmentofElectrical andComputerEngineering andComputerEngineering UniversityofMinnesota UniversityofMinnesota Minneapolis,MN,USA Minneapolis,MN,USA ISSN1872-082X ISSN2197-1854 (electronic) AnalogCircuitsandSignalProcessing ISBN978-3-319-46626-2 ISBN978-3-319-46628-6 (eBook) DOI10.1007/978-3-319-46628-6 LibraryofCongressControlNumber:2016952245 ©SpringerInternationalPublishingAG2017 Thisworkissubjecttocopyright.AllrightsarereservedbythePublisher,whetherthewholeorpartof thematerialisconcerned,specificallytherightsoftranslation,reprinting,reuseofillustrations,recitation, broadcasting,reproductiononmicrofilmsorinanyotherphysicalway,andtransmissionorinformation storageandretrieval,electronicadaptation,computersoftware,orbysimilarordissimilarmethodology nowknownorhereafterdeveloped. Theuseofgeneraldescriptivenames,registerednames,trademarks,servicemarks,etc.inthispublication doesnotimply,evenintheabsenceofaspecificstatement,thatsuchnamesareexemptfromtherelevant protectivelawsandregulationsandthereforefreeforgeneraluse. Thepublisher,theauthorsandtheeditorsaresafetoassumethattheadviceandinformationinthisbook arebelievedtobetrueandaccurateatthedateofpublication.Neitherthepublishernortheauthorsor theeditorsgiveawarranty,expressorimplied,withrespecttothematerialcontainedhereinorforany errorsoromissionsthatmayhavebeenmade. Printedonacid-freepaper ThisSpringerimprintispublishedbySpringerNature TheregisteredcompanyisSpringerInternationalPublishingAG Theregisteredcompanyaddressis:Gewerbestrasse11,6330Cham,Switzerland DedicatedtoLord Muruga Preface Rapid advances in the field of integrated circuit design has been advantageous fromthepointofviewofcostandminiaturization.Althoughtechnologyscalingis advantageoustodigitalcircuitsintermsofincreasedspeedandlowerpower,analog circuitsstronglysufferfromthistrend.Thisisbecomingacrucialbottleneckinthe realization of a system on chip in scaled technology merging high-density digital partswithhigh-performanceanaloginterfaces.Thisisbecausescaledtechnologies reduce the output impedance (gain) and supply voltage which limits the dynamic range(outputswing).Onewaytomitigatethepowersupplyrestrictionsistomove tocurrentmodecircuitdesignratherthanvoltagemodedesigns. This thesis focuses on designing process, voltage, and temperature (PVT)- tolerant base band circuits at lower supply voltages and in lower technologies. Inverter amplifiers are known to have better transconductance efficiency, better noise, and linearity performance. But inverters are prone to PVT variations and havepoorCMRRandPSRR.Tocircumventtheproblem,wehaveproposedvarious biasing schemes for inverters like semi-constant current biasing, constant current biasing, and constantgm biasing. Each biasing technique has its own advantages, like semi-constant current biasing allows to select different PMOS and NMOS current.Thisfeatureallowforhigherinherentinverterlinearity.Similarlyconstant currentand constantgm biasing allows for reducedPVT sensitivity. The inverter- based OTA achieves a measured THD of (cid:2)90:6dB, SNR of 78.7dB, CMRR of 97dB, and PSRR of 61dB while operating from a nominal power of 0.9V and at output swing of 0.9Vpp;diff in TSMC 40nm general purpose process. Further, themeasuredthirdharmonicdistortionvariesapproximatelyby11.5dBwith120ı variationintemperatureand9dBwithan18%variationinsupplyvoltage. The linearity can be increased by increasing the loop gain and bandwidth in a negative feedback circuit or by increasing the over drive voltage in open loop architectures. However both these techniques increases the noise contribution of the circuit. There exist a trade off between noise and linearity in analog circuits. Tocircumventthisproblem,wehaveintroducednonlinearcancellationtechniques andnoisefilteringtechniques.Ananalog-to-digitalconverter(ADC)driverwhichis capableofamplifyingthecontinuoustimesignalwithagainof8andsampleonto vii viii Preface theinputcapacitor(1pF)of110bitsuccessiveapproximationregister(SAR)ADC isdesignedinTSMC65nmgeneralpurposeprocess.Thisexploitsthenon-linearity cancellation in current mirror and also allows for higher bandwidth operation by decouplingclosed loop gain from the negativefeedbackloop. The noise from the outofbandisfilteredbeforesamplingleadingtolownoiseoperation.Themeasured designoperatesat100MS/sandhpasanOIP3 of40dBm attheNyquistrate,noise power spectral density of 17nV/ Hz, and inter-modulation distortion of 65dB. The intermodulation distortion variation across ten chips is 6 and 4dB across a temperaturevariationof120ıC. Non-linearitycancellationisexploitedindesigningtwofilters,ananti-aliasfilter and a continuously tunable channel select filter. Traditional active RC filters are based on cascade of integrators. These create multiple low impedance nodes in thecircuitwhichresultsin a highernoise.We proposea reallow passfilter-based filterarchitectureratherthanthetraditionalintegrator-basedapproach.Further,the entire filtering operation takes place in current domain to circumvent the power supply limitations. This also facilitates the use of tunable non-linear metal oxide semiconductorcapacitor(MOSCAP)asfiltercapacitors.Weintroducetechniquesof self-compensationtousethefilterresistorandcapacitorascompensationcapacitor for lower power. The anti-alias filter designed for 50MHz bandwidth that is fabricated in IBM 65nm process achieves an IIP3 of 33dBm while consuming 1.56mWfrom1.2Vsupply.Thechannelselectfilteristunablefrom34to314MHz and is fabricated in TSMC 65nm general purpose process. This filter achieves an OIP3 of 25.24dBm at the maximum frequency while drawing 4.2mA from 1.1Vsupply.Themeasuredintermodulationdistortionvariesby5dBacross120ıC variation in temperature and 6.5dB across a 200mV variation in power supply. Further,thisfilterpresentsahighimpedancenodeattheinputandalowimpedance nodeattheoutputeasingsystemintegration. SAR ADCs are becoming popular at lower technologies as they are based on device switching rather than amplifyingcircuits. But recentSAR ADCs that have good energy efficiency have had relatively large input capacitance increasing the driverpower.Wepresenta2Xtimeinterleaved(TI)SARADCwhichhasthelowest inputcapacitanceof133fFinliterature.Thesamplingcapacitorisseparatedfrom thecapacitivedigitaltoanalogconverter(DAC)arraybyperformingtheinputand DACreferencesubtractioninthecurrentdomainratherthanasdonetraditionallyin chargedomain.TheproposedADCisfabricatedinTSMC’s65nmgeneralpurpose process and occupies an area of 0.0338mm2. The measured ADC spurious free dynamicrange(SFDR)is57dB,andthemeasuredeffectivenumberofbits(ENOB) atNyquistrateis7.55bitwhileusing1.55mWpowerfrom1Vsupply. Minneapolis,MN,USA RakeshKumarPalani RameshHarjani Acknowledgments There are many people who have helped, supported, and guided me to reach this junctureinmylife,andthisthesiswillbeincompletewithoutofferingmygratitude to them. Firstly, I would like to expressmy gratitudeto Prof. Ramesh Harjanifor giving me the opportunity to work in his lab and guiding me through my PhD. I amextremelythankfulforthefreedomheprovidedmetopursuetheresearchway I liked.Butnevertheless,he alwaysknewwhatI did andadvisedmewhenhe felt I was spending too much time on something unreasonable or chasing something unachievable.Frommyconversationswithmyfriendsin otheruniversities,Ihave realizedthatIhavebeenveryluckyintermsofnumberoftape-outsandthetesting facilitiesatmydisposal.I amindebtedto Prof.Harjaniformakingthese facilities availableto usandnothavetoworryaboutthesethings.Ihavenotonlybenefited technically but also learned many other skills such as technical writing, making qualitypresentations,andproposalwriting.IwouldliketothankSavitaMa’amfor herwonderfullectureongettingthingsdone. I would like to thank Prof. Chris Kim, Prof. Anand Gopinath, and Prof. HubertLimforagreeingtochairmydefenseandpreliminaryoralcommittee.The comments given by the committee during the preliminary oral exam were very insightfulandhelpfultowardthelatterhalfofmyPhD. I am thankful to Martin for the discussions we had and also for his help in teaching me soldering and the use of lab equipment. I am thankful to Martin for teaching me paper writing and presentation skills along with his grammar correction. Iamgratefultothemforsharingtheintenseworkloadduringthetape-outs.Iam also thankfulto Sriharsha Vadlamani for giving me a coffee companythroughout myPhD.ManyideasinmyPhDisevolvedfromthecoffeediscussions. IamgratefultoDARPAforsupportingmyproject.IamthankfultotheDARPA CLASICTeam,Prof.Danijela,Prof.DejanMarkovic,andFangLiYuan,forhelping meinunderstandingthedigitalbackendofasoftware-definedradio. I learned a lot during my internships at Broadcom and Qualcomm. I was able to imbibe some of the design methodology and practices that ensure the success of design in my project as well. I am indebted to my managers Myron Buer, ix x Acknowledgments CarlMonzel,andYifeizangatBroadcomforteachingmethememorydesignand testingwithfocusonPVTvariations.IamalsothankfulformymentorWangYan atQualcommwhointroducedmetodiscretetimedeltasigmamodulatorsandalso GaneshKiran,LiangDai,andDineshAlladifortechnicaldiscussions. There are many people in the ECE Department who silently work behind the scenes and ensure that we students always have the best possible facilities. They ensurethatwespendminimumtimeontheadministrativeworkandfocusmostof thetimeonourresearch.IwouldliketothankCarlosSoria,ChimaiNguyen,Dan Dobrick,BeckyColberg,LindaJagerson,KyleDukart,JimAufderhar,PaulaBeck, andLindaBullis. Finally,Iamevergratefultomyparentsforbelievinginmeandsupportingme ineveryendeavorthatI undertook.Theyalwaysensuredthebestformeandgave me all the freedomto do whatI liked the most. My brotherhasbeen funnyand a goodcompanionforthelastthreeyearsofmyPhD. Isincerelythankyouall! Contents 1 Introduction .................................................................. 1 1.1 TraditionalOperationalTransconductance ............................ 4 1.2 DifferentialPairVersusInverter........................................ 7 1.3 NonLinearityAnalysis................................................. 9 1.4 NoiseAnalysis .......................................................... 10 1.5 InverterTransconductor................................................. 11 1.6 Non-linearityCancellationTechniques................................ 13 1.7 Organization............................................................. 14 2 Biasing ........................................................................ 17 2.1 Semi-constantCurrentBiasing......................................... 17 2.1.1 OptimalNMOS-PMOSRatioing .............................. 19 2.1.2 NonLinearityCancellationinInverters ....................... 20 2.1.3 Case1:SmallInput............................................. 21 2.1.4 Case2:LargeInput............................................. 22 2.1.5 Simulation....................................................... 23 2.2 ConstantCurrentBiasing............................................... 23 2.3 Constant-gmBiasing.................................................... 25 2.4 Conclusion .............................................................. 27 3 InverterBasedOTADesign ................................................ 29 3.1 OTADesign ............................................................. 30 3.1.1 CommonModeRejectionStage ............................... 31 3.1.2 GainandDriverStage.......................................... 32 3.2 MeasurementResults ................................................... 34 3.3 Conclusion .............................................................. 39 4 ADCDriver .................................................................. 41 4.1 ADCDriver ............................................................. 42 4.2 OTADrivingLoad...................................................... 42 4.2.1 DrivingLoadCapacitorDirectly............................... 42 4.2.2 DrivingLoadCapacitorThroughResistor .................... 43 xi

Description:
This book describes intuitive analog design approaches using digital inverters, providing filter architectures and circuit techniques enabling high performance analog circuit design. The authors provide process, supply voltage and temperature (PVT) variation-tolerant design techniques for inverter b
See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.