ebook img

Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations PDF

415 Pages·2019·4.049 MB·\415
Save to my drive
Quick download
Download
Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.

Preview Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations

Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations Pham Loi Vu Institute of Mechanics - Vietnam Academy of Science and Technology CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-0-367-33489-5(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. Library of Congress Control Number: 2019949580 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedicated to the loving memory of my late son, Pham Vu Nam (1975-2001), and younger brother, Pham Quang Dien (1941-1999) Contents Acronyms xiii Preface xv Author xvii Introduction xix 1 Inverse scattering problems for systems of first-order ODEs on a half-line 1 1.1 The inverse scattering problem on a half-line with a potential non-self-adjoint matrix . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 The representation of the solution of system (1.7). . . 4 1.1.2 The Jost solutions of system (1.7) . . . . . . . . . . . 8 1.1.3 The scattering function S(λ) and non-real eigenvalues 8 1.1.4 Connection between the analytic solution and Jost solutions. . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1.5 The scattering data . . . . . . . . . . . . . . . . . . . 20 1.1.6 Derivation of systems of fundamental equations . . . . 22 1.1.7 The estimates for the functions f(−x) and g(x) . . . . 24 1.1.8 The unique solvability of systems of fundamental equations . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.1.9 The description of the scattering data . . . . . . . . . 28 1.2 The inverse scattering problem on a half-line with a potential self-adjoint matrix . . . . . . . . . . . . . . . . . . . . . . . . 36 1.2.1 The unique solvability of the self-adjoint problem . . . 37 1.2.2 The Jost solutions of system (1.84) . . . . . . . . . . . 40 1.2.3 The scattering function and its properties . . . . . . . 42 1.2.4 The relation between the functions f(x,ξ), g(x,ξ) and f(ξ), g(ξ). . . . . . . . . . . . . . . . . . . . . . . . . 45 1.2.5 The inverse scattering problem . . . . . . . . . . . . . 51 1.2.6 The complete description of the scattering function . . 54 2 Some problems for a system of nonlinear evolution equations on a half-line 61 2.1 The IBVP for the system of NLEEs . . . . . . . . . . . . . . 63 vii viii Contents 2.1.1 The Lax compatibility condition . . . . . . . . . . . . 63 2.1.2 The time-dependence of the scattering function . . . . 65 2.1.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 67 2.1.4 The time-dependence of the scattering data . . . . . . 69 2.1.5 The solution of the IBVP for the system of NLEEs (2.5) 70 2.1.6 The IBVP for the attractive NLS equation . . . . . . 74 2.2 Exact solutions of the system of NLEEs . . . . . . . . . . . . 76 2.2.1 Exact solutions of fundamental equations . . . . . . . 76 2.2.2 Thetime-dependenceofstandardizedmultipliersandan exact solution of system (2.5) . . . . . . . . . . . . . . 78 2.2.3 An exact solution of the attractive NLS equation . . . 83 2.3 The Cauchy IVP problem for the repulsive NLS equation . . 85 3 Some problems for cubic nonlinear evolution equations on a half-line 89 3.1 The direct and inverse scattering problem . . . . . . . . . . . 90 3.1.1 The representation of the solution of system (3.4). . . 90 3.1.2 The Jost solutions of system (3.4) . . . . . . . . . . . 92 3.1.3 The scattering function S(λ) and non-real eigenvalues 93 3.1.4 Connection between the analytic solution and Jost solutions . . . . . . . . . . . . . . . . . . . . . . . 95 3.1.5 The scattering data . . . . . . . . . . . . . . . . . . . 98 3.1.6 The systems of fundamental equations . . . . . . . . . 100 3.1.7 The complete description of the scattering data . . . . 101 3.2 The IBVPs for the mKdV equations . . . . . . . . . . . . . . 102 3.2.1 The Lax compatibility condition . . . . . . . . . . . . 103 3.2.2 The time-dependence of the scattering function . . . . 104 3.2.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 106 3.2.4 The time-dependence of the scattering data . . . . . . 108 3.2.5 The solution of the IBVPs for mKdV equations . . . . 110 3.2.6 RelationbetweensolutionsofthemKdVandKdVequa- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.3 Non-scattering potentials and exact solutions . . . . . . . . . 117 3.3.1 Exact solutions of systems of fundamental equations . 117 3.3.2 Thetime-dependenceofstandardizedmultipliersandan exact solution of system (3.41) . . . . . . . . . . . . . 119 3.3.3 Exact solutions of equations mKdV and KdV . . . . . 122 3.4 The Cauchy problem for cubic nonlinear equation (3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4 The Dirichlet IBVPs for sine and sinh-Gordon equations 129 4.1 The IBVP for the sG equation . . . . . . . . . . . . . . . . . 132 4.1.1 The Jost solutions . . . . . . . . . . . . . . . . . . . . 132 4.1.2 The Lax compatibility condition . . . . . . . . . . . . 134 4.1.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 135 Contents ix 4.1.4 The time-dependence of the scattering data . . . . . . 142 4.1.5 The IBVP (4.14)–(4.16) . . . . . . . . . . . . . . . . . 146 4.2 The IBVP for the shG equation . . . . . . . . . . . . . . . . 149 4.2.1 The self-adjoint problem associated with the shG equation . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.2.2 The Lax compatibility condition . . . . . . . . . . . . 151 4.2.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 153 4.2.4 The time-dependence of the scattering function . . . . 158 4.2.5 The IBVP for the shG equation. . . . . . . . . . . . . 158 4.3 Exact soliton-solutions of the sG and shG equations . . . . . 162 5 Inverse scattering for integration of the continual system of nonlinear interaction waves 167 5.1 The direct and ISP for a system of n first-order ODEs . . . . 169 5.1.1 The transition matrix S(λ) . . . . . . . . . . . . . . . 170 5.1.2 Representations of solutions of system (5.5) . . . . . . 170 5.1.3 The intermediate matrix S˜(λ) . . . . . . . . . . . . . . 181 5.1.4 The bilateral factorization of the transition matrix S(λ) . . . . . . . . . . . . . . . . . . . . . . . . 182 5.1.5 The analytic and bilateral factorizations of S˜(λ) . . . 187 5.1.6 The inverse scattering problem . . . . . . . . . . . . . 190 5.2 The direct and ISP for the transport equation . . . . . . . . 195 5.2.1 The transition operator S(λ) . . . . . . . . . . . . . . 195 5.2.2 Volterra integral representations of solutions . . . . . 197 5.2.3 Bilateral Volterra factorization of the S-operator . . . 207 5.2.4 Analytic and bilateral Volterra factorizations of the in- termediate operator S˜(λ) . . . . . . . . . . . . . . . . 212 5.2.5 The inverse scattering problem . . . . . . . . . . . . . 217 5.3 Integration of the continual system of nonlinear interaction waves . . . . . . . . . . . . . . . . . . . . . . . . 227 5.3.1 The generalized Lax equation . . . . . . . . . . . . . . 227 5.3.2 The time-evolution of the operators F˜(λ;t) and G˜(λ;t) 232 5.3.3 The Cauchy problem for the continual system (5.213) 234 6 Some problems for the KdV equation and associated inverse scattering 237 6.1 The direct and ISP . . . . . . . . . . . . . . . . . . . . . . . 239 6.1.1 The Jost solution and the analytic solution . . . . . . 240 6.1.2 The Parseval’s equality and the fundamental equation 244 6.1.3 The necessary conditions of the scattering data . . . . 247 6.1.4 The necessary and sufficient conditions of a given data set . . . . . . . . . . . . . . . . . . . . . . . 249 6.2 The IBVP for the KdV equation . . . . . . . . . . . . . . . . 250 6.2.1 The Lax compatibility condition . . . . . . . . . . . . 251 6.2.2 The time-dependent Jost solution. . . . . . . . . . . . 254

See more

The list of books you might like

Most books are stored in the elastic cloud where traffic is expensive. For this reason, we have a limit on daily download.