Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations Inverse Scattering Problems and Their Application to Nonlinear Integrable Equations Pham Loi Vu Institute of Mechanics - Vietnam Academy of Science and Technology CRCPress Taylor&FrancisGroup 6000BrokenSoundParkwayNW,Suite300 BocaRaton,FL33487-2742 (cid:13)c 2020byTaylor&FrancisGroup,LLC CRCPressisanimprintofTaylor&FrancisGroup,anInformabusiness NoclaimtooriginalU.S.Governmentworks Printedonacid-freepaper InternationalStandardBookNumber-13:978-0-367-33489-5(Hardback) Thisbookcontainsinformationobtainedfromauthenticandhighlyregardedsources.Rea- sonable efforts have been made to publish reliable data and information, but the author and publisher cannot assume responsibility for the validity of all materials or the conse- quences of their use. The authors and publishers have attempted to trace the copyright holdersofallmaterialreproducedinthispublicationandapologizetocopyrightholdersif permissiontopublishinthisformhasnotbeenobtained.Ifanycopyrightmaterialhasnot beenacknowledgedpleasewriteandletusknowsowemayrectifyinanyfuturereprint. Except as permitted under U.S. Copyright Law, no part of this book may be reprinted, reproduced, transmitted, or utilized in any form by any electronic, mechanical, or other means,nowknownorhereafterinvented,includingphotocopying,microfilming,andrecord- ing,orinanyinformationstorageorretrievalsystem,withoutwrittenpermissionfromthe publishers. For permission to photocopy or use material electronically from this work, please access www.copyright.com(http://www.copyright.com/)orcontacttheCopyrightClearanceCen- ter, Inc. (CCC), 222 Rosewood Drive, Danvers, MA 01923, 978-750-8400. CCC is a not- for-profit organization that provides licenses and registration for a variety of users. For organizations that have been granted a photocopy license by the CCC, a separate system ofpaymenthasbeenarranged. Trademark Notice:Productorcorporatenamesmaybetrademarksorregisteredtrade- marks,andareusedonlyforidentificationandexplanationwithoutintenttoinfringe. Library of Congress Control Number: 2019949580 Visit the Taylor & Francis Web site at http://www.taylorandfrancis.com and the CRC Press Web site at http://www.crcpress.com Dedicated to the loving memory of my late son, Pham Vu Nam (1975-2001), and younger brother, Pham Quang Dien (1941-1999) Contents Acronyms xiii Preface xv Author xvii Introduction xix 1 Inverse scattering problems for systems of first-order ODEs on a half-line 1 1.1 The inverse scattering problem on a half-line with a potential non-self-adjoint matrix . . . . . . . . . . . . . . . . . . . . . 3 1.1.1 The representation of the solution of system (1.7). . . 4 1.1.2 The Jost solutions of system (1.7) . . . . . . . . . . . 8 1.1.3 The scattering function S(λ) and non-real eigenvalues 8 1.1.4 Connection between the analytic solution and Jost solutions. . . . . . . . . . . . . . . . . . . . . . . . . . 13 1.1.5 The scattering data . . . . . . . . . . . . . . . . . . . 20 1.1.6 Derivation of systems of fundamental equations . . . . 22 1.1.7 The estimates for the functions f(−x) and g(x) . . . . 24 1.1.8 The unique solvability of systems of fundamental equations . . . . . . . . . . . . . . . . . . . . . . . . . 26 1.1.9 The description of the scattering data . . . . . . . . . 28 1.2 The inverse scattering problem on a half-line with a potential self-adjoint matrix . . . . . . . . . . . . . . . . . . . . . . . . 36 1.2.1 The unique solvability of the self-adjoint problem . . . 37 1.2.2 The Jost solutions of system (1.84) . . . . . . . . . . . 40 1.2.3 The scattering function and its properties . . . . . . . 42 1.2.4 The relation between the functions f(x,ξ), g(x,ξ) and f(ξ), g(ξ). . . . . . . . . . . . . . . . . . . . . . . . . 45 1.2.5 The inverse scattering problem . . . . . . . . . . . . . 51 1.2.6 The complete description of the scattering function . . 54 2 Some problems for a system of nonlinear evolution equations on a half-line 61 2.1 The IBVP for the system of NLEEs . . . . . . . . . . . . . . 63 vii viii Contents 2.1.1 The Lax compatibility condition . . . . . . . . . . . . 63 2.1.2 The time-dependence of the scattering function . . . . 65 2.1.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 67 2.1.4 The time-dependence of the scattering data . . . . . . 69 2.1.5 The solution of the IBVP for the system of NLEEs (2.5) 70 2.1.6 The IBVP for the attractive NLS equation . . . . . . 74 2.2 Exact solutions of the system of NLEEs . . . . . . . . . . . . 76 2.2.1 Exact solutions of fundamental equations . . . . . . . 76 2.2.2 Thetime-dependenceofstandardizedmultipliersandan exact solution of system (2.5) . . . . . . . . . . . . . . 78 2.2.3 An exact solution of the attractive NLS equation . . . 83 2.3 The Cauchy IVP problem for the repulsive NLS equation . . 85 3 Some problems for cubic nonlinear evolution equations on a half-line 89 3.1 The direct and inverse scattering problem . . . . . . . . . . . 90 3.1.1 The representation of the solution of system (3.4). . . 90 3.1.2 The Jost solutions of system (3.4) . . . . . . . . . . . 92 3.1.3 The scattering function S(λ) and non-real eigenvalues 93 3.1.4 Connection between the analytic solution and Jost solutions . . . . . . . . . . . . . . . . . . . . . . . 95 3.1.5 The scattering data . . . . . . . . . . . . . . . . . . . 98 3.1.6 The systems of fundamental equations . . . . . . . . . 100 3.1.7 The complete description of the scattering data . . . . 101 3.2 The IBVPs for the mKdV equations . . . . . . . . . . . . . . 102 3.2.1 The Lax compatibility condition . . . . . . . . . . . . 103 3.2.2 The time-dependence of the scattering function . . . . 104 3.2.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 106 3.2.4 The time-dependence of the scattering data . . . . . . 108 3.2.5 The solution of the IBVPs for mKdV equations . . . . 110 3.2.6 RelationbetweensolutionsofthemKdVandKdVequa- tions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 114 3.3 Non-scattering potentials and exact solutions . . . . . . . . . 117 3.3.1 Exact solutions of systems of fundamental equations . 117 3.3.2 Thetime-dependenceofstandardizedmultipliersandan exact solution of system (3.41) . . . . . . . . . . . . . 119 3.3.3 Exact solutions of equations mKdV and KdV . . . . . 122 3.4 The Cauchy problem for cubic nonlinear equation (3.3) . . . . . . . . . . . . . . . . . . . . . . . . . . 123 4 The Dirichlet IBVPs for sine and sinh-Gordon equations 129 4.1 The IBVP for the sG equation . . . . . . . . . . . . . . . . . 132 4.1.1 The Jost solutions . . . . . . . . . . . . . . . . . . . . 132 4.1.2 The Lax compatibility condition . . . . . . . . . . . . 134 4.1.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 135 Contents ix 4.1.4 The time-dependence of the scattering data . . . . . . 142 4.1.5 The IBVP (4.14)–(4.16) . . . . . . . . . . . . . . . . . 146 4.2 The IBVP for the shG equation . . . . . . . . . . . . . . . . 149 4.2.1 The self-adjoint problem associated with the shG equation . . . . . . . . . . . . . . . . . . . . . . . . . . 150 4.2.2 The Lax compatibility condition . . . . . . . . . . . . 151 4.2.3 Evaluation of unknown BVs . . . . . . . . . . . . . . . 153 4.2.4 The time-dependence of the scattering function . . . . 158 4.2.5 The IBVP for the shG equation. . . . . . . . . . . . . 158 4.3 Exact soliton-solutions of the sG and shG equations . . . . . 162 5 Inverse scattering for integration of the continual system of nonlinear interaction waves 167 5.1 The direct and ISP for a system of n first-order ODEs . . . . 169 5.1.1 The transition matrix S(λ) . . . . . . . . . . . . . . . 170 5.1.2 Representations of solutions of system (5.5) . . . . . . 170 5.1.3 The intermediate matrix S˜(λ) . . . . . . . . . . . . . . 181 5.1.4 The bilateral factorization of the transition matrix S(λ) . . . . . . . . . . . . . . . . . . . . . . . . 182 5.1.5 The analytic and bilateral factorizations of S˜(λ) . . . 187 5.1.6 The inverse scattering problem . . . . . . . . . . . . . 190 5.2 The direct and ISP for the transport equation . . . . . . . . 195 5.2.1 The transition operator S(λ) . . . . . . . . . . . . . . 195 5.2.2 Volterra integral representations of solutions . . . . . 197 5.2.3 Bilateral Volterra factorization of the S-operator . . . 207 5.2.4 Analytic and bilateral Volterra factorizations of the in- termediate operator S˜(λ) . . . . . . . . . . . . . . . . 212 5.2.5 The inverse scattering problem . . . . . . . . . . . . . 217 5.3 Integration of the continual system of nonlinear interaction waves . . . . . . . . . . . . . . . . . . . . . . . . 227 5.3.1 The generalized Lax equation . . . . . . . . . . . . . . 227 5.3.2 The time-evolution of the operators F˜(λ;t) and G˜(λ;t) 232 5.3.3 The Cauchy problem for the continual system (5.213) 234 6 Some problems for the KdV equation and associated inverse scattering 237 6.1 The direct and ISP . . . . . . . . . . . . . . . . . . . . . . . 239 6.1.1 The Jost solution and the analytic solution . . . . . . 240 6.1.2 The Parseval’s equality and the fundamental equation 244 6.1.3 The necessary conditions of the scattering data . . . . 247 6.1.4 The necessary and sufficient conditions of a given data set . . . . . . . . . . . . . . . . . . . . . . . 249 6.2 The IBVP for the KdV equation . . . . . . . . . . . . . . . . 250 6.2.1 The Lax compatibility condition . . . . . . . . . . . . 251 6.2.2 The time-dependent Jost solution. . . . . . . . . . . . 254