OT84_fmA2.qxd 10/27/2004 3:52 PM Page 3 MARINE ACOUSTICS Direct and Inverse Problems James L. Buchanan United States Naval Academy Annapolis, Maryland Robert P. Gilbert University of Delaware Newark, Delaware Armand Wirgin Laboratoire de Mécanique et d’Acoustique Marseille, France Yongzhi S. Xu University of Tennessee at Chattanooga Chattanooga, Tennessee Society for Industrial and Applied Mathematics Philadelphia OT84_fmA2.qxd 10/27/2004 3:52 PM Page 4 Copyright © 2004 by the Society for Industrial and Applied Mathematics. 10 9 8 7 6 5 4 3 2 1 All rights reserved. Printed in the United States of America. No part of thisbook may be reproduced, stored, or transmitted in any manner without the written permission of the publisher. For information, write to the Society for Industrial and Applied Mathematics, 3600 University City Science Center, Philadelphia, PA 19104-2688. Library of Congress Cataloging-in-Publication Data Marine acoustics : direct and inverse problems / James L. Buchanan … [et al.]. p. cm. Includes bibliographical references and index. ISBN 0-89871-547-4 (pbk.) 1. Underwater acoustics. I. Buchanan, James L. QC242.2.M37 2004 620.2’5—dc22 2003070359 This research was supported in part by the National Science Foundation through grants BES-9402539, INT-9726213, BES-9820813, the Office of Naval Research through grant N00014-001-0853, and the Centre National de la Recherche Scientifique through grant NSF/CNRS-5932. is a registered trademark. Contents Preface ....................................................................................... xi Acknowledgments ...................................................................... xii 1. The Mechanics of Continua ............................................... 1 1.1 Introduction ............................................................................. 1 1.2 Survey of Previous Work ........................................................ 5 1.3 Underlying Principles of the Mechanics of Continua .............. 9 1.3.1 Introduction ............................................................. 9 1.3.2 Lagrangian and Eulerian Coordinates, Deformation, Strain, Displacement, and Rotation ......................... 10 1.3.3 Deformation Gradients and Deformation Tensors ................................................................... 11 1.3.4 The Cauchy and Green Deformation Tensors ......... 12 1.3.5 Strain Tensors and Displacement Vectors .............. 13 1.3.6 Infinitesimal Strains and Rotations .......................... 15 1.3.7 Lagrangian and Eulerian Strains in the Framework of Infinitesimal Deformations ................................... 16 1.3.8 Strain Invariants and Principal Directions ................ 17 1.3.9 Area and Volume Changes Due to Infinitesimal Deformations ........................................................... 18 1.3.10 Kinematics .............................................................. 19 1.3.11 Material Derivatives of Line, Surface, and Volume Integrals over Regions Devoid of Discontinuities ......................................................... 21 1.3.12 Material Derivatives of Integrals over Regions Containing a Discontinuity Surface .......................... 23 1.3.13 Conservation of Mass Law for Uniform Bodies ........ 24 v This page has been reformatted by Knovel to provide easier navigation. vi Contents 1.3.14 Conservation of Momentum and Energy Laws ........ 25 1.3.15 External and Internal Loads and Their Incorporation in the Conservation of Momentum Equation ............ 25 1.3.16 Stress ...................................................................... 26 1.3.17 Global and Local Forms of the Conservation of Momentum Law in Terms of Stress ......................... 27 1.3.18 Local Form of the Boundary Conditions on Discontinuity Surfaces ............................................. 28 1.3.19 Thermodynamic Considerations .............................. 29 1.3.20 Constitutive Relations ............................................. 33 1.4 Mechanics of Elastic Media and Elastodynamics ................... 33 1.4.1 Definition of Elastic Media ....................................... 33 1.4.2 Constitutive Equations ............................................ 33 1.4.3 Linear Constitutive Equations (Linear Elasticity) ..... 37 1.4.4 Symmetry Properties of the Elastic Moduli Tensor ..................................................................... 41 1.4.5 The Wave Equation for Elastodynamics in Linear Elastic Media ........................................................... 42 1.4.6 Wave Equation for Elastodynamics in Compressible, Homogeneous Materials .................. 43 1.4.7 Wave Equation for Elastodynamics in Heterogeneous, Isotropic Solids .............................. 43 1.4.8 Wave Equation for Elastodynamics in Homogeneous, Isotropic Solids ............................... 43 1.4.9 Obtaining the Wave Equation of Acoustics in Heterogeneous, Inviscid Fluids from Navier’s Equation .................................................................. 45 1.4.10 Boundary Conditions between Two Linear, Isotropic, Homogeneous, Elastic Materials .............. 46 1.5 Forward and Inverse Wavefield Problems .............................. 48 1.5.1 Introduction ............................................................. 48 1.5.2 The Frequency-domain Equation for Propagation in an Unbounded, Heterogeneous, Inviscid Fluid Medium ................................................................... 49 This page has been reformatted by Knovel to provide easier navigation. Contents vii 1.5.3 The Frequency-domain Radiation Condition at Infinity ..................................................................... 50 1.5.4 Governing Equations for the Frequency-domain Formulation of Wave Propagation in an Unbounded, Heterogeneous, Inviscid Fluid Medium ................................................................... 51 1.5.5 Governing Equations for the Frequency-domain Formulation of Wave Propagation in Two Contiguous, Semi-infinite, Heterogeneous, Inviscid Fluid Media ................................................. 51 1.5.6 Governing Equations for the Frequency-domain Formulation of Wave Propagation in an Unbounded, Heterogeneous, Isotropic, Elastic Solid ........................................................................ 52 1.5.7 Governing Equations for the Frequency-domain Formulation of Wave Propagation in Two Semi- infinite, Heterogeneous, Isotropic, Elastic Solid Media in Welded Contact ........................................ 52 1.5.8 Governing Equations for the Frequency-domain Formulation of Wave Propagation in a Semi- infinite Domain Occupied by a Heterogeneous, Inviscid Fluid Contiguous with a Semi-infinite Domain Occupied by a Heterogeneous, Isotropic, Elastic Solid ............................................. 54 1.5.9 Eigenmodes of a Linear, Homogeneous, Isotropic Solid Medium of Infinite Extent ................. 55 2. Direct Scattering Problems in Ocean Environments ....... 57 2.1 The Constant Depth, Homogeneous Ocean .......................... 57 2.1.1 Point Source Response in a Constant Depth, Homogeneous Ocean ............................................. 57 2.1.2 Propagating Solutions in an Ocean with Sound- soft Obstacle ........................................................... 58 2.1.3 The Representation of Propagating Solutions ......... 59 This page has been reformatted by Knovel to provide easier navigation. viii Contents 2.1.4 The Uniqueness Theorem for the Dirichlet Problem .................................................................. 61 2.1.5 An Existence Theorem for the Dirichlet Problem .................................................................. 66 2.1.6 Propagating Far-field Patterns ................................ 69 2.1.7 Density Properties of Far-field Patterns ................... 72 2.1.8 Complete Sets in L2(δΩ) .......................................... 72 2.1.9 Dense Sets in L2(δΩ) ............................................... 74 2.1.10 The Projection Theorem in VN ................................. 76 2.1.11 Injection Theorems for the Far-field Pattern Operator .................................................................. 79 2.1.12 An Approximate Boundary Integral Method for Acoustic Scattering in Shallow Oceans ................... 83 2.2 Scattered Waves in a Stratified Medium ................................ 92 2.2.1 Green’s Function of a Stratified Medium and the Generalized Sommerfeld Radiation Condition ......... 92 2.2.2 Scattering of Acoustic Waves by an Obstacle in a Stratified Space .................................................... 96 2.2.3 Reciprocity Relations .............................................. 98 2.2.4 Completeness of the Far-field Patterns ................... 101 3. Inverse Scattering Problems in Ocean Environments ...................................................................... 107 3.1 Inverse Scattering Problems in Homogeneous Oceans ......... 107 3.1.1 Inverse Problems and Their Approximate Solutions ................................................................. 108 3.1.2 Inverse Scattering Using Generalized Herglotz Functions ................................................................ 114 3.2 The Generalized Dual Space Indicator Method ...................... 123 3.2.1 Acoustic Wave in a Wave Guide with an Obstacle .................................................................. 123 3.3 Determination of an Inhomogeneity in a Two-layered Wave Guide ............................................................................ 129 3.3.1 Numerical Example ................................................. 133 This page has been reformatted by Knovel to provide easier navigation. Contents ix 3.4 The Seamount Problem .......................................................... 133 3.4.1 Formulation ............................................................. 133 3.4.2 Uniqueness of the Seamount Problem .................... 135 3.4.3 A Linearized Algorithm for the Reconstruction of a Seamount ............................................................. 139 3.5 Inverse Scattering for an Obstacle in a Stratified Medium ..... 142 3.5.1 Formulation of the Inverse Problem ........................ 142 3.5.2 Uniqueness ............................................................. 144 3.5.3 An Example of Nonuniqueness ............................... 147 3.5.4 The Far-field Approximation Method ....................... 148 3.6 The Intersecting Canonical Body Approximation .................... 154 3.6.1 Forward and Inverse Scattering Problems for a Body in Free Space ................................................. 154 3.6.2 A Method for the Reconstruction of the Shape of the Body Using the ICBA as the Estimator .............. 156 3.6.3 Use of the K Discrepancy Functional and a Perturbation Technique ........................................... 157 3.6.4 More on the Ambiguity of Solutions of the Inverse Problem Arising from Use of the ICBA ........ 158 3.6.5 Method for Reducing the Ambiguity of the Boundary Reconstruction ........................................ 159 3.7 The ICBA for Shallow Oceans: Objects of Revolution ............ 162 3.7.1 Derivation of the Recurrences for Calculation of the Scattered Field .................................................. 163 3.7.2 Numerical Simulation of Object Reconstruction Using ICBA ............................................................. 166 3.7.3 3D Objects in a Shallow Ocean ............................... 168 4. Oceans over Elastic Basements ........................................ 171 4.1 A Uniform Ocean over an Elastic Seabed .............................. 171 4.1.1 The Boundary Integral Equation Method for the Direct Problem ........................................................ 174 This page has been reformatted by Knovel to provide easier navigation. x Contents 4.1.2 Far-field and Near-field Estimates for the Green’s Function .................................................................. 177 4.1.3 The Far-field Approximation .................................... 180 4.1.4 Near-field Approximations ....................................... 183 4.1.5 Approximating the Propagation Solution ................. 184 4.1.6 Computing the Scattered Solution ........................... 186 4.2 Undetermined Coefficient Problem for the Seabed ................ 189 4.2.1 Numerical Determination of the Seabed Coefficients ............................................................. 191 4.3 The Nonhomogeneous Water Column, Elastic Basement System .................................................................................... 193 4.4 An Inner Product for the Ocean–Seabed System .................. 201 4.5 Numerical Verification of the Inner Product ............................ 206 4.6 Asymptotic Approximations of the Seabed ............................. 208 4.6.1 A Thin Plate Approximation for an Elastic Seabed ................................................................... 208 4.6.2 A Thick Plate Approximation for the Elastic Seabed ................................................................... 214 5. Shallow Oceans over Poroelastic Seabeds ...................... 217 5.1 Introduction ............................................................................. 217 5.2 Elastic Model of a Seabed ...................................................... 217 5.3 The Poroelastic Model of a Seabed ....................................... 219 5.3.1 Constitutive Equations for an Isotropic Porous Medium ................................................................... 219 5.3.2 Dynamical Equations for a Porous Medium ............. 220 5.3.3 Calculation of the Coefficients in the Biot Model ..... 222 5.3.4 Experimental Determination of the Biot–Stoll Inputs ...................................................................... 226 5.4 Solution of the Time-harmonic Biot Equations ....................... 229 5.4.1 Simplification of the Equations ................................ 229 5.4.2 Speeds of Compressional and Shear Waves .......... 232 This page has been reformatted by Knovel to provide easier navigation. Contents xi 5.4.3 Solution of the Differential Equations for a Poroelastic Layer .................................................... 247 5.5 Representation of Acoustic Pressure ..................................... 252 5.5.1 Differential Equations for Pressure and Vertical Displacement in the Ocean ..................................... 253 5.5.2 Interface Conditions ................................................ 253 5.5.3 Green’s Function Representation of Acoustic Pressure ................................................................. 255 5.6 Sound Transmission over a Poroelastic Half-space ............... 257 6. Homogenization of the Seabed and Other Asymptotic Methods ............................................................................... 267 6.1 Low Shear Asymptotics for Elastic Seabeds .......................... 267 6.1.1 The Wentzel–Kramers–Brillouin Expansion of the Displacements ................................................... 269 6.1.2 The Regular Perturbation Expansion ....................... 270 6.1.3 A Singular Perturbation Problem for the Love Function .................................................................. 271 6.2 Homogenization of the Seabed .............................................. 273 6.2.1 Time-variable Solutions in Rigid Porous Media ....... 274 6.3 Time-harmonic Solutions in a Periodic Poroelastic Medium ................................................................................... 279 6.3.1 Inner Expansion and Homogenized System ............ 281 6.3.2 Interface Matching and Boundary Layers ................ 284 6.4 Rough Surfaces ...................................................................... 290 6.5 A Numerical Example ............................................................. 296 Bibliography ............................................................................. 299 Index .......................................................................................... 333 This page has been reformatted by Knovel to provide easier navigation.
Description: